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VI.3 Seismic array configuration optimization 

The seismological concept of arrays emerged from the nuclear test ban 

negotiations in Geneva in 1958 when the need for improved capability 

to study weak seismic events was clearly recognized. Over the years 

many kinds of array systems have been installed in many countries, but 

LASA and NORSAR remained the unique ones; unique in terms of their sizes 

(apertures of the order of 200 and 100 km, and number of instruments 

once 588 and 198, respectively), and because dedicated data centers 

were made an integral part of these arrays. 

In Norway a miniarray termed NORESS (NORSAR Experimental Small Subarray) 

has recently been installed within the NORSAR array itself and is shown in 

Fig. VI.3.1. The motivation for this undertaking is to provide data for 

optimum design of a complete array system for su_rveillance of events 

at regional distances. This is the research topic dealt with in this 

section. 

Signal and noise structure 

An essential aspect of the array design is a priori assumptions regarding 

the statistical structure of signal and noise. Generally speaking, the 

array response when 'steered at' the signal, should be small at wavenumbers 

characteristic of the noise. Intersensor spacings would then correspond 

to maximum correlation for the signal and a minimum for the noise. 

A common assumption has been that of equal signals and uncorrelated 

noise beyond a critical space lag, and for sufficiently large intersensor 

spacing the array design criteria are trivially met. However, observations 

usually contradict these assumptions, and our optimization procedure 

will be based on actually observed signal and noise correlations using 

NORESS recordings. 

~i11nal_c~r_£e_!_a!_i~n~ 

A major objective of our work was to derive an optimum layout for detect

ing events at regional distances, so signal correlations were measured for 

phases identified as Pg, Pn and Lg for the 5 events listed in Table VI.3.1, 
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all within 12° of NORESS. A record section of Event 5 is displayed in 

Fig. VI.3.2, signal correlations in Fig. vr.3.3. We see that the Pg 

phas .~ exhibits high correlation values for all frequency bands and 

sens>r separations displayed. The Lg phase on the other hand correlates 

rather poorly in the higher frequency ranges. The results for the Pn 

phase show increasing correlation with frequency, which reflects a 

corresponding peak in the signal spectrum around 4 Hz. 

Noise correlation 

Selected noise records, including both summer and winter conditions, 

were subjected to correlation analysis, and the results obtained are 

also given in Fig. VI.3.3. The most notable feature here is that the 

corr~lation curves consistently have a negative minimum before tending 

to zero, which is rated significant. This observational fact, easily 

missed when noii,e similarity is expressed via the coherency measure, 

is consistent with a model of propagating noise, as demonstrated 

by Mykkeltveit et al (1982). 

In Fig. VI.3.4 we show the theoretical correlation function for noise 

with a uniform wavenumber spectrum in the range (2n)-l to 5•(2n)-l c/km. 

This wavenumber range would be appropriate for typical Rayleigh wave 

phase velocities (3-4 km/s) in a frequency range roughly 0.6 to 3 Hz, 

or typical body wave phase velocities (above 6 km/s) at frequency 

above 1 Hz. The curve is reasonably close to the observed curve which is 

taken from Fig. VI.3.3 and testifies to the importance of propagating 

noise at the Rayleigh wave velocities, even at relatively high frequencies. 

This is in accord with the results of wavenumber analysis, although higher 

phase velocities typical of body waves are also observed. 

The optimization procedure 

Let signal to noise ratio gain by beamforming be expressed by 

(1) 
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where cij is the signaJ correlat i.on betwe.en sensors i and j, Pij 

similarly describes the noise correlation and wi are sensor weights. 

In the common beamforming practice at arrays, w1=1. Then, since cii 

= Pii = 1, equation (1) can be rewritten in the more common form: 

l+(N-l)C: 
(2) 

l+(N-l)p 

where c, p describe average signal and noisP correlations for an N sensor 

array. Alternatively, it is possible to use weighted beamforming (e.g., 

Christoffersson and Husebye, 1974), and the optimum gain function for noise 

suppression is simply the reciprocal maximum likelihood estimate of noise 

power (c.f. Beverie and Gregg, 1971): 

\ -1 
l Pij 
ij 

-1 where Pij form the inverse correlation matrix of the noise. Our reasons 

for optimizing G rather than G' are that (i) G with unit weights reflects 

the common beamforming practice at arrays, (ii) G contains both noise and 

signal, (iii) G is more stable with respect to variations in the estimate 

of noise correlation. 

The gain is a nonlinear function of the sensor coordinates, and for 

more than three sensors we obtained a maximum of G by applying a standard 

rapid descent method (Fletcher and Powell, 1963) to analytic approximations 

of the correlation functions in Fig. VI.3.3. As might be expected, the 

optimum configuration is strongly determined by the position of the 

noise correlation minimum, but for relatively poorly correlating signals 

like Lg, the slope of the signal correlation curves is also important. 

Since these features are frequency dependent (see Fig. VI.3.3), different 

optimum geometries will result for different frequency bands. A compromise 

is to optimize a combination of the gains in different frequency bands. 
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Figs. VI.3.5 and VI.3.6 show examples of the gain averaged over the 

5 frequency bands of Fig. VI.3.3, where the optimization was done se

quentially from 3 to 20 sensors. Whereas the gain for Lg is near the 

standard factor IN (in amplitude), which results from the assumption 

of identical signals and uncorrelated noise, the gain for Pg is system

atically higher. 

