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VII.8 A new technique for 3-component seismogram analysis 

The individual seismograph stations of global networks always 

include three-component instrumentation for the very simple 

reason that the seismic wavef ield comprises both vertical and 

horizontal ground motions. Seismologists have for may years suc­

cessfully exploited the information potential of three-component 

records for wave propagation modelling, retrieval of structural 

information (imaging) ans source parameters, but these efforts 

have mainly been confined to the low frequency (less than 0.2 Hz) 

part of the wavefield. Much effort has been invested in 

extracting similar information in the high frequency band, say 

1-10 Hz, but efforts generally have met with little success. The 

reason for this appears to be twofold: 

1) High frequency records are rather complex due to scat­

tering, mode conversions and multipathing. 

2) The techniques of analysis often fail to produce wave­

field parameters in an easily interpretable format. For 

example, a common procedure is to produce many particle­

motion plots which generally are difficult to interpret. 

In this section we present a new approach for extracting wave-

f ield parameters, based on~ priori models for P and S wave par­

ticle motions. Special attention has been given to the problem of 

presenting results in an easily interpretable manner for 

extracting signal parameters convenient for a wide variety of 

research applications. This has provided some remarkable results 

using data from the NORESS array, which were presented in the 

previous Semiannual Technical Summary (Christoffersson et al, 

1985). 
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Structure of 3-component registrations 

Both P and S waves exhibit a high degree of linear polarization. 

Ground particle motion coincides with the azimuth of propagation 

for the P phases. Surface waves of the Rayleigh type are 

generally elliptically polarized in the vertical-radial plane, 

the fundamental modes displaying retrograde particle motion and 

the higher modes prograde ellipticity. Surface Love waves are 

also found to be rectilinearly polarized, but in a horizontal 

plane orthogonal to the direction of wave propagation. Micro­

seismic background is of the Rayleigh type, but with little pre­

ferred directionality. Signal-generated noise may also be 

polarized, although the direction of polarization is often random 

in nature. Using these various characteristics of polarized par­

ticle motion trajectories, we proceed in the following way: 

Notations: 

y(t) = [y1(t), yz(t), y3(t)]* 

is the observed 3-component data vector where YI is the north 

component, yz the east and y3 the vertical. The asterisk denotes 

the transpose. 

is a k-dimensioned representation of the signal. 
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A.11 ••• "-lk 

A 

A.31 "-3k 

is a matrix of unknown constants relating the signal to the 

observed 3-component data. 

e:(t) = [q(t), e:2(t), e:3(t)]* 

is the noise vector. 

Model 

We assume that the observed data vector y(t) allows the following 

representation 

y(t) = A(t) ~ e:(t) (1) 

with the following basic assumptions: 

i) z(t) and e:(t) are orthogonal (uncorrelated) 

ii) e:(t) has expectation zero 

iii) the components of z(t) are linearly independent, i.e., 

the signal is k-dimensional 

iv) all moment up to at least second order exist. 

From these assumptions it follows that the zero-lag second order 

moments of y(t) can be written 

E(t) = A ~(t) A* + W(t) (2) 

I 
I. 
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where E(t) = E [y(t) y(t)*] 

Q>(t) = E [z(t) z(t)* J 
'Y(t) = E [e(t) e(t)*] 

Integrating (or averaging in discrete time) eq. (2) over a time 

window To < t < T we obtain the following, second-order structure 

E = A Q> A* + 'Y 

T 
E = J 

To 

T 
<I> = J 

To 

T 
'Y = J 

To 

E(t) dt · [T-~o+l 

Q>(t) dt · [T-~o+l 

'Y(t) dt = [-
1

-
T-To+l 

T E(tJ I 
t=To 

T ~(tJ l 
t=To 

Eq. (3) is the ordinary factor analysis model. 

(3) 

Before discusisng the estimation of the unknown parameters, 

usually based on the second order measurements, some details on 

the P and S wave representations will be given - at this time the 

surface wave representations are excluded. 

