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1. INTRODUCTION 

This paper decribes a procedure for automatic generation of solid 

modelling computer representations of the subsurface from 

3-dimensional seismic interpretations. 

The result of a 3D seismic interpretation is usually some representa­

tion of the h o r i z o n s in the area. The layers or blocks of 

rock which actually constitute the subsurface, are not explicitly 

mapped. However, detailed analysis of complex structures may be 

greatly facilitated if also the layers and blocks can be handled 

directly, i.e. if a s o 1 i d m o d e 1 1 i n g representation 

of the subsurface is available. 

A solid representation is advantageous, f.ex., in depth conversion, 

modelling of the geological evolution, seismic and gravimetric 

modelling and reservoir studies. In contrast to maps and cross sec­

tions, a solid model representation allows the user to handle 

directly the 3-dimensional solid blocks in the model: combine, split 

and move blocks, assign rock properties to the blocks, calculate 

volume and mass etc. 

A solid modelling representation consists of two parts: firstly, 

a representation of the horizons, or interfaces, in the model, and 

secondly some logical system describing the solids in terms of the 

interfaces. The choice of representation depends on model complexity, 

characteristics of the interfaces, computer speed/memory con­

siderations etc. Solid modelling representations have primarily been 

used in computer-aided design and manufacturing (CAD/CAM) (see f.ex. 

the article of Requicha and Voelcker (1982)). The use of solid 

modelling in geophysics has been scarce, but the method developed by 

Gj~ystdal et al. (1983) is designed specifically for exploration 

geophysics applications. There are some important differences 

between typical models frequently used in CAD/CAM and in exploration 
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geophysics: The interfaces may have very general shapes in geophysi­

cal models, while in CAD/CAM mostly simple, analytical interfaces are 

used. On the other hand, model complexity, in terms of number of 

interfaces and volumes, is usually larger in CAD/CAM. 

From a 30 seismic interpretation the interfaces are readily available. 

Thus, if the available interface representation can be used in the 

application in question, what remains to be made is the logic 

describing the volumes in terms of the interfaces. The logical set­

up may e.g. be specified manually following the principles of 

Gj~ystdal et al. (1983). However, when certain conditions are 

fulfilled, a logical volume description based on the same principles 

can be set up automatically. 

The paper consists of two parts. The first part describes the 

principles of automatic solid model generation. In the second part, 

practical aspects related to the implementation of the procedure on a 

computer are discussed. 

2. PRINCIPLES 

2.1 General remarks 

The automatic solid model generator makes a 30 solid model from a set 

of interfaces, which e.g. may be the result of a seismic interpretation. 

The interfaces may be depth interfaces or migrated two-way travel 

time interfaces. If the latter are used, depth conversion by image 

ray-tracing (Gj~ystdal and Asteb~l,1983) is necessary in order to 

convert the model to the depth domain. Depth conversion can easily 

be done after the solid model has been made if interval 

velocities are available. 

To ensure a proper volume determination, the set of interfaces must 

fulfill certain requirements which are discussed in Section 2.2. 

The model generation consists of two steps (Sections 2.3 and 2.4). 

First a 'volume matrix' is made from a detailed analysis of the 
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interfaces, in particular of their intersection lines. The volume 

matrix is a gridded, preliminary solid representation. Then, by com­

bined inspection of the volume matrix and the interfaces, the logical 

representations of the volumes in terms of the interfaces are deter­

mined. 

The model is limited by a 3D rectangular box (model box), which is 

completely filled with non-intersecting blocks. 

2.2 Requirements to the interfaces 

The assumptions used in the volume determination are: 

- Each interface is continuous and fairly smooth. 

- Each volume is completely enclosed by interfaces and/or the model box. 

- An interface cannot be partly above and partly below the same volume. 

- An interface is sampled only where it is the physical boundary 

between two different volumes. 

- The sampling is dense relative to the model complexity. 

Important consequences of the above assumptions are: 

- If an interface is discontinuous, e.g. due to faulting, or if it is 

not smooth, the continuous, smooth parts should be separated and 

considered as different interfaces. 

- Every point in the model must be inside one and only one volume. 

- All boundaries between blocks must be sampled. 

- Interfaces may not intrude the volumes, that is, interfaces must 

terminate towards other interfaces or at the model boundary. 

Thus the seismic interpretation must be made with the 

'solid concept' in mind. Simple examples of valid and invalid inter­

face sets are shown in Fig.I. 

