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ABSTRACT 

During our recent work with 3D dynamic ray-tracing and velocity inversion 

problems, we have developed a new 3D model generation system, using a 

so-called 'solid modelling' technique. The term 'solid modelling' 

refers to the fact that the logical system governing the internal geo

metrical properties of the model describes the model as a combination 

of 'solids' or 'volumes' in 3D space. In each of these volumes the 

physical parameters (such as seismic velocity, density, etc.) vary 

continuously. Discontinuous changes occur only across the model 

interfaces separating the volumes. 

The model is constructed by firstly forming a number of 'simple volumes' 

from the given interfaces and then combining these simple volumes into 

more complex volumes, which represent the physical volumes of the model. 

It is very easy to make changes to the model, as one may add volumes, 

subtract volumes, and perform more composite operations, all by 

simple use of Boolean expressions. Every time a model has been 

specified (or changed), the internal logic automatically carries out 

a check of physical consistency of the 3D model space (no overlapping 

volumes, no holes, etc.). 

By including the use of various types of coordinate transformations, 

different kinds of complex structures can be handled, such as salt domes, 

vertical and near vertical faulting, etc. 
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INTRODUCTION 

An essential part of a 3D seismic modelling system is the establishment of 

a computer representation of the geological structure to be modelled. 

The effectiveness and flexibility of the system is to a great extent 

dependent upon how the model is specified, how it can be changed, and 

how it can be automatically checked for physical consistency. 

We have developed a model generation technique as part of a system for 

3D dynamic ray-tracing. The ability to define complex models is 

especially important in m9delling by ray-tracing, as this method is 

very useful in areas of complex geology. Ray-tracing allows modelling 

of the reflections from a particular part of a structure without computa

tion of the entire wave field; thus it is possible to simulate and investi

gate closely and quickly the seismic response from a single, interesting 

feature inside a complex structure. 

The geological model used in ray-tracing is a set of 'solids' or 'blocks' 

separated by 'interfaces'. The blocks represent physical volumes in which 

the physical parameters such as P- and S-wave velocities and density 

are assumed to vary continuously. The dynamic ray-tracing method requires 

that each interface can be described as a continuous mathematical surface 

having continuous first and second partial derivatives (Cerveny et al, 

1977), however, the boundary between two adjacent blocks may be given 

as a combination of several 'smooth' interfaces. The model must be 

'consistent', that is, every point in the model must be inside one and 

only one block. 
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Very few works in geophysical literature have been devoted to the 

problem of constructing and representing 3D 'volume models' with a 

relatively high degree of complexity. In 3D, we are faced with a number 

of difficulties that are not present in the more commonly used 2D case, 

such as 

interfaces may intersect along general spatial curves 

considerably more complex mathematical representations are needed 

to describe interfaces and physical variables 

difficulties in specifying the various continuous volumes (blocks) 

in an unambiguous way 

problems with proper model display and consistency check. 

In computer-aided design and manufacturing (CAD/CAM), similar model 

generation systems are used (Requicha and Voelcker, 1982). However, 

in CAD/CAM the models are usually defined as combinations of analytic 

surfaces, which simplify the model definition significantly. This re

striction is unacceptable in geophysical applications. Boundaries between 

volumes may have almost any shape. The model representation is further 

restricted by the strong continuity requirements inherent in the dynamic 

ray-tracing method. 

The present work introduces and demonstrates a new 3D model generation 

system designed for geophysical modelling in general and for dynamic 

ray-tracing in particular. Like recently developed model representation 

systems for CAD/CA.M, this will be called a solid modelling technique, 
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due to the fact that the logical entities in the model are the 'solids' 

or 'volumes'. Most earlier CAD/CAM systems, however, cannot be classi-

fied as solid modelling systems, as they are purely 'surface oriented', 

that is, designed for displaying combinations of surface elements in space 

without relation to the volumes between them. Such a 'surface modelling 

system' has great limitations relative to a 'solid modelling system'. For 

example, there exists no logic inherent in the system that is able to 

determine if an arbitrary point in space is inside a certain volume bounded 

by the surfaces, even if the surfaces actually define such unambiguous 

closed volumes. 

