Scientific Report No 3-76/77

## FINAL TECHNICAL SUMMARY

1 April - 30 September 1977

Edited by
H. Giøystdal

Kjeller, 31 October 1977

Sponsored by<br>Advanced Research Projects Agency<br>ARPA Order No. 2551



We have continued the experiments described in Tjøstheim (1977). In particular we have tried to implement a spatial version of the AMBE criterion given in Eq. (3) of Sandvin and Tjøstheim (1977). For a geophysical quantity $F(x)=F\left(x_{1}, x_{2}\right)$ defined on a regular grid in the $x_{1}-x_{2}$ plane the AMBE criterion is defined as

$$
\begin{equation*}
\left.\operatorname{A} \hat{M B E}\left(p_{1}, p_{2}\right)=\left(\prod_{i=1}^{2} N_{i}\right) \log \hat{\sigma}_{z}^{2}\left(p_{1}, p_{2}\right)+\underset{i=1}{2}\left(p_{i}+1\right)-1\right) \log \prod_{i=1}^{2} N_{i} \tag{1}
\end{equation*}
$$

where $p_{i}$ is the order and $N_{i}$ the number of observations in the $x_{i}$-direction $i=1,2$, and where $\sigma_{z}^{2}\left(p_{1}, p_{2}\right)=E\left|z\left(x_{1}, x_{2}\right)\right|^{2}$ is the residual variance for an $\operatorname{AR}\left(p_{1}, p_{2}\right)$ model. The pair of integers $\left(p_{1}, p_{2}\right)$ for which $\operatorname{AMBE}\left(p_{1}, p_{2}\right)$ takes its minimum is adopted as the order of the AR model. As in Sandvin and Tjøstheim (1977) we did a number of experiments on artificially generated models. The results of Table VI.10.I again suggest the superiority of the AMBE crition for 'ordinary' autoregressive models in the plane. The effect on spectral estimation is illustrated in Fig. VI.10.1 for model 3 of Table VI. 10.1. It is seen that the overestimation of order brought about by the FPE criterion leads to a quite severe distortion of the spectrum. It should be noted also that the autoregressive AMBE spectrum (Fig.VI.10.lb) gives a much more accurate picture of the true spectrum than the FFT spectrum (Fig.VI.10.1d).

Unfortunately the AMBE criterion does not work very well on singular models of type

$$
\begin{equation*}
F\left(x_{1}, x_{2}\right)=Z\left(x_{1}, x_{2}\right)+A \cos \left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)+B \cos \left(\beta_{1} x_{1}+\beta_{2} x_{2}\right) \tag{2}
\end{equation*}
$$

where we have two cosines embedded in two-dimensional spatial white noise. Especially for weak harmonic signals (small values of $A$ and $B$ ) the low reduction in variance at each step of the autoregressive approximation implies that the last term in (I) dominates the first one for moderate values of $\left(p_{1}, p_{2}\right)$ and there is a tendency for the AMBE criterion to predict models on the 'edge', i.e., degenerate models
of type $\left(0, p_{2}\right)$ or ( $\left.p_{1}, 0\right)$. The spatial FPE criterion performs somewhat better in this respect.

## D. Tjøstheim

## References

Sandvin, O.A., and D. Tjøstheim (1977): A criterion for determining the order of an AR model. This report.

Tjøstheim, D. (1977): A new method of spectral estimation for spatial data. Semiannual Technical Summary, NORSAR Sci. Rep. No. 2-76/77, 64-66.

## Table VI.10.1

Estimated orders ( $p_{1}, p_{2}$ ) as obtained from the minimum values of the spatial FPE and AMBE criteria, respectively. The correct orders are given in the uppermost line.

| Model | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Correct Order | $(1,1)$ | $(1,1)$ | $(1,2)$ | $(1,2)$ | $(3,2)$ |
| FPE | $(5,1)$ | $(4,3)$ | $(5,2)$ | $(5,2)$ | $(5,2)$ |
| AMBE | $(1,1)$ | $(1,2)$ | $(1,2)$ | $(5,2)$ | $(3,2)$ |



Fig: VI, IO.1 a) Theoretical AR (1,2) spectrum, b) estimated AR (1,2) spectrum using the AMBE criterion, c) estimated $\operatorname{AR}(5,2)$ spectrum using the FPE
criterion and d) estimated FFT spectrum for model 3 of Table VI. 10.1 Model 3 is given as

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)-0.67 F\left(x_{1}-1, x_{2}\right)-0.17 F\left(x_{1}, x_{2}-1\right)+0.11 F\left(x_{1}-1, x_{2}-1\right)- \\
& 0.17 F\left(x_{1}, x_{2}-2\right)+0.11 F\left(x_{1}-1, x_{2}-2\right)=Z\left(x_{1}, x_{2}\right)
\end{aligned}
$$

