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VI.3 The Effect of a Second-Order Velocity Discontinuity on Elastic 

Waves Near their Turning Point 

For various purposes (i.e., in both studies of the velocity st~ucture and of 

the seismic source), it is important to understand the effects that certain 

features of a velocity model have on the elastic wave field. Thus, the 

effects of a velocity discontinuity and of a velocity gradient have been 

widely discussed; the effect of a change in the velocity gradient appears to 

be less understood. In an earth model, second-order velocity discontinuities 

(i.e., discontinuities in the velocity gradient) may arise due to model 

parameterization, and their high-frequency effect has been demonstrated 

in applying geometrical ray theory. It is desirable to smooth this effect 

since it is an artefact of the model, and this is conveniently done in a 

WKBJ approximation (Chapman, 1978). However, for some regions of the 

earth, notably the upper mantle and the base of the mantle, it has sometimes 

been proposed that rather abrupt changes in velocity gradient occur in a rela

tively short depth interval. In these cases, the model of one or more second

order discontinuities would still be a simplification but, in analogy to 

approximating rapid velocity changes by one or more first-order discontinuities, 

it would be a sensible approximation at relatively long wavelengths. It is 

the long-wavelength effect that has been studied here. The effect is 

associated with a change in the curvature of a wavefront across a second-order 

discontinuity. This change is ignored in the classical WKBJ approximation, 

but it is described by the extended WKBJ method (the Langer approximation). 

Following Richards (1976), it is now widely appreciated that the extension 

of the WKBJ method is most important for long waves near their turning point, 

consequently the second-order discontinuity is expected to be most effective 

in the same circumstances. To demonstrate this, generalized wave functions will 

be used to compute reflection/transmission coefficients. At a second-order 

discontinuity, the continuity condition for the stress-displacement field 

reduces to a continuity condition for the wavefield and its vertical derivative. 

This requires, at least in principle, coupling of up- and down-going waves, 

but no coupling between P and SV. The reflection/transmission coefficients 

for P, SV and SH are therefore given by similar expressions 
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where superscript + and - denote the top ~nd bottom side of the discontinuity, 

Du/d are up/downgoing wave functions, Au/d the up/downgoing wave coefficient~, 

and Cu/d the so-called generalized cosines which are related to vertical 

derivatives of the waves functions (Richards, 1976). Similar expressions 

for downward reflection and upward transmission follow from symmetry considera

tions; for real angle of incidence, downward reflection equals upward reflection 

in absolute value. In the WK,BJ approximation of the wave functions: C~ = CJ = 

C~ = Cd = cos i, where i is the angle of incidence, so in this approximation 

the second-order discontinuity has no effect. However, near a turning point the 

WKBJ solution is invalid and it has now become almost common practice (Richards, 

1976) to extend the approximation by Langer's solution which, among other things, 

takes into account the difference in curvature of the wavefront on opposite sides 

of the interface. Fig. VI.3.1 gives an illustration of the effect, in terms 

of reflection coefficients; obviously, these reflection coefficients can be 

perhaps surprisingly large for long-period waves near their turning point. 

Of course, the model of a single reflector is often an oversimplificatied con

cept; multiple reflection must be taken into account especially for waves near 

their turning point. Calculations in a layered model (e.g., reflectivity type 

of methods) would then account for the effects although these would not be 

explicitly identified. In fact, one of the motivations for the present study 

was to explain certain differences between results with the 'classical' 

reflectivity method (Fuchs and Muller, 1971) and a version of the so-called 

full wave method which ignores layering. Indeed, introducing layering in the 

last method, with interfaces coinciding with the second-order discontinuities, 
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satisfactorily removes the discrepancy (Doornbos, 1980). It demonstrates 

the usefulness of uniformly asymptotic solutions in a piecewise smooth 

layered model. 

D. Doornbos 
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Fig. VI.3.1 Reflection coefficients as a function of ray parameter for P and S waves at a period of 32 and o s. 
The interface is a second-order velocity discontinuity at radius 3560.7 km, up = 13.661 km"s-1, 
u = 7.218 km"s-1. s 
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+ and - refer to the top and bottom side of the interface. 