In order to illustrate the use of the models, a number of dynamic ray-tracing 

examples have been included. 

3D MODEL CONSTRUCTION 

A solid model representation consists of two parts: 

a representation of the interfaces in the model 

a logical structure defining the volumes in terms of the interfaces. 

Fig. 1 gives an example of a very simple 3D model, consisting of 

a number of interfaces, and 

a number of volumes between the interfaces. 

The 3D model shown in Fig. 1 is simple for the following reason: 

All interfaces are defined throughout the whole model volume, and none 

of these interfaces intersect. This results in a very simple logical 
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structure for the model: A point (x,y,z) lies in volume no. i if 

and only if (x,y,z) lies below interface i and above interface i+l, 

and this is valid for all i=l, ••• ,N-1. 

Fig. 2 shows a somewhat more complex model, having interfaces that 

are not defined throughout the entire model volume, and in addition, 

some interfaces end towards others (intersect). In this case it is 

far more complicated to establish a 'logical structure' for the model, 

i.e., a procedure which is able to determine which volume an arbitrary 

point (x,y,z) in the model belongs to. As opposed to the former case, 

it is no longer sufficient to refer to the volume between two inter

faces. For example, the points A and B in Fig. 2 belong to the same 

volume Vz but are still located at opposite sides of both inter-

faces 3 and 4. It is thus not sufficient to use a simple above/below

relationship in order to determine which block a certain point belongs 

to. 

In the following we shall introduce a system for defining a 'logical 

structure' of the model even in such general cases, and by a couple 

of examples try to illustrate the idea of how to construct specific 

volumes in space and combine them to the physical volumes wanted. The 

more rigorous mathematics underlying the system has been omitted. 

Fig. 3 illustrates the basic brick-stone of the model. The model is de-

---
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fined as the volume inside the rectangular box (VM), and xyz is the basic 

model coordinate system. Generally, each model interface is represented 

in a local coordinate system uiviwi (i is the interface index) as a function 

wi fi(ui,vi) (uivi) E A (1) 

where A is the area of definition in the uivi-plane. (In Fig. 3 B1 and B2 

corresponds to the projection of the area A onto the model boundaries.) 

The local coordinate system may in principle be any coordinate system. 

In most cases the interfaces are represented in local cartesian coordinate 

systems rotated and translated relative to the basic model system. However, 

in special cases other types of coordinate systems are used, e.g., cylindrical 

coordinates are useful for representation of folds, and spherical coordinates 

may be used to described dome-shaped structures, as shown in Fig. 4. The 

function fi may be any type of continuous, bivariate function with con

tinuous first and second partial derivatives. In most cases the interfaces 

are originally given by sets of sample points in space, and consequently 

some type of mathematical function must be fitted to the data. We usually 

employ bicubic splines; they have the necessary continuity properties 

and will in most cases fit the original interface samples reasonably well 

(Gj~ystdal et al, 1984). 

The interface i defines two volumes (in Fig. 3 denoted by Wil and Wi-l), 

which are the volumes on the positive and negative side of the interface, 

respectively (positive side is in the direction of wi)• Volumes like 
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Wil and Wi-l constitute the elementary volume elements of the model. By 

combining such 'interface volumes' in various ways, the full 3D model 

can be constructed. 