Furthermore, all interfaces must be on the form z=f(x,y), i.e. the 

time/depth must be a function of the horizontal coordinates only. 
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This restriction prohibits, e.g., vertical and near-vertical fault 

planes and very steep folds and domes. 

To simplify the analysis it is also assumed that all interfaces are 

sampled on the same, regular, horizontal xy-grid. As this represen­

tation is common in computer assisted interpretation, solid modelling 

is specially simple when the 3D seismic data are interpreted on an 

interactive interpretation station. If the interfaces are not repre­

sented on this form, they should be (re)sampled prior to the solid 

model generation. 

If the requirements are not fulfilled, unexpected - and unwanted -

volumes will result, leading to an erroneous solid model. 

2.3 First step - build a volume matrix 

The interfaces are sampled on a regular grid (Xi,Yj), i=l,N j=l,M 

where Xi = Xl + (i-1) * dX and Yi= Yl + (j-1) * dY. dX and dY are the 

grid spacings in x- and y-direction. 

The set of interfaces is represented by a 3-dimensional 'z-matrix' 

z(i,j,k) i=l,N j=l,M k=l,K 

where z(i,j,k) is the depth or time value for the interface with index 

k in grid point i,j. K is the number of interfaces in the model. 

If interface k is not defined in (i,j), it is flagged by setting a 

special value of z(i,j,k). To simplify the analysis, two horizontal 

interfaces are always automatically included in the z-matrix, one at 

the top of the model and one at the bottom. These two interfaces are 

defined in all grid points. 

Sorting the z-values in each grid point with increasing depth, 

an 'interface ~atrix' is easily made: 
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k(i,j,l) i=l,N j=l,M l=l,L(i,j) 

k(i,j,l) is the interface index of the 1-th interface counted from 

the top of the model in (i,j). L(i,j) is the number of interfaces 

defined in (i,j). Thus k(i,j,l) contains the ordered sequence of 

interfaces for each grid point, arranged with increasing depth/time. 

The task is now to make a 'volume matrix' 

v(i,j,l) i=l,N j=l,M l=l,L(i,j)-1 

where v(i,j,l) is the index of the volume right below interface 

k(i,j,l) in (i,j). Thus v(i,j,l) contains the ordered sequence of 

volumes for each grid point, arranged with increasing depth/time. 

The number of volumes in each grid point is one less than the number of 

interfaces, as no volume is defined above the top interface nor below 

the bottom interface. 

To determine the volume matrix, the z- and interface matrices are 

investigated systematically grid point by grid point, and the same 

procedure is in principle used in all points, except the first one, to 

determine the sequence of volume indices. 

In the first point (1,1) nothing is yet known about the volumes, 

so they are simply numbered sequentially, starting with volume index 

1 under the top interface, index 2 under the next one, etc. 

In the other points the procedure is as follows: 

Assume that the volume determination has been made rowwise from (1,1) 

and has been successful for all points up to and including (i1,j1-l). 

The next point to be analysed ('current point') is (i1,j1)• 
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To determine the volume sequence in (11,j1), the interface sequence 

k(i1,j1,l) l=l,L(i1,j1) is compared with the similar sequences in up to 

four neighbouring, already investigated points (Fig.2). Each of 

the neighbouring points is treated separately, thus reducing the 

volume determination to a 2-dimensional problem. The independently 

established volume sequences for (i1,j1) are then compared and checked 

for differences. 

The two-point comparison procedure takes advantage of the fact that 

the interfaces are sampled exactly where and only where they are phy­

sical boundaries, and of the dense sampling relative to changes in the 

model. For a model with these properties, it is reasonable to assume 

that within the range of a few grid points, the interfaces are well 

approximated by planes. It can also be assumed that in a vertical 

plane through two neighbouring grid points, each interface intersects 

with at most one interface. On the above presumptions, only a few dif­

ferent patterns of interface intersections may occur, and the unknown 

volume sequence is inferred from a few, simple rules. The rules are 

illustrated in Fig.3 and described in the caption. 

In a complex 3D model complex regions may occur where the assumptions 

are not valid for all combinations of (i1,j1) and neighbouring points. 

Still, the volume determination is usually resolved, as in most 

cases the volume sequence is sufficiently determined by one or two 

two-point comparisons. In most cases, the use of four neighbouring 

points 'overdetermines' the volume sequence. Only with some rare, very 

complex geometries, manual interaction is necessary to establish the 

volume sequence. 

