
t 

\ 

\ • 

\ 
~ 

I 
;• 

~: 
•'-f 
'\ •• 

NORSAR ROYAL NORWEGIAN COUNCIL FOR SCIENTIFIC ANO INDUSTRIAL RESEARCH 

Scientitic Report No. 1-73/7 4 

ESTIMATION OF SIGNALS IN MULTIPLE NOISE 

A UNIFIED APPROACH 

by 
A Christoffersson 
Department of Statistics 
Uppsala University 
Sweden 
and 
B. Jansson 
Honeywell Bull 
Stockholm, Sweden 

Kjeller, 10 january 1974 

Sponsored by 

Advanced Research Projects Agency 

ARPA Order No. 2551 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED 



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

I. REPORT NUMBER ,2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 

F44fi?0-74-r-0001 I 
4 . T I TLE ( and Subtitle) S. TYPE OF REPORT & PERIOD COVERED 

Estimation of Signals in ·· Multiple Noise Scientific 

A Unified Approach 1 Jul 73 - 30 Jun 74 
6. PERFORMING ORG. REPORT NUMBER 

!=:l"'i.,,.ni-;i= i ro 'Q.,,.n 1-7-=t/7.1 
7 . AUTHOR( •) 8 . CONTRACT OR GRAN'T NUMBER(s) 

Anders Christof fersson and Bo Jansson F44620-74-C-0001 

9 . PERFO RM I NG ORGAN I ZATION NAME ANO AOORESS 10 . PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

NTNF /NORSAR 
Post Box 51 NORSAR Phase 3 
N-2007 K;P-11.,,.r. Nnrwav 

I I. CONTROLLING OFFICE NAME ANO AOORESS 12 . REPORT CATE 

Air Force Off ice of Scientific Research 1 December 1973 
1400 Wilson Blvd 13. NUMBER OF PAGES 

Arlington, Va. 22209 U.S.A. 40 
14. MONITORING AGENCY NAME & AOORESS(ll dlllarent from Controlllnll Office) 15. SECURITY CLASS. (ol thla report) 

European Off ice of Aerospace Research 
And Development 

Keysign House, 429 Oxford Street ISa, OECLASSIFICATION/OOWNGRAOING 

London Wl, England Attn: Maj. Munz linger SCHEDULE 

16. DISTRIBUTION STATEMENT (of thla Report) 

Approved for public release; distribution unlimited 

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II dlllerent from Report) 

18. SUPPLEMENTARY NOTES 

19. KEY WO ROS (Continue on reverse aide II necessary and Identify by block number) 

Array, Beamforming, Signal Estimation 

20. ABSTRACT (Continue on reverae aide If necessary and Identify by block number) 

A unified approach for the estimation of signals in multiple noise 
is given. In . the general form of the method we will allow for 
several signals to be estimated simultaneously. It is possible to 
utilize prior knowledge of the signal. Existing methods fall out 

• as special cases as we simplify our model. The large sample 
statistical properties are studied and it is proved that use of 
prior knowledge is essential for consistent estimates. 

DD FORM 
I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



• 

- ii -

USAF Project Authorization No.: 

Date of Cohtract 

Amount of Contract 

Contract Termination Date 

Project Supervisor 

Project Manager 

Title of Contract 

VT/ 4 702/B/OSR 

30 August 1973 

$ 888,806.00 

30 June 1974 

Robert Major, NTNF 

Nils Maras 

Norwegian Seismic Array 
(NORSAR) 

The views and conclusions contained in this document are 
those of the authors and . should not be interpreted as 
necessarily representing the official policies, either 
expressed or implied, of the Advanced Research Project 
Agency, the US Air Force or the US Government. 

Qualified requesters may obtain additional copies from 
the Defense Documentation Center. All others should 
apply to the National Technical Information Services 
(NTIS) • 



(' 

• 

• 

• 

CONTENTS 

Introduction 

Theoretical Model 

The Model when N=l 

- iii -

Page 

1 

6 

6 

Large Sample Properties of the Estimates 16 

Illustration 29 

The Model when 1 < N < M 37 

Rotation of the Basis 38 

References 41 



,. 

I' 

... 

ESTIMATION OF SIGNALS IN MULTIPLE NOISE 

A UNIFIED APPROACH 

SUMMARY 

A unified approach for the estimation of signals 
in multiple noise is given. In the general form 
of the method we will allow for several signals 
to be estimated simultaneously. It is possible 
to utilize prior knowledge of the signal. Exist­
ing methods fall out as special cases as we simplify 
our model. The large sample statistical properties 
are studied and it is proved that use of prior 
knowledge is essential . for consistent estimates. 

INTRODUCTION 

Several methods for signal estimation for array stations 

have been published during the last few years, e.g., 

Capon et al (1966), Kelly and Levin (1964). Common to 

these methods is that they operate on the assumption that 

the signal, or event, in each sensor is identical to that 

in every other sensor (see (ii) below). In seismological 

applications it has been found that the signal appears with 

different amplitude at each sensor for rather close spacing 

of the sensors. (See Capon et al (1964), page 27.) Hence 

there will be a degradation in the performance of the 

methods. 

A general model for array data can be written as 

Y1 = Sl + Nl 

Y2 = S2 + N2 

(i) 

YM = SM + NM 

- 1 -



where y. is the recording at the i-th sensor, S. is 
1 . 1 

the signal at the i-th sensor and N. is the noise at 
1 

the i-th sensor. The noise is assumed to be unc0rrelated 

with signals and to have expectation zero. 