In order to construct more complex model elements, we shall introduce 

two classes of volumes: simple blocks (SB) and complex blocks (CB). A 

simple block is simply the intersection between a_ number of specified 

'interface volumes' of type wi 1 or w-l defined above. That is, an SB 

consists of all points in space which are inside all these interface 

volumes simultaneously. For example, we may define an SB as 

1 (\ -1 (\ 1 VsB = W1 Wz W3 (2) 

which means all points in space being on the positive side of interface 

no. 1, on the negative side of interface no. 2, and on the positive side 

of interface no. 3, simultaneously. A simple illustration of this example 

is given in Fig. S. The three interfaces are given in separate cartesian 

coordinate systems (Fig. Sa), and the simple block (VsB) results in the 

closed volume inside the hatched part of the interfaces (Fig. Sb). If the 

local coordinate systems and areas of definition for the interfaces are 

coincident, the interpretation of an SB is very simple: The simple block 

is the volume below some given interfaces and above some other ones, as 

shown schematically in Fig. 6. An important property of the SB is that 

it is not necessary to define explicitly the intersection curves between 

the interfaces. The simple block definition ensures that non-physical 
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extensions of the mathematical representations of the interfaces do 

not affect the block. 

Most volumes with simple geometry can be represented by simple blocks. 

There is one important exception: when non-physical, mathematical 

extensions of the interfaces intrude the volume, it cannot be described 

as a simple block. The reason for this is that a point inside the volume 

may be located both above and below an interface bounding the volume, such 

that simple above/below relationships cannot be used. This was the case 

for the model in Fig. 2, and another example is shown in Fig. 7. In 

such cases, the volume must be defined as a complex block, which is 

a logical composition of other blocks, simple or complex ones, combined 

by means of Boolean algebra. Four different operators are available: 

union, intersection, subtraction and complement, and any combination 

of these can be used. Fig. 8 shows a simple example of CB definition. 

As demonstrated in this example, it is sometimes necessary to make 

simple blocks that do not represent physical volumes, but are needed 

in the design of complex block. Fig. 9 gives a number of additional 

examples, illustrating the use of the various Boolean operators. We 

observe that the generation of CBs is usually very simple, although 

the CBs themselves may be rather complex. 

We now return to the model of Fig. 2, and show how this model can be 

constructed by use of the SB/CB logic (see Fig. 10). We assume 

that all the interfaces are given in the basic model system, that 

is, uiviwi = xyz for all i. Firstly we generate five 'simple blocks' 
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(SB1-SB5) by combining positive/negative sides of the interfaces. 

Note that interfaces 3 and 4 have been mathematically extended (dashed 

lines). SB1 and SB4 represent the physical volumes V1 and V4, respectively. 

From the simple blocks SB2, SB3 and SB5, complex blocks representing the 

model volumes V2 and V3 are formed by Boolean algebra. As soon as 

the various 'complex blocks' have been defined, different 'volume 

functions' representing physical parameters can be assigned 

to each block. 

Fig. 11 demonstrates the ability of the model representation system 

in the construction of complex 3D models. The model shown has been 

divided in a number of 'slices' to visualize its true 3D nature. 

Steep and vertical fault planes are easily represented in properly 

rotated cartesian coordinate systems. Notice how the SB-CB logic 

allows definition of volumes with very complex boundaries. 

PROPERTIES OF THE SOLID MODELLING SYSTEM 

As mentioned, this model generation system is a solid modelling system. 

The volume logic has some very advantageous properties which are difficult 

to obtain for a purely surface-oriented model representation. 

The most important property is that it is easy to determine whether an 

arbitrary point in the model is inside or outside a given volume. 

This is the fundamental feature of solid modelling systems, as it is 

the basic information needed if the model shall be treated as a set 

of solids. A valuable consequence for ray-tracing applications is that 
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sources and receivers can be put anywhere in the model. Another 

important consequence is that model consistency can be automatically 

checked. Check points are selected on a 3D grid in the model with a 

predefined spacing, and it is checked that each point is inside one 

and only one block. The grid spacing can in principle be chosen ar

bitrarily small, in order to fit the model complexity. 

It is very easy to modify the model geometry. As soon as a number of 

SBs has been established, it is easy to combine them into CBs and to 

combine the SBs and CBs into even more complex CBs and so on. Each 

time the model has been changed by altering the Boolean expressions, 

it can be rapidly and automatically checked for physical consistency 

by the computer. Two volumes may be easily combined to one by taking 

the union, and a new block can be put into another one by assigning 

the new block to the model and subtracting it from the original block. 