Body wave representations 

For P-waves the signal is !-dimensional and will be written as: 
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Y! (t) A.11 z1(t) + EI (t) 

Y2(t) A.21 z1(t) + e:2(t) (4) 

Y3(t) = A.31 z1(t) + e:3(t) 

In terms of the second order structure we have 

A l A.11 l A.21 

A.31 

signal power = (1 x 1 matrix) 

~ = covariance matrix of the noise. 

For P-waves the second order moments would be: 

(5) 

where (given rotated in z, T, R) 

l ~ll ~ and 

A.31 ~ 

In the case of S-waves the signal is 2-dimensional, with SH and 

SV components. 

I. 

I 

I 

i 
I· 



- 91 -

Yl (t) = i\.11 z1(t) + A.12 z2(t) + q(t) 

Y2(t) = i\.21 z1(t) + i\.22 z2(t) + £2(t) (6) 

y3(t) = 0 • z1(t) + i\.32 z2(t) + £3(t) 

----- ------------ ------- ------ - --------- -- -- -

where z1(t) is the SH component and z2(t) the sv component. 

In terms of the second order structure we have 

of SH 0 

A = i\.21 i\.22 and <I> 
[ •11 

0 

•12 l 
i\.32 

[ :ower 
power of 

with the columns of z being orthogonal. 

In this case, the second order moments would be: 

~s = As <l>s As* + W (7) 

where (given rotated z, T, R) 

and 
( 

<1>11 0 ) 

0 <1>22 

As 
( 

0

0 

i\.21 
~12 ) 

i\.32 

and sgn(i\.12) = sgn(i\.32). 

The first column in As is the SH component with signal power 

<1>11, the second is the SV component with signal power <1>22• 

Estimation 

sv] 

For a 3-component station, the ~·s in eqs. (5) and (7) are sym­

metric 3x3 matrices having at most 6 different elements. In order 

to make the covariance structures identified, we can have at most 
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6 unknown parameters in A, $ and W, so we must introduce some 

restrictions. Firstly, we will normalize the non-zero element in 

the $-matrices to be equal to 1 which is actually not a restric­

tion. Secondly, we assume that the W-matrix is diagonal, i.e., 

the noise is assumed to have no zero-lag correlation. Further, in 

some cases we will use the additional restriction that W is pro­

portional to some known diagonal matrix Wo, i.e., W = 0 Wo• 

The estimation of the unknown parameters will be based on the 

observed second order moment of the observations over a time 

window 

1 T 
s =--- l y(t) t(t)* 

t=To 
(8) 

T-To+l 

There are several possible estimators that can be used. Most are 

based on some fitting function, i.e., minimizing the difference 

between the observed S and the theoretical E. 

The most commonly used are 

i) ML (MAXIMUM LIKELIHOOD) 

This estimator is derived from Gaussian assumptions and 

minimizes: 

F log IEI + tr(SE-1) - log ltil - q (9) 

where q is the dimension of the data (in this case q=3), 

and tr = the trace operator. 

1-

1 -
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ii) ULS (UNWEIGHTED LEAST SQUARES) 

This estimator minimizes: 

2 
F = tr(S-E) (10) 

i.e., the sum of squares of all the elements in S-E. 

iii) GLS (GENERALIZED LEAST SQUARES) 

This estimator minimizes: 

iv) PC (PRINCIPAL COMPONENT) 

This estimator maximizes, subject to normalizing 

conditions on A: 

F tr(A*SA) 

Properties of estimators 

(11) 

(12) 

The PC estimator leads to an eigenvalue decomposition of the 

observed moment matrix S and was suggested by Husebye et al (1967). 

It differs from the other three mainly in that it focuses heavily 

on the diagonal of S whereas the other put more weight on the 

off-diagonal. Under Gaussian's assumption, the ML and GLS estima­

tes are asymptotically equivalent and it is possible to obtain a 

statistical test for the model fit to data. ML and GLS need a 

positive definite S-matrix, whereas ULS works even with non­

grammian s. This property would point in favor of ULS because for 

strong and clear P-waves much above ground noise, the observed S-
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matrix will often be near singular. However, this problem can be 

overcome by attenuating the transverse component, i.e., by adding 

white noise. We will therefore use the ML estimator, mainly 

because of its possibility for model tests. These are of course 

strictly valid only under the Gaussian assumptions. However, as 

has been demonstrated in the applications, the tests can be 

modified to work well in practice. 