Though the volume sequence for (i1,j1) is properly determined in different 

two-point comparisons, the resultant sequences may sometimes be 

different. Inconsistencies occur because different parts of a volume 

may appear as separate volumes as long as only a part of the model has 

been inspected. The different two-point comparisons use information 

from different parts of the model and might therefore be 'cheated'. 
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The inconsistencies are resolved by renumbering of volumes. This com­

parison of different volume sequences for the same point is a very 

important part of the volume determination procedure, as it represents 

the 'global overview' in the process (Fig.4). 

2.4 Second step - determine logical volume representations 

The volume, interface and z-matrices comprise a solid modelling repre­

sentation. However, a second step is introduced to convert the volu­

mes to the more powerful representation outlined in Gj~ystdal et al. 

(1983). The reader should be familiar with the principles outlined in 

the paper. With this volume logic, the model is easily modified by 

means of Boolean operations on the volumes. Also more general volumes 

can be made, in that interfaces represented in different coordinate 

systems (cartesian, sylindrical, spherical) can be combined with the 

original model. 

So far, the interfaces have only been defined in the grid points, 

and their borders have been located by means of linear extrapolation. 

In most applications, values outside the grid points are needed, 

and the interfaces must in some cases fulfil strict continuity 

requirements. This is the case in dynamic ray-tracing, where 

the z-values must be continuous up to the second partial derivatives. 

For this reason, spline approximations to the interfaces are used. 

The matrix independent volume logic is very flexible with respect to 

interface representations. Any representation can be used which 

provides z-values in all points inside the 'areas of definition'. 

For each interface-volume combination in the model, a separate area 

of definition is determined. The area of definition is derived from 

the z-matrix and covers the entire area where the interface is a 

boundary of the volume. 
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Detailed sampling of the interface intersection curves is incon­

venient, so the volume logic allows areas of definition stretched 

slightly outside these curves. However, when two interfaces on oppo­

site sides of a volume intersect, the 'non-physical' extensions of 

their areas of definition are made coincident. For practical reasons, 

an area of definition consists of a set of rectangles on a regular 

grid, which does not have to be the original z-matrix grid. (Fig.S). 

The logical volume build-up is based on the same ideas as polygon fill 

on graphic raster screens (see e.g. Foley and Van Dam (1982)), but is 

generalized to 3D space. 

The logical representation V of a volume v is set up following these 

rules ('=' means compute right hand side and asssign to the left hand 

side): 

a) Start with V = 0 (no volume). 

b) Among the interfaces bounding V, select the uppermost, previously 

'unused' interface(s). More than one is considered as 'the 

uppermost' if there are laterally non-overlapping interfaces. 

For each of these interfaces kj define the 'Simple Block' SBkj 

= SB(+kj)• This is the part of the 3D space which is below kj 

and is limited laterally by the area of definition for kj 

combined with v. The SBs are non-physical volumes used in the 

logical representions of the real volumes. For more details 

on SBs see Gj~ystdal et al. (1983). 

Check if kj intersects with other interfaces which lie on the 

same side of the volume. Whenever such intersection occurs, and 

the non-physical continuation of one of the interfaces is 

above the physical part of the other one, two additional SBs 

must be made. Say kj intersects with ki• then the SBs SBl = 

SB(+kj,-ki) and SB2 = SB(-kj,+ki) are made. SB(+kj,-ki) consists 
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of all points that are below kj and above ki and are inside the 

two areas of definition for the interfaces combined with V. 

The two SBs are subtracted from SBkj 

SBkj = SBkj - ( SBl U SB2 ) 

The subtraction is repeated for all intersections of this type 

with kj• 

The next step is to combine the resultant Slikj with the 

'current volume' V: 

If the interface kj is a b o v e the volume, take the union of 

SB(+kj) and V : 

V == V U SB(+kj) 

If the interface is 

from V: 

V = V - SB(+kj) 

b e 1 o w the volume, SB(+kj) is subtracted 

The interface kj is now considered as 'used' 

c) Use b) repeatedly until! all interfaces have the status 'used'. 

The generation of logical volume representations is illustrated in 

Fig.6. 