In this model, y 1 ,y2 , ..• ,yM are observed and we want to 

estimate the unknown signals s 1 ,s 2 , ••• ,SM. To estimate 

the signals we may simply use the observed yi:s. This 

will work satisfactorily if the signal-to-noise ratios 

are high. However, if this is not true, we must try to 

find some reasonable restrictions to put on the model. 

Assuming that the readings are properly shifted, these 

restrictions may be of the following types: 

I. We assume that the signal is the same at every 

seismometer. The model then becomes 

Y1 = S + Nl 

y 2 = S + N2 

(ii) 

YM = S + NM 

To estimate the signal in this model we may simply sum 

up the traces. However, this model is rather unrealistic. 

In order to get s 1 =s 2= ••• =SM' the sensors have to be 

spaced rather closely, and this may cause high cross­

correlation between the different noise records. This 

in turn implies that the information about the signal 

that is contained in one or a few of the sensors is almost 

the same as the information contained in the whole array. 

(Note that this is true even if knowledge of the noise 

coherence is utilized.) 

- 2 -
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II. To make the model less restrictive and thus more 

realistic, we may assume that the signal is the same 

except for an unknown amplitude factor. Then we get 

Y1 = ylS + Nl 

Y2 = y2S + N2 

(iii) 

YM = yMS + NM 

where y . :s are the unknown amplitude factors. 
i 

The estimation of the unknown signal and the unknown amplitude 

factors leads to an eigenvalue problem and will be 

treated in section two of this paper. The stochastic 

properties of the parameters in the model (iii) are treated 

in section three. In this model we may also make use of 

available knowledge about the signal, e.g., that it can 

be expanded in a finite set of linearly independent func­

tions. (See Broome and Dean (1964) .) We then add to the 

model the following condition 

(iiia) s = I<t>rar 
r 

where a 1 ,a
2

, ••• ,ap is the set of given linearly independent 

functions and <1> 11 <1> 2 , ••• ,<jlp is a set of unknown parameters. 

The square of the signal-to-noise ratio in the estimated 

signal will, for models (ii) and (iii), increase with the 

number of seismometers (if the noise coherence is small). 

For model (iii) with condition (iiia) the square of the signal­

to-noise ratio will increase with the number of sensors 

multiplied with the length of the signal. 

The properties of the model with the additional condition 

(iiia) are treated in sections two and three. 

- 3 -



III. The next step to get a more general model is to 

assume that the space span~ed by the signals s 1 ,s 2 , ••• ,SM 

in the model (i) have dimension N, where l~N~M. The model 

is then 

Y1 = Y11s1 + Y12s2 + ••• + Y1NSN + Nl 

Y2 = Y21s1 + Y22s2 + ••• + Y2NsN + N2 

(iv) • 

YM = YM1s1 + YM2s2 + ••• + YMNsN +NM 

In this model s 1 ,s 2 , ••• ,~N form an unknown basis in the 

space spanned by the signals s 1 ,s 2 , ••• ,SM and y11 ,y 21 , ••• ,yMN 

are unknown coefficients for the expansion of the signals 

in terms of this basis, i.e., the signals are 

N 
(iva) s =LY· ·Sj . . l. J 

l. J 
for i = 1,2, ••• ,M 

The estimate of the space spanned by the signals and the 

estimates of the signals will be unique. The estimate of 

the basis on the other hand is unique only up to a ·non­

singular transformation. The assumption that the dimension 

of the space spanned by the signals equals N can be derived 

from an assumption that the geological structure under 

the array consists of N different unknown homogenous 

regions. It is then possible to transform (rotate) the 

solution in such a way that each of the basis vectors 

corresponds to one of the regions. It may also be possible 

to relate a given sensor to a specific structure. One way 

to do this will be treated in sections five and six. 

As for the model (iii) it is possible to utilize prior 

knowledge of the signal. Corresponding to (iiia) we 

- 4 -
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then get the condition 

(ivb} 
p 

~j = l 
r 

b. a Jr r 

where a 1 ,a2 , ••• ,ap is a set of given linearly independent 

functions and b 11 ,b12 , ••• ,bp is a set of unknown parameters. 

The first two sections of this paper, based on an earlier 

seminar paper (Christoffersson and Jansson (1966}} which 

was used in Jansson and.Husebye (1968) and Whitcomb (1969}, 

treats the model (iii} and gives the maximum likelihood 

solution. Section three gives the large sample properties 

of the estimates. Section four illustrates 

how the method can be applied to real data. 

Sections five and six, finally, treat the estirnatation 

of the unknowns in model (iv} and the rotation of the 

solution so that the basis vectors correspond to signals 

present in different regions. 

The assumption that the noise is normally distributed, 

which we adopt here, makes the maximum likelihood solution 

identical to the least-square solution, where no assumption 

is made about the distribution of the noise. 

- 5 -



1. Theoretical Model 

The theoretical model is written 

n = r'(cI>'a) + u (1) 

where n is a vector variable with M elements (M x 1), 

r is a (N x M) matrix of constants, cl> is a (L x N) matrix 

of constants in Hilbert space, a is a known non-stochastic 

variable vector with linearly independent elements, and 

u is a stochastic variable vector with E(u) = O, where 

the M elements form a joint non-singular normal distribution. 

