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VII.2 Preliminary tests for surface waves in 2-D structures 

Introduction 

Surface waves at short periods (T ( 20 s), and especially the Lg 

crustal surface waves, usually exhibit complex wavetrains. For 

example, relative amplitudes of the Lg to body-wave phases observed at 

the NORSAR array were shown to be strongly path-dependent (Kennett et 

al, 1985), and large transversal motion was observed on Lg-phases pro

duced by explosive sources in the North Sea (Kennett and Mykkeltveit, 

1984). 

Lateral heterogeneities are thought to be responsible for this 

complexity, but due to the lack of methods which are available to 

model surface wave propagation in laterally heterogeneous structures, 

little of the complex wavetrains has yet been explained. In order to 

get some further insight into these surface wavetrains, we have ini

tiated a research effort aiming at comparing surface wave recordings 

at the NORSAR and NORESS arrays with results of numerical modelling, 

using a coupled mode scheme. The preliminary results presented here do 

not intend to model a realistic situation, but to check the applicabi

lity of the method, and especially t•) analyze the influence of its two 

main parameters. 

Method 

We give here an outline of a coupled local mode method, the details of 

which can be found in Maupin (1987). It is appropriate for propagation 

across 2-D structures, the angle of incidence of the waves upon the 

structure being possibly nonperpendi,~ular to the symmetry direction y 

of the structure. The wavefield is decomposed into a laterally varying 

sum of the local modes: 
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where u is a displacement-stress vector of the elastic wavefield, 
-) 
ur are displacement-stress vectors of the local modes, and (kr,p,O) is 

the local wave vector of the mode r in the cartesian coordinate system 

(x,y,z), at the frequency w. 

The lateral heterogeneity introduces a lateral variation of the wave

numbers kr, as well as energy transfers between modes expressed by 

lateral variations of the amplitude coefficients Cr· The lateral 

variations of these two quantities satisfy the equations: 
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1 j = Fqr • exp(i (kq-kr) dC) cq 
dx q:tr (kq-kr) 0 

where Fqr is an expression involving the local mode displacements and 

tensions, combined with the elastic coefficients and density in inter

face terms, and with their lateral derivatives in an integral over 

depth. 

The system (2) is transformed to yield a first-order equation in x for 

reflection and transmission matrices, which is solved numerically in x 

using a fourth-order Runge-Kutta scheme. 
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The method is tested on the continental margin model designed by 

Badal and Ser6n (1987) (Fig. VII.2.1) to calculate Love wave 

transmission by finite element method. We use an integration step in 

x of S km and a variable integration step in z of the form a<n-1) dzo 

for the n-th step, with dz0 = Q.S k.n1 and a = 1.02. In the following 

·two paragraphs, we investigate the influence on the coupling matrices 

of the precision with which the local modes are calculated, and of the 

number of modes used in the representation of the wavefield. 

Influence of the number of zones 

The local modes ltr appear free of l;iteral differentiation in the 

expression Fqr of equation (2). In order to facilitate their com

putation, it is thus possible not to calculate them at each integra

tion step in x, but to take them as constant inside zones where the 

total lateral variation of the structure is small enough for their 

shape not to vary significantly. The coarser a zoning we define across 

the laterally heterogeneous structure, the less accurate local dis

placement functions we use in the calculation of the expression Fqr' 

which in turn result in less accurate coupling matrices and local 

wavenumbers. 

In order to determine how fine the 1.oning must be, we divide the con

tinental margin of Fig. v11.2.1 into 2, S and 10 zones. The coupling 

equation is integrated with the thr1·e different zonings, using the 

local modes at a period of 20 s, calculated at the center of each zone 

by a classical Haskell-Dunkin method. The resulting local phase velo

cities of the Rayleigh wave fundamental mode are shown on Fig. 

v11.2.2a as a function of x. The phase velocities calculated at the 

center of each zone by the Haskell-Dunkin method, as well as the local 

phase velocities calculated in each of the smaller zones using the 

variational method, are shown on Fig. VII.2.2b for comparison. 
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The variational method is designed to calculate first-order variations 

of the phase velocity associated with velocity and density variations 

as a function of depth, preferably for flat layer boundaries. Equation 

( 2) treats separately the effect 011 phase velocities of sloping layer 

boundaries and velocity variations inside the layers. It gives 

obviously more accurate results than the variational method in this 

continental margin model, where the slope of the layer boundaries is 

important. 

The accuracy of the phase velocity improves significantly when using 5 

zones instead of 2, but remains stable between 5 and 10 zones. The 

number of zones required to fit a given velocity curve can be foreseen 

from the linear trend of the integrated phase velocity inside a zone. 

The proper zoning for a given model and frequency depends on the cur

vatures of the different mode phase velocity variations. The discre

pancy observed between the integrated phase velocity and the zonal 

phase velocities around x = 30 km may be related to a systematic 

discrepancy between the vertically varying velocity profile and the 

set of homogeneous layers required by the Haskell-Dunkin method to 

calculate the zonal phase velocities. 

The zoning must be designed to calculate accurately not only the phase 

velocities, but also the transmission and reflection matrices. Fig. 

v11.z.3 shows the transmission matrices for the 6 first modes of 

Rayleigh and Love waves at right angle to the continental margin when 

the modes are calculated at 20 s period for 2, 5 and 10 zones. The 

zoning has a negligible influence on the transmission matrices. The 

reflection matrices are zero whatever the zoning for this model. 