3. PROBLEMS RELATED TO COMPUTER IMPLEMENTATION 

3.1 General remarks 

The principles for automatic solid model generation as described in 

Chapter 2, are suited for computer implementation. Still, during the 

implementation and use of the model generation programs in the 

GNOM (GECO NORSAR MODELLING) package, some methodical problems 
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revealed. They are discussed in some detail in the following, and 

solutions are suggested. 

In the GNOM package, the automatic solid model generator is implemented 

with the modifications outlined in this chapter. 

3.2 Correct sampling of the interfaces 

The first problem is to ensure that the set of sampled interfaces 

fulfils the requirements of Section 2.2. This is done in two steps: 

First the interpreter must check that the model roughly is correct. 

Then an automatic 'preprocessor' of the interfaces removes smaller 

'errors' in the model. 

The interpreter must have in mind that a solid model shall be made. 

The horizons must be drawn so that they completely enclose the volu­

mes, and so that no horizons intrude the volumes. Unfortunately, this 

is often in conflict with common practice in interpretation. 

Therefore, the interpreted horizons should be manually reexamined and 

corrected prior to model generation. This check should be done 

interactively, e.g. on an interpretation station. In particular it 

should be noted that each interface must be continuous. Often an 

interface in the interpretation consists of several completely 

separated parts which belong to the same geological horizon. Such 

interfaces should be divided and separate indices assigned to the dif­

ferent continuous parts. 

If the interpreter has violated the restrictions set by the solid con­

cept, and the interpretation is not corrected, large 'errors' in the 

solid model must be expected. 

The volume matrix builder (Section 2.3) analyses the interfaces 

grid point by grid point and is therefore rather sensitive to 

'errors' in the z-matrix on the sampling level. The critical assump­

tion is that the interfaces shall be sampled where and only where 

they are physical volume boundaries. Combining this with the assump-
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tions of continuous and smooth interfaces and dense sampling, it is 

possible to infer where samples are 'missing' and where extra, 'erro­

neous' samples hav~ been added: Along the interface boundaries the 

interfaces are linearly extrapolated in the two grid directions 

(constant i and constant j), and intersection points between the 

interfaces are determined. For each interface boundary the 

nearest intersection point is located. If the point is on the 

interface, the samples between the intersection point and the boundary 

are removed. On the other hand, if the intersection point is outside 

the interface, and also outside the grid rectangle adjacent to the 

boundary sample, samples are added (Fig.7). The result of this 

resampling is usually very close to what intuitively would be con­

sidered as 'correct' in a manual inspection. 

3.3 B-spline interface representation 

The implemented automatic model generator has been specifically 

designed for 3D dynamic ray-tracing. In this application up to the 

second partial derivatives of the z-values must be continuous. This 

is fulfilled by B-splines. If the interface is smooth, the fit to the 

original interface data is good. Still unwanted effects may occur 

along the interface boundaries. There is 'data control' on one side 

only of the boundaries, and the B-spline tends to oscillate dramati­

cally in such areas. In some cases this may distort the volumes 

(Fig.8). To cope with this problem, some samples are added prelimi­

nary along the interface rim during the B-spline generation. These 

samples are determined by linear extrapolation out from the defined 

part of the interface. In this manner the area with complete data 

control is extended to include the interface boundary regions. 

The final, logical volume representation uses only the B-spline 

interfaces. Still, the volume matrix is made by analysis of the 

z-matrix, and the volume logic is determined from the volume and z­

matrices. Therefore, the z-matrix and the B-spline interfaces must be 

mutually consistent. Due to the smoothing effect of the B-splines, 

there may be small differences between values in the z-matrix and the 
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corresponding ones computed from the splines. In these cases the 

value in the z-matrix should be replaced by the spline value. The 

differences may also shift the interface intersection curves slightly 

so that a few samples must be added or removed. Still, the changes 

are usually small, and the original model is essentially retained. 

3.4 Revised volume logic 

In geophysical models, each interface is often the boundary of 

several volumes. With the procedure in Section 2.4, an area of defi­

nition is defined for each interface-volume combination. Conceptually, 

it is better to define a 'global' area of definiton for each inter­

face, as this decouples the interface definitions completely from the 

volumes. This is particularly advantageous if the model shall be 

modified. The interface can be modified with no change in volume 

definition as long as the modification does not change the over/under 

relationships between the interfaces. With a separate area of defini­

tion for each interface-volume pair, all these areas of defintion must 

be reset if the lateral extensions of an interface is changed. 