Thus, the user can very easily manipulate with the model blocks in a 

way that is not possible without a full 'volume logic'. 

An example of model modification is illustrated in Fig. 12. The diapiric 

structure in Fig. 12a will be put into the model in Fig. 12b. The diapir 

is represented by a separate complex block, and first we assign this block 

to the model. Then we subtract by Boolean algebra this block from the other 

blocks in the model, and a new, consistent model including the diapir 

is obtained (Fig. 12c). This procedure is very simple, as it is not 

even necessary to know in detail what blocks the diapir intrudes. If 

the diapir is subtracted from a block which in fact is completely 

t 
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outside the diapir, it follows from the properties of Boolean set sub

traction that this block remains unchanged. 

Interfaces may also be modified. If the modifications only change 

the shapes or locations of some interfaces, without altering the 

logical relationships between the volumes and the interfaces, no new 

logical build-up is needed. Translation and rotation of interfaces, 

leaving their shapes unchanged, are particularly simple, as it is 

done by redefinition of the local coordinate systems for the interfaces. 

The interface functions fi are unchanged. 

EXAMPLES OF DYNAMIC RAY-TRACING 

We now turn to the application of models generated by the new solid 

modelling technique by including a couple of examples from 3D dynamic 

ray-tracing. 

Fig. 13 shows two synthetic zero off set seismic sections computed for 

lines on the surface of the model in Fig. 12c and parallel with the 

shown cross section. Fig. 13a shows a plot of selected ray paths for 

a line with equally spaced source-receiver pairs across the top of 

the diapir. The diapir is rotationally symmetric, and the other inter

faces are two-dimensional and invariant in the direction normal to the 

shown cross section. Fig. 13b shows the corresponding synthetic seismic 

section, containing only in-line reflections due to the model symmetry. 
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The large hyperbola-like reflection in the middle of the section comes 

from the top of the diapir. Otherwise some typical features of seismic 

sections across diapirs are easily recognized: the terminations of 

the reflections around the diapir indicate its size, and there is a 

characteristic velocity pull-up of the reflector below the diapir. 

The section in Fig. 13c is computed for a line outside the diapir, 

and side reflections are clearly recognized. 

A simple non-zero offset VSP-example is shown in Fig. 14. The shot 

point is buried a little below the surface, and the receivers are 

equally spaced down the well (Fig. 14a). Some selected ray-paths for 

direct rays, primary reflections and surface multiples are shown in 

the cross section Fig 14b. Fig. 14c is the synthetic VSP section. 

CONCLUSION 

Complex, 3D geological models can be effectively generated by means of 

the presented solid modelling technique. The model representation con

sists of two parts: mathematical representations of the interfaces and 

a logic defining the volumes in terms of the interfaces. Each inter-

face is represented by a bivariate function in a local coordinate system. 

By proper choice of coordinate system (rotated, cartesian, cylindrical, 

spherical), most types of interface geometries occurring in seismic work 

can be described. To define volumes of different complexity, two classes 

of blocks are employed: simple and complex blocks. A volume into 

which the mathematical extensions of the interfaces do not intrude, 

is defined very simply as a simple block. A volume of more composite 
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geometry must be given as a complex block, i.e., as a combination of 

other blocks by means of Boolean algebra. In practice, any realistic 

model in seismic modelling can be represented by this solid modelling 

system. 

The models can be easily modified. Interfaces may be moderately changed 

without altering the logical model build-up. On the other hand, 

boundaries between volumes can be removed and new volumes put into 

the model by simple Boolean operations. The model consistency can be 

automatically checked after each model modification. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Illustration of the volume/interface relationship for a 

'simple' 3D model. S1 - S5 are model interfaces, and V1 - V4 

are model volumes. Volume Vi consists of all points below 

Si and above Si+l• 

Illustration of a 'complex' 3D model which does not have a 

simple volume/interface relationship like the 'simple' 3D 

model shown in Fig. 1. S1 - S7 are model interfaces and 

V1 - V4 denote volumes. 