In our application n refers to the measured variables, i.e., 

the recordings, r contains the amplitude factors. In many ap­

plications it is known -that the signals can be written as linear 

combinations of some specified variables. Each element 

in a corresponds to one of the specified variables and 

the elements of cl> are the unknown coefficients for these 

linear combinations. If no such knowledge exists about 

the signal, we can always let the variables in a form a 

basis in the Hilbert space or more simply we may put 

= = cI>'a and rewrite the model as 

n= r•:::+u (2) 

2. The Model when N=l 

Assuming that the readings from the M sensors are properly 

shifted and sampled at K successive timepoints, not neces­

sarily equidistant, we write the model in terms of our 

observations: 

Y=A<f>y'+N ( 3) 

- 6 -
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where Y = (y ij) = (i.1 'i.2' • • • 'i.M) = 

i.t I 
i.~ I 

i.~ I 

is a KxM data 
matrix 

A = (a .. ) is a K x L, L<K, matrix where each column contains 
1] -

one of the specified variables, ~ is a column vector of 

L constants, y i ,s a column vector of M constants such that 

y 'y =· 1, A~ is the signal, where the columns of A form 

the basis for the signal. If this basis is unknown, we 

put A = I. 

N = (n .. ) = (n1 ,n2 , ••• ,nM) = 
1] - - -

n*' -1 

n*' -2 

n*' -K 

is a KxM residual matrix, 
where the elements have 
joint non-singular normal 
distribution and are un­
correlated with the 
signal. 

The frequency function of N may be written in two ways. 

f (N ) = konst • v 

-1;2 N' s- 1N 
e v v • 

f (N*) = konst • e 
v 

-1/2 N* I S*-lN* 
v v 

where S and S* denote the moment matrices of N 

!!1 n* -1 

N = I .!!2 and N* = n* v v -2 . . . 
.!!MI !lK 

- 7 -
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-1 -1 Now let S = Q = [Q .. ] and S* = Q* = [Q'!'.], where Q .. 
1J 1) 1) 

is a K x K matrix and O!j an M x M matrix. 

Then 

and 

Let 

and 

f (NV) = konst • e 

f (N*) v = konst • e 

X = A<f> then 

n. = y. - y. A<f> -1 1 1 

n'!' = v'!' - x. y 
-1 •1 1 

MM 
-1/ 2 l l n ! Q . . n . 

. . -1 1)-J 
1 J 

K K 
-1/2 l l n'!'' Q'!'. n~ 

i j -1 1) -J 

(Sa) 

(Sb) 

The logarithm of the likelihood function for our observa­

tions can be written, except for a constant, as 

MM 
n = I l 0 .. 

1 J 

K K 
= l l 

i j 

(y. - y.A<f>) 1 Q., (v. - y.A<f>) = 
1 1 1) ... J J 

Cy'!' - x.y)' Q'!'. Cy~ - x.y) 
1 1 1J J J 

(6) 

In order to obtain estimates of <f> and y, n
0 

is minimized 

under the condition that y'y = 1, i.e., n = n0 +A (y'y - 1) 

is minimized. Setting the partial derivatives equal to zero 

we obtain 

- 8 -
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MM 
an = o + 
a 4> 

llY·Y·A' (Q .. +Q!.)Acf>= 
i j l. J l.J l.J 

MM 
= l l y. A I (Q .. + Qi_J·) ~J· . . l. l.J 

l. J 

~n = o + [I ¥ x. x. (Q'!'. + Q'!' ~) - 2 >. I] y 
ay . . l. J l.J l.J 

l. J 

K K 
= l l x. (Q'!'. + Q'!'!)~~ 

i j l. l.J l.J J 

But since 0.ij = Q .. 
Jl. 

MM 

and Q'!'~ 
lJ 

MM 

= Q~., we get 
Jl. 

l l y . y . A IQ . . Acf> = 
. . l. J l.J l l y . A IQ i J' lj 

i j l. l. J 

[

K K 

~ 4 xixj orj 
1 J ] 

K K 

- AI Y = f 4 xi 
l. J 

Q'!'. v~ 
l.J .i..J 

( 7 a) 

( 7b) 

If we replace A in (7a) with I and put ally. equal to 
l. 

one, we get a formula for maximum likelihood estimation 

equivalent to those given in Capon et al 1966 and Kelly 

and Levin 1964. 

To solve the system (7a,b) we first show that the Lagrange 

multipler A in eq. 7b is equal to zero. To see this,multi­

ply eq. 7a with cf>'. This gives 

<P • A • [I r y . y . Q .. ] Acf> = 
i j l. J l.J $'A'[i r Yi Qij Yj] 

(Sa) 

- 9 -



but since v. = y. A¢+ n. we may write 
"-J J -J 

[

MM 
(A¢ ) I ? 4 y i y j 

1 J 
Q .. 1 A¢ = 

1Jj [

MM 
(A¢) I l l y. y. Q .. A¢ + 

. . 1 J 1] 
1 J 

MM J ? 4 Yi Qij !!j 
1 J 

This implies that (A cj>) I [I I y . Q .. !!]·] = 0 
. . 1 1] 
1 J 

Multiplying 7b with y' and using that v"! = x. y + n"! 
""-J J -J 

we have 

[

K K 

y' ? 4 xixj orj 
1 J 

- ~ I] y = y' [

K K 

l l 
i j 

x.x. Q'!'.y + 
1 J 1] 

K K ] l l x .Q'!'. n"! 
i j 1 1] -J 

But from the definitions of Q'!' . , Q .. , n~, n. and x. ft 1J 1] -J -J 1 
follows that 

[

K K 
y I ? 4 Xi 

1 J 

Thus .h = O. 

Q'!'. n"!] 1J -J = {A¢) • [I I y . Q.. n ·] = o . . 1 1] J 
1 J 

- 10 -
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Since there exists no explicit solution to the system 

(7a,b), we need to apply an iteration technique. The 

following iteration scheme is proposed: Start with 

an arbitrary vector y, normalized so that y'y = 1 • 

Solve for ¢ in eq. 7a. Then compute x = A¢ and solve 

eq. 7b for y. Normalize y such . that y'y = 1 and continue 

until the desired convergence criteria are satisfied. 

To prove that the above iteration scheme always converges, 

we need an additional result which is proved in the 

following lemma. 