In addition, the use of global areas of definition saves space in the 

computer memory. This may be of importance for large models. 

The disadvantage with global areas of definition is that the volume 

logic becomes more complex and less general. 

With global areas of definition the following volume logic build-up 

procedure is used (Fig.9): 

a) A volume Vl is made following the rules in Section 2.4. 

b) A similar volume V2 is made, but now the procedure starts at the 

b o t t o m of the volume and proceeeds u p w a r d s. 
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c) A v o 1 u m e area of definition is defined. It is similar to the 

interface areas of definition, but is determined from 

the lateral extension of the volume. 

d) A volume V3 is made, consisting of all points in 30 space that 

laterally are inside the volume area of definition. 

e) The final volume V is the intersection of the three volumes: 

V = Vl (\ V2 ("\ V3. 

This logic is enable to represent all volumes that are likely to occur 

in geophysical models. However, it fails for some very complex, 

rather hypothetical volume geometries. As a guidance, an erroneous 

volume representation can only be made if there is a grid point 

where at least six interfaces bound the same volume. An example of 

erroneous volume representation is shown in Fig.IO. 

If models involve volumes of this complexity, the method of 

Section 2.4 should be applied • 
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FIGURE CAPTIONS 

!:!g_~ 

Figure 1 a) - c) show some typical 

invalid interface sets in automatic solid model generation and similar, 

valid sets. 

a) An interface intrudes a volume or is not sampled along the entire 

volume boundary. 

b) An interface stops in the middle of a volume. 

c) An interface (number 5) is discontinuous. Different indices must 

be assigned to the separate, continuous parts. 

Fig. 2 

The volume sequence in (i1,j1) is determined by comparison of the 

interface sequence with the corresponding ones in up to four neigh­

bouring points. In these points the volume sequences have already 

been established. 

Fig. 3 

Figure 3 a) - f) illustrates the rules applied in the 'two-point 

comparison' procedure to determine the volume sequence in a grid point. 

The volume sequence is known in (m,n) and shall be determined in (i,j). 

Plane, local approximations to the interfaces, computed from the z­

matrix, are used in the comparison. In the illustrations, the planes 

are drawn between points where the interfaces are defined, and from a 
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point where an interface is defined and to its intersection point with 

another interface. kn denotes interface, vn denotes volume. 

a) If an interface k1 is defined in (i,j) as well as in (m,n), and it 

is not intersected by any interface above ki, the volume right 

above ki in (m,n) is also right above k1 in (i,j). 

b) If an interface kz is defined in (i,j) as well as in (m,n), and it 

is is intersected by an interface k1 which is above k2 in (m,n), 

the volume v1 right above ki in (m,n) is right above kz in 

(i,j). 

c) If an interface kz is defined in (i,j) as well as in (m,n), and it 

is is intersected by an interface ki which is above kz in (i,j), 

the volume v1 right above k2 in (m,n) is right above kl in 

(i,j). A 'new' volume (as far as can be inferred from this 

two-point comparison) occurs between ki and kz in (i,j). 

d) If an interface ki which is defined in (m,n) only, intersects 

with kz which is defined in (i,j) only, the volume v1 right 

above ki in (m,n) is right above kz in (i,j). 

Obviously, similar arguments as in a) - d) apply for the 

area b e 1 o w the interfaces. 

e) If an interface ki which is defined in (m,n) only, intersects 

with kz which also is defined in (m,n) only, 

the volume vi right above k1 in (m,n) is actually a part of the 

same volume as v3 right below kz. 

f) If an interface k1 which is defined in (i,j) only, intersects 

with kz which also is defined in (i,j) only, 

the volume v1 right above k1 in (m,n) is actually a part of the 
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same volume as v3 right below k2• The actual index of this volume 

must be determined by means of other parts of the interface 

sequences. A 'new' volume (as far as can be inferred from this 

two-point comparison) occurs between k1 and k2 in (i,j). 

Fig. 4 

Recognition of 'different volumes' as parts of a single volume. 

In Fig. 4 a) the intersection curve between two interfaces is drawn. 

Below the intersection curve both interfaces are defined. Obviously, 

the space between the two interfaces and below their intersection 

curve constitutes a single volume. 

In Fig. 4 b) the volume determination is finished for row i1-l 

The volume between the two interfaces has been named V1 in this row. 

The volume sequence shall now be determined for the point (i1,l). 