Model test 

Under the assumption of independent observations and Gaussian 

distribution, model tests can be carried out based on the ML 

estimator. We have approximately that 

(~-1) • F with ~ = (T-To+l) (13) 

is distributed as chi-square with degrees of freedom equal to 

q(q+l)/2 - number of unknown parameters. Test for the P-wave can 

then be constructed in the following way: 

2 
We assume that W = ~ I. Let FN and Fp denote the minimum of the 

fitting functions for the Noise and P models, respectively, using 

ML. 

Then (~-l)FN is approximately chi-square with 5 d.f., (~-l)Fp 

approximately chi-square with 3 d.f., and the difference 

(~-l)(FN-Fp) is chi-square with 2 d.f. Now, if data really are 
2 noise with W = ~ I, both the Noise and the P model would have 

reasonable fit to data and the drop in chi-square, i.e., 

(~-l)(FN-Fp) would not be significant. 

I 

I 

I 
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For data generated by a P-wave, on the other hand, the noise 

model would have poor fit, the drop in chi-square would be signi­

ficant and the P model would have good fit to data. 

Define 

P(P) = Probability /(3) > (N*-1) Fp 

P(N) = II x2
(S) > (N*-1) FN (14) 

P(D) = II /(2) ) (N*-1) (Fp-FN) 

We then use 

P(P) • P(PE)O) = P(P)(l-P(D)) (15) 

i.e., the "probability of a P-wave multiplied with the probabi­

lity of the P energy being larger than zero". 

This measure is rather sensitive to deviation from the Gaussian 

and independent assumptions. Also, for large N it is sensitive in 

the sense that small deviations from the P-wave model will easily 

be detected. This problem can be solved by multiplying ~ with a 

constant C(O<C<l), the size of which depends on the sampling rate 

and frequency. The actual value of C can be determined such that 

P(P) • P(PE)O) is small for noise data and large for data con­

taining P signals. Similar tests can easily be determined for S-, 

R- and L-waves. 

Concluding remarks 

The 3-component analysis techniques as described above have been 

tested on a large variety of seismic recordings and a few 

examples here will be mentioned. For the broadband records of the 

recent large Mexican earthquake (unfiltered) at HRV (Harvard, 

Mass., USA) we easily identified phase arrivals like P, PP, PPP, 
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PcP, ScP and S. The corresponding azimuth estimates deviated only 

around ± 2 deg from the true ones - thus, from a single 3-

component station record, a good initial epicenter estimate is 

feasible. Very many NORESS records have also been analyzed, and 

for teleseismic events adequate estimates of the slowness-vector 

are obtainable. In the extreme, deterministic scattering contri­

butions in the P-wave coda have been identified. Our 3-component 

analysis techniques also work quite well, particularly for P-wave 

motion, for vertical seismic profiling (VSP) records where domi­

nant signal frequencies typically are 50-100 Hz. 

Another feature of this technique is tht it works quite well for 

weak signals, which is not exactly surprising as here we exploit 

the wavef ield structure in contrast to stacking techniques where 

signal power variations over the earth's surface are used. 

One drawback with our 3-comp. analysis is pure noise triggering, 

which is attributed to some P-wave energy in the background 

noise; the so-called whispering mantle effect. Therefore, in an 

on-line event detection context 3-comp. triggering has to be 

weighted by signal power estimates say on the vertical component 

before event presence is declared. 

Finally, we consider that 3-comp. analysis should be potentially 

very useful in an "expert system" context (e.g., see Chen, 1983), 

as in this way a systematic wavefield decomposition is feasible 

I 

I 

I 
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even at relatively low SNRs, whereas conventional "signal power" 

techniques like spectral and f-k analysis become inefficient. 
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