Lemma 

Let A be a real symmetric positive definite matrix. 

Further, let A be partitioned into M2 matrices of order K, 

AllA12 • .• AlM 

A = 

A Ml • •• AMM 

where 

A .. = (o.ij)' is a K x K matrix. 
iJ rs 

Let x be a non-zero vector with M elements. Then 

the quadratic form 

MM 
B = ? ~ xixj Aij 

1 J 

is a symmetric positive definite K x K matrix. 

- 11 -
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Proof 

There exist n = M x K linearly independent vectors 

Yj with n elements such that Y'Y =A where the n x n 

matrix Y = (y1 ,y2 , ... yn) has rank n. Then form new 

vectors Yi such that 

Yi= X1Y1 + X2YK+l + ••. ~Y(M-l)K+l 

Y~ = X1Y2 + X2YK+2 + ••• xMy(M-l)K+2 

YK = xlyK + X2YK+K + ··· x~(M-l)K+K 

or in general 

M 

Yj = t xiy(i-1) ·K+j 

Note that these K vectors are linearly independent. 

Now let Y* = (yi,y~ 1 ••• y~). Since Y* has rank K, Y*'Y* 

has also rank K and is a symmetric positive defi~ite 

matrix. An arbitrary element b in B can be written rs 

MM 
l l 
i j 

x.x . 
l. J 

aij 
rs 

where a!~ is element rs in Aij" But a!~ is also an 

element in A. 

- 12 -
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.. 
I 

Since A = Y'Y it follows that 

aij - y_' Y.. rs - {i-l)K+r {j-l)K+s 

Hence brs can be written 

MM 
brs = ~ ~ xixj Y..

1 

{i-l)K+rY..{j-l)K+s 
1 J 

Now let Y*'Y*= B* = {b~s) . It then follows that 

b* = I = X I [M 1 rs Yr Ys i i Y(i-l)K+r [i xj Y(j-l)K+s1 = 

MM 
= ~ ~ xixj Y..(i-l)K+r Y(j-l)K+s = brs 

1 J 

Hence B = B* and the lemma is proved. 

The lefthand side of eq. 7a can be written 

A' [I1 I y.y. Q.~ A<j> . . 1 J 1J 
1 J 

{ 11) 

{ 12) 

{ 13) 

(14) 

MM 
According to the lemma l l 

i j 
nite matrix of order K and 

y.y. Q .. is a positive defi-
1 J 1J 

thus <P in {14) and (7a) is 

multiplied by a posit~v~ definite ma~~ix of order0 L. This 

implies that, for g~ve~ y, equation 7~lttliquely defines <j>. 

In the same way for given <P , _ eq.. 1P. uniquely defines. y • 

Now the function to be minimized {eq. 6) is a positive 

definite quadratic form, and since this function. is mi~i­

mized in each step of the iterations convergence is ensured. 

- 13 -



If there is no cross-correlation, i • e. , Q . . = 0 for 
1J 

i * j, the system reduces to 

M M r y~ A'Qi. Acj> = l y. A'Q . . y. ( 15a) . 1 1 . 1 11 1 
1 1 

[E x~ or. -A I] y = r xi Q!. y_! (15b) 
. 1 1 . 11 1 
1 1 

and if the residuals have equal variances and are inde­

pendent we get 

M 
l y2 A'Acj> 
i i 

M 

= l 
i 

y. A'y. 
1 1 

CT xi - u] Y = 
K 

l xi Y! 
i 

Now let the specified variables be orthonormal then 

M M 
l Y

2
. cl> = l 

i t i 
Y . A'v. 

1 .. "-1 

[I xr - A 1] Y = 
K 
t .• 
~ xi Yi 
1 

(16a) 

(16b) 

(l 7a) 

(17b) 

Rao (1964) obtained eq:s (16a,b) when he derived "principal 
components of instrumental variables" by least squares. 

- 14 -
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If A is the identity matrix, then this reduces to 

M M 

' 
l Yi~ ~ = ? Yi :ii 
i 1 

(18a) 

II x~ - Ar] y = r x. :t'!' Li 1 i 1 1 
(18b) 

which is the solution to the ordinary component model. 

, ... 

- 15 -



3. Large Sample Properties of the Estimates 

We shall here consider the cases where there are no 

cross-correlation, i.e., we assume that Q .. = O for 
1J 

every i * j. 

3.1 Y~~n2~n_e~~!~_!2~-~~-~!s~~1-~~~-~2-~~~2_£2EE~1~t!2~ 

If there is no auto correlation in the noise and the basis 

for the signal is unknown, maximum likelihood leads, after 

suitable normalization of the observations, to eq:s {18a,b). 

These equations define the estimated amplitudes as the 

eigenvector corresponding to the largest eigenvalue of 

covariance matrix for the observations. These estimates 

are consistent and the large sample variances have been 

given by Andersson (1963), Lyttkens (1966, see Wold 1966) 

and others. The variances are 

02(~.) = 
J 

(o 2 + 0
2

) (1 - y~) o 2 

s J 
oi+ K 

s 

where o 2 is the variance for the signal, o 2 is the s 
variance for the noise, and A denotes the estimate of 

the corresponding parameters. 

The estimated signal is 

(19) 

~ = YI ~ (2Q) 

Although the amplitudes are estimated consistently, this 

will not be the case for the signal. This is easily 

seen in the following way: 

Consider the i:th time point. Then 

M 
~. = l y .. ~j = 

1 . . 1J 
J 

M M 
xi l ~. y. + l ~. ni. . J J . J J 

J J 
(21) 

- 16 -
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As the amplitudes are consistent, we find that the 

limiting distribution of ~. is that of 
1 

M 
x. + l y. n .. =xi+ n. 