Our final configuration with 20 sensors for Pg gives a gain 4 dB above IN. 
As demonstrated in Fig. VI.3. 7, together with the gains in individual 

frequency bands. For example, in Fig. VI.3.7 we have includ~·d the optimum 

geometry for the frequency band 1.6-4.0 Hz, with clearly reduced intersensor 

spacings as compared to the averaged geometry for the 5 frequency bands. 

Corresponding results for Lg are given in Fig. VI.3.8; here the optimum 

geometry for frequency band 1.6-4.0 Hz has larger dimensicn than the 

averaged geometry. 

Obviously, the optimum 3 sensor array should form an equilateral triangle, 

with intersensor spacing close to the noise correlation minimum. From 

Figs. VI.3.5 and VI.3.7 it is clear that for Pg the same optimum intersensor 

spacing dominates the array geometry for a larger number of sensors. An 

illustrative example is the optimum geometry for 20 sensors (Fig. 

\I.3.7), with two pairs of sensors near the center of the array. This 

is interpreted as indicating the importance of these positions, with a 

maximum number of other sensors at optimum distance. For Lg (Figs. VI.3.6 

and VI.3.8), similar observations can be made with regard to number of 

sensors and array dimension, the principal difference being that, due 

to reduced signal correlations, intersensor spacings and array dimension 

are also reduced. More generally, the trade-off between the effect of 

increased number of sensors and increased array dimension should be 

considered for limiting the final number of sensors in the regional 

array. Another important point is that the array performance inevitably 

would depend on phase type and frequency, but 'worst case' events can 

be considerably improved by flexible weighting schemes. 
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Although the main scope of our study has been ar.ray design for sur

veillance of regional events, the methodology applied is not limited 

to this task. For example, our array concept is also the likely basic 

subarray unit in a large aperture ('teleseismic') array, in which case 

the 'optimum' main/side lobe strategy for deployment of subarray units 

as once used for LASA and NORSAR would be adequate. A more comprehensive 

presentation of the work synthesized above is given by Mykkeltveit et al 

(1982). 
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Date Origin time Location Local Magnitude 

06 Nov 1980 14.53.02 59.5°N 10. 7°E 2.1 

25 Nov 1980 02.39.L19 58.4°N 13. 7°E 2.4 

29 Nov 1980 20.42.16 51. 2°N 18. 5 OE 3.5 

26 Feb 1981 17.43.53 60.3°N 15, 9°E 2.1 

01 Mar 1981 05.08.16 62.8°N 6 .2°E 2.7 

Table VI.3.1 

Local events used in this study. 
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Fig. VI.3.1 Geometry of the 12-element NORESS array. All sensors are 
equipped with 4.75 Hz antialiasing lowpass filters. 
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Fig. VI.3.2 NORESS records (channels 1-6 in Fig. VI.3.1) for event 5 in 
Table VI.3.1. For each phase, correlation measurements are 
made from 2 sec of data around the phase maximum. All traces 
are normalized, numbers to the right give scaling factors. The 
gap between Pg and Lg is 29 sec. 
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Fig. VI.3.3 Correlation vs distance for Pg, Pn, Lg and noise at NORESS 
for the five frequency ranges indicated. Each curve is based 
on measurements from 66 combinations of sensor pairs. 

Fig. VI. 3 .4 
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Theoretical correlation function for noise with a uniform 
wavenumber spectrum in the range (2~)-1 to 5(2~)-l c/km. The 
observed noise correlation function (dashed line) is reproduced 
from Fig. Vi.3.3 (frequency range 1.6-4.0 Hz). 
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Fig. VI.3.5 Gain for the Pg phase as a function of number of sensors for 
geometries derived from our optimization procedure. The starting 
geometry for 3 sensors along with resulting geometries for 11 
and 16 sensors are shown. The gain is an average over the 5 
frequency bands in Fig. VI.3.3. 
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Fig. VI.3.6 Same as Fig. VI.3.5, but for the Lg phase. 
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Fig. VI.3.7 Pg gains for an optimized 20-element array. The lower right 
geometry is optimum when the gain function is expressed as the 
sum of 5 individual gain functions for the frequency bands 
shown in Fig. VI.3.3. This geometry gives different gain for 
each band, as indicated by the 'single frequency gains'. The 
geometry derived from a 'mulitple' gain function is different 
from that based on a single frequency band. This is demonstrated 
by reoptimizing the lower right configuration for the frequency 
band centered at 2.8 Hz resulting in a net gain of 4 dB and a 
new geometry as shown. The exceptionally large gain for the 
frequency band centered at 2.2 Hz reflects the pronounced 
negative noise correlation observed here (see Fig. VI.3.3). 
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Fig. VI.3.8 Lg gains for an optimized 20-element array. The geometry to 
the right is optimum when the gain function is expressed as 
the sum of 5 individual gain functions in the frequency bands 
given in Fig. VI.3.3. This geometry gives different gains for 
each band, as indicated by the 'single frequency gains'. The 
optimum geometry derived from a 'multiple' gain function is 
different from that based on a single frequency band. This is 
demonstrated by reoptimizing the lower right configuration 
for the frequency band centered at 2.8 resulting in a net 
gain of nearly 6 dB and a new geometry as shown. The higher 
frequency ranges are seen to dominate the 'average' geometry. 