In this point the volume between the two interfaces seems to be a 

'new' one and is called Vz. 

In (i1,j1) the volume Vi is encountered for the first 

time in the volume determination for row i1 (Fig. 4 c)). 

It is recognized that V1 and Vz actually are parts of the same volume. 

In all grid points Vz is renumbered to V1 (Fig. 4 d)). 

Fig. 5 

The area of definition for an interface-volume pair is defined on a 

regular grid and consists of a set of rectangles (Fig. 5 a) ). 

All samples on the interface where it is a boundary for the volume, 

must be inside the area of definition. The area of definition is also 

extended to include the interface boundaries. 
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Where two interfaces intersect, their areas of definition are made 

so that the non-physical extensions of the interfaces are coincident. 

In Fig. 5 b) this is illustrated in a vertical cross section. 

Fig. 6 

Example of logical volume representation build-up. 

The task is to represent the volume V in Fig. 6a). This is 

example is 2-D, but the same procedure is used in 3D. Interface 1 is 

the uppermost one. SBl is the volume below this interface (Fig. 6b)). 

As this interface does not intersect with any other interface which 

is above the volume, no simple blocks shall be subtracted from 

SBl at this stage. Thus in the first step: 

V = SBl 

The next interfaces are number 2 and 3. Their physical parts are not 

overlapping, so both interfaces are used in this step. The simple 

blocks SB2 and SB3 are shown in Fig. 6c). Interface 2 and 3 are both 

locally below the volume and the non-physical interface extensions are 

above the interfaces. Hence two extra SBs must be made: SBHl ~ 

SB(+2,-3) and SBH2 = SB(-2,+3). They are subtracted from the original 

SB2 and SB3: 

SB2 = SB2 - (SBHl U SBH2) 

SB3 = SB3 - (SBHl U SBH2) 

SB2 and SB3 are now subtracted from V: 

V = V - (SB2 U SB3) 

SBHl, SBH2 and SB2 U SB3 are shown in Fig. 6d. 'Current volume' Vis 

shown in Fig. 6e. 
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Next interface is number 4. SB4 = SB(+4) is shown in Fig. 6f). This 

SB is added to the volume: 

V = V U SB4 

Fig. 6g) shows 'current volume' v. 

Finally SBS = SB(+S) (Fig. 6h)) is subtracted: 

V = V - SBS 

and the volume of Fig. 6a) is obtained. 

Fig. 7 

Removal of small 'errors' in the set of interfaces. The removal is 

illustrated in vertical cross sections. 

Fig. 7a): 

The samples of two interfaces are marked with x and o. The hatched 

lines indicate the linear inter- and extrapolations of interest. 

~ is their intersection point. This is regarded as the interface 

intersection point in this particular cross section. A 'missing' 

sample will be added at the arrow. 

Fig. 7b): 

This figure is similar to 7a), but in this case a sample is removed 

at the arrow. 

Fig. 8 

Example of volume distorted by B-spline oscillation. 

The volume of interest in the one between interface 1 and 2 in Fig.Ba). 

The B-spline representations are shown in Fig. 8b). The interfaces 

are drawn inside their areas of definition. The volume (hatched area) 
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is erroneous with this representation because the interfaces do not 

intersect. 

In Fig. 8c) samples are added by linear extrapolation. Now there is 

complete 'data control' within the entire area of definition. 

The B-splines made from this new set of samples are shown in 

Fig. 8d). The volume is now correct. 

Fig. 9 

Example of volume logic build-up with global areas of definition. 

Fig. 9a) shows the volume to be made (hatched area) and the interfaces 

and their global areas of definition. 

The volume Vl (Fig. 9b)) is made with the procedure described in 

Section 2.4, but global areas of definition have been used. 

The same procedure used from bottom and upward produces the volume V2 

shown in Fig. 9c). 

Fig. 9d) shows the volume V3 defined by the volume area of 

definition. 

The final volume V is the intersection of the three volumes: 

V = Vl n V2 f\ V3 

Fig. 10 

Example of volume that can not be represented by means of the 

volume logic described in section 3.4 and Figure 9. With this 

volume complexity, a separate area of definition must be made for 
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each interface-volume pair. The volume can then be represented 

by means of the logic described in section 2.4. 

The hatched area in Fig. lOa) indicates the volume that shall 

be represented. The procedure of section 3.4 produces the 

volume shown in Fig. 10 b). 
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Fig. 5 b 
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