1 j J 1) 1 

where the variance of n. is equal to a 2 • 
1 

Thus, the estimate of the signal is inconsistent with a 

variance that tends to a 2 + a 2 • This gives the square s 
of the signal-to-noise ratio: 

(S/N} 2 = 
a2 

s 
a 2 

It may be of interest to compare this ratio with the 

corresponding ratio for the "simple summing method", 

i.e., when the signal is estimated with: 

M 1 M 
xi = r.:: l Y. . = 

vM j 1 J 

l M 
IM <~ Yj> x. + 

1 
.1... l 
IM j 

The variance for this estimate is 

D 2 (x} 
- 1 M - M <I y.} 2 

cr2 
j J s 

M -2 
+ .!. I cr2 = M Y 

M . 
J 

n .. 
1) 

a2 + cr2 
s 

where y is the arithmetic mean of the amplitudes. 

This gives 
-2 

My a 2 

(S/N} 2 = s 
a 2 

- 17 -
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But as 

M -2 

~ Yj - M Y ~ 0 
J 

(27) 

with equality if and only if the amplitudes are equal we 

find that (23} is always larger than or equal to (26}. 

3.2 QD~DQ~~-~~2!2_fQ~_th~_§!S~~!-~~g-~~t222~~~!~t~9-~2!2~ 

For this situation, the maximum likelihood method leads 

to eq:s (lSa, 7b} with A = I and ~ = x. The properties 

of the estimates are to be treated in detail elsewhere, 

but we mention without proof that the estimates of the 

amplitudes are consistent and that the covariance matrix 

for the estimated signal is 

D2 (x) =CCV + x 

M er y~ Q .. )-1 
j J JJ 

where cov is the auto-covariance matrix of the signal. 
x 

( 28a} 

That is, as in 3.1 we do not obtain consisten~ estimates 

of the signal. And the square of the signal-to-noise 

ratio may be defined as 

(S/N} 2 = 
cr 2 

s 
M -1 

ktr(~ Yj Qjj) 
J 

with cr 2 
s 

1 = K'tr c cov x > • 

- 18 -
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Comment 

As an alternative, we might use eq:s (18a,b) to estimate 

the amplitudes and the signal, although the noise is auto­

correlated. The estimated amplitudes will be consistent 

because the estimated covariance matrix for the observations, 

under regularity conditions, i.e., stationary noise, tends 

to the theoretical. For the estimated signal we find 

M 
2 A ~ 2 -1 D (x) = cov + l Y· Q. · 

x j J JJ 

implying that the estimated signal is inconsistent. 

Analogous to (28b) we get 

(S/N) ·2 = 
a 2 

s 
M 2 

!tr<}: Y · K . J 
J 

-1 Q .. ) 
JJ 

(29a) 

(29b) 

If the noise levels are equal, which can be obtained after 

normalization of the records, (29b) is identical to (23). 

Further, if the autocovariance matrices for the noise are 

equal (28b) will be equal to (23) or (29a). 

3.3 ~llQ~~-~~2!2_!Q£_~h~-~!gu~!-~~~-~Q-~Y~Q:2Q~~~!~~iQ~ 

After suitable normalization, maximum likelihood leads 

to eq:s (16a,b). By choosing an orthogonal basis for 

the signal, with L<<K and A'A = K•I, (16a,b) changes to 

(17a,b), which can be written 

~·~ $ = A'Y ~ 

(A 1 $) I (A$) ~ = Y'A $ 

Using the normalizing·condition on the amplitudes and 

combining these equations we find 

(A$) I (A$) ~ = (A'Y) I (A'Y) ~ 

(30a) 

(30b) 

(31) 

i.e., ~ is an eigenvector of the symmetric operator (A'Y) '(A'Y) 

with the corresponding eigenvalue (A$)' A$ = K $•$. It is 
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easily seen that the likelihood is maximized when ~ 
is the eigenvector corresponding to the largest eigen­

value. The coefficient vector is obtained from (30a) 

and the signal from 

~ = A$ 

The estimates of y and ¢ are consistent because ~ A'Y 

tends to ¢ y' when K increases. 

Turning to the variances for the estimated amplitudes 

and coefficients, we may proceed as follows: 

Let a0 = [::l and ft =[: ] denote the true and 

estimated parameters. Using Taylor's theorem we get: 

(~ ~)ft (an) (~) 
= a8" eo + a e2 e* 

(80 - ~) 

where 8* is between eo and~-

Now (~ ~)~ is always zero in the solution, thus 

(a n) (a 2 n) ne =-;-;; 
o 8* 

< e o -~ > 

From the general properties of maximum likelihood 

estimation(~ ~)e will tend to a normal distribution 

with zero mean an8 covariance matrix equal to 

E(~) a e2 

80 

- 20 -
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(32) 

• 
( 33) 

(34) 

() 

• 

(35) 



t\ 

• 

i.e., equal to the expectation of the second order 

derivative evaluated at a = eo. 

Because of the normalizing conditions on the amplitudes 

(y'y = 1), the rank of (35) will be (L + M - 1). Thus, 

(35) is singular. 

Define 

B =(IL 0 \ 

0 il*' 

il* = 

Then, 

1 

0 

0 

1 

-yl -y2 

YM YM 

0 

0 

with 

0 

-yM-1 l 

YM 

and IL an 

L-order identity 

matrix. 

B' (~ ~)B (a
2 n) -1 A = -B' -- B B (9

0 
- t1) 

a 92 9* 

or 

z = -c~ 0 0 
-1 A 

with il0 = B ce 0 - t1) 

(36a) 

(36b) 

(37) 

(38) 

Neglecting terms of second order and higher, we find that 

the last element of 6 0 is zero and we may eliminate the 

last row and column of c. Let c1 denote the upper left 
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part of C, z01 and ~Ol the (M-1) first elements of 

z0 and ~O respectively. 