Illustration of the volumes wi1 and w1-l associated with an 

interface function fi. The cube represents the model volume. 

Areas Bi and Bz represent the projection of the area of 

definition Ai of fi onto the model boundaries. The interface 

function fi divides the 'tube' between Bl and Bz into Wil and 

wi-l which are the volumes on the positive and negative side 

of fi, respectively. 

Illustration of a dome-shaped interface function r = fi(e,~) 

given in a spherical system o,~,r. e,~,r are defined relative 

to a system x'y'z' translated and rotated relative to the basic 

system xyz. In this case the local coordinates (ui,vi,wi) are 

equal to ( e ,~,r). 



Fig. 5 

Fig. 6 

Fig. 7 

Example of 'simple block' definition. 

a) Three interfaces given in separate coordinate systems 

(u1,v1,w1), (uz,vz,wz), and (u3,v3,w3), respectively. 

VM is the total model volume. 

b) The hatched area shows the simple block defined by 

w 1 " w -1 " w 1 1 , \ 2 , ' 3 

w11, w2-l and w31 are shown in a). 

xz-cross section through a simple block (hatched area) where 

all the bounding interfaces are defined in the same coordinate 

system and have coincident areas of definition. A is the common 

area of definition. The logical structure of the simple block 

V is: 

wll (\ w2-l n W3-l 

In this case this simply means that volume consists of all points 

below S1 and above Sz and S3. 

Cross section through a volume (hatched area) which cannot be 

described as a simple block. The bounding interfaces S1 and 

s2 intrude the volume. Some parts of the volume V are in w11 

while other parts are in w1-l, and the same applies to 

w2
1 and w2- 1 , hence the interfaces s1 and s2 cannot 

be used in a definition of the volume as a simple block. 



Fig. 8 

Fig. 9 

Cross section through a volume defined as a complex block. 

Firstly, two simple blocks are defined: 

and 

SB - W l " W -1 1 - 1 , ' 3 

1 /'\. -1 SB2 = W2 , 1 W3 

The complex block representing the physical volume is the 

union of these two simple blocks: 

V = SB1 \) SB2 

Illustration of 'complex block' (CB) build-up. 

a) and b) show five 'simple blocks' (SB) and c)-f) show examples 

of how these simple blocks may be combined to complex blocks 

by simple Boolean expressions. 



Fig. 10 

Fig. 11 

Fig. 12 

Construction of the model in Fig. 2. The logical structure 

defining the volumes is: 

SBl w 1 (\ w -1 
1 2 

SB2 w 1 ('. w -1 
2 3 

SB3 w 1 (\ w -1 
3 6 

SB4 w 1 (\ w -1 
6 7 

SBS w 1 ('\ w -1 
4 5 

V1 = SBl 

V2 = SB2 U SBS 

V3 "" SB3 - SBS 

V4 = SB4 

(below 1 and above 2) 

(below 2 and above 3) 

(below 3 and above 6) 

(below 6 and above 7) 

(below 4 and above 5) 

Series of cross sections through a comlex 3D model generated 

by means of the model representation above. 

Illustration of model modification. The diapiric structure in 

a) is assigned to the model in b) and subtracted from the 

other blocks in this model. The result is a new, consistent 

model including the diapir shown in c). 



Fig. 13 

Fig. 14 

Examples of dynamic ray-tracing. 

a) shows the model and a number of selected normal incidence 

ray paths. b) and c) show synthetic zero offset seismic 

sections computed for two parallel lines across the surface 

of the model. Only primarly reflections are included. 

Non-zero offset VSP example of dynamic ray-tracing. The model 

with shot point and well is shown in a), and some selected 

ray paths are shown in the cross section b). c) shows a 

synthetic seismic section, including the direct wave, 

primary reflections and multiples. 
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