Then 

ZOl = -Cl~Ol (39) 

The limiting distribution of z01 is normal with covariance 

matrix c1 (where the derivatives are taken at 8* = 80 ). 

Further, 

AOl 
-1 z = -c1 01 

and we find that the limiting distribution of ~Ol is 

1 . h . t . c -l norma wit covariance ma rix 1 . 

Define 

B* = (IL 0 \ 
0 ~**) 

~** = 

0 

1 

where 

0 

O· 

-y2 

YM 

- 22 -

0 

0 

YM 

(M x M-1) 

(40) 

(4la) 

(4lb) 

'I 

_, 

f \ 

• 



,,. 

' I 

.. 

Again neglecting terms of higher order, we obtain 

B* 6 = (8 - ~) 01 0 

which implies that the limiting distribution of eo - ~ 
is normal with covariance matrix 

'l' = B* C-l B*' 
1 

To obtain the covariance matrix for the estimated para-

meters, we thus need the second order derivatives of n. 
These derivatives are: 

~=KI_!_ 
a cp2 L 0 2 

~ = 2K cf> y' ...!._ -A'Y...!._ 
acpay cr 2 cr 2 

a2 n (Acf>i} Acf> I = K cr 2 I ...!._ --= 
a Y2 M s M 

0
2 

We then easily find 

E(~) a 0 2 

eo 
= K 

cr 2 [

IL 

yep' 

cpy I ] 

cr 2 I s M 

- 23 -

( 4 2) 

( 4 3) 

(44a) 

(44b) 

(44c) 

(45) 



and 

[ IL $y' 1 [I c12 ] K a~ IM B = aK• c:l c = - B' 
a2 yep I a~l1*'6* 

with 

0 0 . . YM . <I>~ 
0 . . . YM . cp 2 

c12 = I· . . . . . . = C' 21 . . . . . . . 
0 . . . YM . cf>L 

After somewhat tedious calculations we obtain 

where 

-1 
cl = [

I 
K L 

0
2 O 

l-y2 
1 

-y y 
c22 = I 1 2 

1 • 

-ylyM-1 

1 :22] 
(1T 1 

s 

-yly2 . -ylyM-1 

l-y2 
2 

I . . . 
. . 1-y~-l 

And finally we obtain the covariance matrix for the 

estimates 

IL 0 
cr2 I 

-1 *' 
1 * 22f1** I 

'I' = B* Cl B =K" 
' 

0 - t,* cl 
02 

s 
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(46a) 

'1 

,( 

(46b) 

(47a) 

(47b) 

(48a) • 



.. 

~ 

2 1-y -yly2 . -ylyM 1 

,-yly2 

A**c 22A**' - • . . . I {48b) 1 -
I 2 
-ylyM . . 1-y M 

Conunents 

The variances for the amplitudes are smaller in this 

situation compared to situation 3.1. If the basis is known, 

the variance for the amplitudes is 

o2 Cy.) = 
J 

cr 2 {1 - y~) 
J 

K • cr2 
s 

(49) 

which is smaller than the variance under 3.1. This is 

also reflected by the fact that one cannot rely on the 

general properties of maximum likelihood estimation when 

deriving the variance under 3.1. 

Turning to the signal-to-noise ratio, we find that the 

estimated signal can be written 

~ = x + {~ - x) { 50) 

where {~ - x) is the noise in the estimated signal. The 

variance for the true signal is 

1 1 K x'x =K {A~)' {A~) = ~·~ 

- 25 -

= cr2 
s 

{ 5la) 



and the variance for (~ - x ) is 

Thus, 

1 A A 1 [ h h J KE (x - x)' (x - x) =KE (A(~ - ¢))'A(~ - ¢) = 

1 h A h A KE (~ . - ¢) 'A'A(~ - ¢) = E(~ - ¢)I(~ - ¢) = 

La 2 

K 

(S/N)2. = 
K • cr2. 

s 
L • a 2. 

and we see that the signal-to-noise ratio tends to 

infinity with Ii<. 

3.4 ~~~!~-~~~!~_EQ£_~h~_2!g~2!_~~~-~~~Q£Qf£~!~~~~-~Qi2~ 

(5lb) 

( 52) 

As under 3.3, the estimates of y and ¢ from (15a,b) will, 

under regularity condition, be consistent. The covariance 

matrix is rather complicated but can be obtained in a 
' way analogous to that used in 3.3. 

After some calculations we find the elements of 

(~~ E a a 
eo 
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\ 

.. 

to be 

E(~) M 
=A'(ly~Q .. )A ( 53a) 

a e 6 i 1 11 
0 

E(~) 
K K 

= l l x.x. Q'. with x = A<f> (53b) 
a Y2 i j 1 J 1J 

60 

( •' n) = y i A'Q .. A<f> for i = 1, 2 ••• M 
E Cl<f>ayi e (53c) 

11. 

0 

The covariance matrix for ~ = [ : ] is then 

! = B*C-l B*' (54) 
1 

with c1 and B* defined as in 3.3. 

Comments 

a) Contrary to 3.3, there is no simple form of the 

covariance matrix (54). However, it can easily be 

calculated by computer. 

b) Analogous to 3.3, we find for the signal~to-noise 

ratio 

1) 

2) 

(with A'A = K•I) 

The variance for the true signal is <t>'<t> = cr~, 

The variance for the noise in the estimated 

signal 

1 A A h h 
- E (x - x) '(x - x) = E (~ - <f>)' (~ - <f>) = K 

L 

i~l'ii 
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Thus 

(S/N) 2 = 
L 

O' 2 
s 

l '¥ .. 
i=l l.l. 

As under 3.3 the signal-to-noise ratio will 

tend to inifinity with IK. 
3) If we use eq:s (30a,b) to estimate $ and y 

(55) 

in the autocorrelated case, the estimates will 

still be consistent because 

1 A'Y tends to ~ y' K 

This implies that the signal will be estimated 

consistently and that the signal-to-noise ratio 

will tend to infinity with IK. 
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4. Illustration 

4.1 

. ' I I 
We shall illustrate the potential usefulness of the methods 

given above with two examples. The first was an artificial 

"signal" added to real seismic noise while the other repre­

sents two real seismic events recorded at NORSAR. 

~!::th£!£!~1_Q~~~ 

We have used seismic noise from nine Scandinavian stations. 

The noise was normalized to have equal variances. Since 

the stations were widely separted the noise showed very 

little cross-correlation. The signal 

s = t 

14 
l 

i=lO 
(cos it + sin it) (56) 

was added to each noise trace. The amplitude for this 

signal was set to 1 for four stations and to 1.5 for the 

other five. Two tests were made; in the first the signal 

variance was 0.25 resp. 0.563 of the noise variance. For 

each test data was analyzed in two ways. First ordinary 

component analysis was applied (eq:s 18a,b). In the 

second try we utilized· the knowledge that the signal 

could be expanded in linear combination of sin lOt, .•. , 

sin 14t and cos lOt, ••• , i.e., that the signal was band­

limited. We did not use the knowledge of the noise auto­

correlation but used formula (17a,b). The results are 

shown in Figs. 2 and 3. Fig. 1 shows the signal • 
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UNRESTRICTED ESTIMATE {S/Nl2= 3.8 
.. 

RESTRICTED ESTIMATE (S/Nl2-38 

(S/N)2 FOR THE DIFFERENT RECORos{&~~g 

Figure 2. Estimated signals • 

... 

- 31 -



"' 

UNRESTRICTED ESTIMATE (S/N )2 =7.6 ~ 

RESTRICTED ESTIMATE (S/N)2-76 

ISINJ2 FOR THE DIFFERENT RECORos{ ~~~~ 

J 

,.. 
Figure 3. Estimated signals. 
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The ordinary component analysis increases the square 

of the signal-to-noise ratio to 3.8 in the first test 

and to 7.6 in the second test. For the simple summing 
I 

method we find, after normali·zation of the amplitudes 

(l Yj = 1), M y2 = 0.96, which implies that the component 

method gives four per cent better results. In practical 

applications we would expect even better r~sults, especially 

if there are one or more noisy seismometers. 

A substantial improvement is obtained with the use of 

eq:s (17a,b) as can be seen from the illustrations. The 

squared signal-to-noise ' ratio increases to about 38 and 

76 for the two tests. 

4.2 §!g~~!-~2t!m~~!Q~_fQ~-~Q-~QB~~B-B~£Q~~~g-~y~~~§ 

To illustrate the behavior of the above methods for real 

data, we have used the simple estimator given by eqs. (18a,b) 

on two NORSAR recorded events. This estimator, which esti­

mates the signal with first principal component, does not 

utilize any knowledge of cross and auto-correlation or any 

prior knowledge of the basis for the space spanned by the signals. 

In order to obtain correspondence with the standard 

processing routines at NORSAR, signal-to-noise ratio is 

defined as 

1 M 
SNR = max (M l 

j=l 0 N 
l I aj j=1 lajl (57) 

where aj = trace amplitude, M = 15 signal samples and 

N = 200 noise samples • 
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In the analysis we have compared four different mod.els: 

1) Sum and delay (Model 2A in figures 4 and 5) 

2) Sum and delay corrected (Model 2B in figures 4 and 5) 

for variation in noise 

levels 

3) Component model (Model 3A in figures 4 and 5) 

4) Component model cor- (Model 3B in figures 4 and 5) 

rected for variation 

in noise levels. 

The correction for variation in noise levels is done by 

first estimating root mean square (RMS) for the noise 

at each subarray by using 20 sec of data prior to the 

. signal. For Model 2B the correction is done by dividing 

each subarray beam with the square of the corresponding 

RMS while for Model 3B the correction is done by dividing 

the subarray beams with the corresponding RMS. 

The first event is a North Atlantic earthquake with 

relatively strong and coherent array signals (see Fig. 4). 

The gain for models 3A-B is as expected (due to coherent 

signals) rather small, 1.34 and 1.52 dB respectively. 

In the figure the left column gives subarray and model 

codes, plot scaling factors and relative time shifts in 

dsec. The right column gives model 3B amplitude factors 

for the subarrays, SNR for the standard beams (i.e., model 

2A), and gain in dB for model 2B, 3A and 3B relative to 

the standard beam. 

Figure 5 shows a very weak Western Russian event (alterna­

tively, the signals may represent a side lobe detection 

of a local explosion in the Baltic Sea area). For this 

event, model 3A and 3B result in large relative gains, 

7.88 and 8.59 dB respectively. 
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OlA 261 (J -Arv1VVVVW~ o.J58% 

OlB 320 
_,. 

0.460~ 

026 368 -21 0.32718 

D3B JSI -19 D.26574 

... 
OIJB 290 -10 D.10698 

OSB 236 6 O.JS7J9 

066 222 16 -0.00:363 

OTB JOJ 10 O.JJ392 

OlC 220 -4 -0.00567 

02C 208 -lJ o.JgflBg 

03C 442 -34 0.16331 

Olf C 161 -40 -D.11132 

DSC 272 -40 0.05179 

06C lf.20 -23 0.35678 

07C 274- -14 0.26826 

08C q.95 0 o.~705 

09C 2'11 18 0.0653'.J 

lOC 253 28 -0.01389 

llC 205 28 -0.0510& 

12C 212 Jll -0.01276 

13C 2BB Jl o. 13166 

14C 2116 13 D.01557 

J6 814 0 1.s2 DB 

JA 797 0 l.J4 DB 
"'I 

28 579J a -0.IJ'I OB 

2R 317'1 0 5. 78 

Figure 4. North Atlantic Earthquake. 
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OlA 328 0 -vv-vv vvvvvvvvv-v~vvv o.229q.a 

CJIB 251 -3 0.29263 

026 262 20 -0.03074 

038 373 23 -0.2305& 

040 377 19 -0.08609 ... 

osa 272 0 .,..,J\ f\1\1\ ~I\ rv... f\ f\ f\. IV\ f\,,._j\ /\}\ 0.17497 
'I 

06B 19& -21 -0.07£>69 

07B 254 20 o.2os21 

OlC 223 -15 -O. l'f825 

02C 270 -1 o.o66J6 

03C 178 JO 0.2429'1 

OllC 20L '+6 0.2111~3 

DSC 260 51 0.49711 

06C 217 J3 -0.0570& 

07C 209 36 -O.l8J60 

OBC ~97 \II -o. JJq.f)f> 

age 24& -13 0.32502 

JDC 270 -30 -0.13579 

llC 285 -JJ -0.1539'+ 

l2C 196 -'18 O.OS7C5 

l3C 252 -SJ -0.02759 

J '6C 2'17 -31 -0.17(!65 

38 530 0 8~59 DB 

JA 53q. 0 7.BB DB 

28 2187 0 O.J9 DB 

2R 1509 0 ~~A A f'v...rv.,,f\.../\f"l.f\ I\(\/\ {\ J\ ILA 2.01 ,.. 
I 

Figure 5. Western Russia Event. 
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· 5. The Model when l<N<M 

For this case the model, in terms of our observations, 

takes the form 

Y = A 4> r + N 

where Y, A, N are defined in section 2, and 

cpll'. • .,cplN 

4> = 

cpLl' • • • 'cpLN 

Cl 11 ' • • • ' Cl lM 

r = 

ClNl' • • • 'ClNM 

The columns of 4> contain 
these coefficients for the 
expansion of the basic vec­
tors in terms of the given 
functions. 

The columns of r contain 
the amplitude factors for 
the basic vectors. 

If the basis A is unknown, the model becomes 

Y = xr + N 

where 

xll' · • • 'xlN 

x = 

XKl I ••• , ~N 

(58) 

(59) 

The columns of X are the basic vectors in the space 
spanned by the signals. The signals are then A4>f 
(or x r). 
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The estimation of the unknown in the model is carried 

out in a way similar to that used for the model with N=l. 

A way of .extracting the solution that works also in the 

general case is to estimate the first basic vectors and 

the corresponding amplitude factors described in Section2. 

We then subtract the basic vector multiplied by the appro­

priate amplitude factors from each of the traces. The 

second basic vector and corresponding amplitude factor 

can now be obtained from the residual by repeating the 

whole process until we have extracted the described number 

of basic vectors. If the auto and cross correlation are 

disregarded, the rows of r are obtained as the eigenvectors 

corresponding to the N largest eigenvalues of (31). The 

elements of ~ are given by (30a). 

6. Rotation of the Basis 

We have so far just obtained a set of vectors that span 

our solution space. In most applications we would like 

to find a set of new vectors each of which is closely 

related to a signal form observed at one or more sensors. 

Depending on which estimation formula that has been used, 

our components are orthogonal or nearly orthogonal. It 

is not reasonable to assume, however, that the different 

signal forms should be orthogonal. What one wants to 

assume is that the output of one sensor should be identical 

to one vector only, except for a constant. Fortunately, 

psychologists have been concerned with very similar prob­

lems for half a century. For a detailed description, the 

reader is referred to (Harman 1967); here we will propose 

a method given by (Jennrich and Sampson 1966). 
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Define 

F (B) = 
I 

N 

l 
p q 

M n b~ b~ 
... JP Jq 
J 

M M 
Q. lb~ l b~ ) 
n . JP . Jq 

J J 
(60) 

where BT = r and o<0.8 is a given constant. Our problem 

is now to find a transformation T that will minimize F(B) 

under the constraint that diag (T'T) = I. The rational 

for setting up this formula is that we want the cross­

correla tion of the squared elements of a pair of amplitude 

factors to be small. Our constraint is introduced to make 

the contribution to the variance from each instrument 

the same as it was before the rotation. 

An example: Assume that we have got the regression co­

efficients presented in the two leftmost columns of Table 1. 

The two basic vectors seem to be present of every instrument. 

Table 1. Hypotetical data (Partly from Harman 1967) 

Amplitude factors for eight instruments on two components 

Original Solution Rotated Solution 

• 830 -.396 .883 .065 
.818 -.469 .956 -.029 
.777 -.470 .926 -.045 
.798 -.401 • 882 .035 
• 786 .500 .005 .940 
.672 .458 -.006 .803 
.594 .444 -.065 .793 
.647 .333 .104 .646 
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If we apply the Jennrich-Sampson method with o=O, we obtain 

the two rightmost columns. It is now evident that the 

signal form represented by the first basic vector is present 

only at instruments 1-4, while the second basic vector is 

present at instruments 5-8. This would normally be caused 

by two different structures. We should also observe that 

the correlation for the basic vectors has raised to 0.471 

from almost zero in the unrotated case. 
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