When the propagation is not at right angle to the structure, Love and 

Rayleigh waves are coupled. As the dispersion curves of Love and 

Rayleigh modes of the same harmonic rank are usually very close and 

may even cross each other, small relative errors in k produc;e large 

errors in (kq-kr), leading to a loss of accuracy in the Rayleigh-Love 
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coupling terms. The accuracy of the phase velocity has therefore a 

stronger influence on the coupling matrices in that case. 

Influence of the mode cut-off 

To be complete, the wave field repre[>entation ( 1) should include all 

the surface wave modes and body-wave terms, or the infinite set of 

modes of a structure equivalent to the spherical Earth. For practical 

reasons, we need to restrict the set of modes to those which have 

somewhere along the structure a significant energy in the frequency 

range we are studying. Except in particular cases of well-defined 

waveguides, the coupling between modes usually decreases gradually 

with harmonic rank difference and the mode cut-off is often chosen 

somewhat arbitrarily. Therefore, it is important to know which ele

ments in the coupling matrices are influenced by the drop-off of the 

higher modes. 

Transmission matrices for Love waves crossing the continental margin 

at right angle were calculated for the 6, 8 and 10 first modes at a 

period of 10 s (Fig. VII.2.4). The influence of the mode cut-off can 

essentially be inferred from on the last row and column of the matri

ces. It is clear for example that the addition of modes 9 and 10 has 

no significant influence on the transmission matrix of the first 7 

modes, including the 6th mode which is very strongly coupled to neigh

boring modes. 

The important point to note here is that the energy of the higher 

modes not accounted for is mainly fed into the coupling terms of the 

higher modes of the representation, and not systematically into the 

diagonal terms. Therefore the cut-off does not produce an upper bias 

of the self-transmission terms. 
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Conclusion 

We have shown that the coupled-local modes method can be applied to 

model wave propagation in realistic structures, needing a reasonable 

amount of lateral zones and local modes to achieve a satisfactory pre

cision in transmission and reflection coefficients. The method has 

acceptable computing times (typically 10 minutes of CPU time on the 

IBM 4381/P02 of NORSAR for the examples displayed in Fibs. VII.2.3 and 

VII.2.4). Next, we intend to apply this method across laterally 

heterogeneous structures around Scandinavia, like the North Sea Graben 

and the Tornquist-Teisseyre lineament, and compare the results of the 

modelling with surface wave data recorded at the NORSAR and NORESS 

arrays. 

v. Maupin, Postdoctorate Fellow 
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Fig. VII.2.1 Continental margin model after Badal & Ser6n (1987). 
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Fig. vrr.2.2a 
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2 zones : 
l 2 3 4 5 b 1 2 3 4 5 b 

1 99 3 6 3 5 4 86 39 27 7 9 6 
2 6 94 29 9 9 6 46 85 21 3 1 l. 
3 4 28 93 20 5 6 9 26 79 53 4 4 
4 2 13 18 95 17 0 10 14 48 76 38 2 
5 3 a 2 15 93 31 11 8 14 31 89 25 
6 5 7 a 6 29 94 9 2 2 11 22 96 

5 zones 
l 2 3 4 5 6 l 2 3 4 5 6 

1 99 4 7 3 5 4 ?3 3 43 28 6 9 7 
2 6 94 28 8 8 6 50 84 19 5 l 2 
3 5 27 93 22 3 5 8 26 78 55 4 4 
4 3 13 19 94 20 0 10 13 49 75 38 2 
5 4 7 0 17 91 33 11 8 14 31 88 26 
6 s 7 7 7 31 93 11 2 2 12 22 95 

10 zones 
1 2 3 4 5 6 1 2 3 4 5 6 

l 99 3 1 3 5 4 84 42 28 6 9 7 
2 6 94 2 ti a a 6 49 84 20 4 0 2 
3 5 27 93 23 3 5 B 21 17 55 4 4 
4 3 13 20 94 20 0 10 13 50 75 38 2 
5 4 7 u 17 91 33 11 8 14 31 89 26 
6 5 7 7 7 32 93 10 2 2 12 22 96 

Rayleigh modes Love modes 

Fig. VII.2.3 Transmission matrices in % for the 6 first Rayleigh and 
Love modes across a continental margin model, at 20 s of 
period, using 2, 5 and 10 zones. The matrix elements are 
amplitude transmission coefficients for modes which 
carry a unit energy flux. 
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l 2 J 4 5 6 

1 96 13 14 14 6 4 
2 21 73 59 21 4 2. 
3 8 52 35 . 67 21 27 
4 b 34 65 62 23 7 
5 5 17 17 24 40 84 
6 6 10 ia 14 85 44 

1 2 3 4 5 6 7 8 

1 96 12 14 14 7 5 6 3 
2 .20 73 59 21 5 l 1 2 
3 7 52 34 68 24 23 5 3 
4 5 34 65 60 21 7 10 8 
5 5 17 18 21 45 72 38 l 
6 3 6 9 0 58 4 73 30 
7 5 6 12 13 55 52 27 54 
8 8 4 a 12 13 35 48 17 

1 2 3 4 5 6 7 a 9 10 

1 96 12 14 13 7 5 6 4 3 2 ... 20 73 59 21 5 0 2 4 3 2 L 

3 6 52 34 68 24 23 6 6 3 2 
4 4 33 65 58 21 1 10 15 13 9 
5 5 17 18 22 45 72 39 2 2 l 
6 3 6 9 1 58 5 71 34 7 l 
1 6 6 12 13 55 53 28 52 10 5 
8 5 3 5 9 13 31 38 59 60 6 
q 5 5 6 9 0 16 28 39 61 5d 

10 7 1 q 15 3 5 14 25 47 80 

Fig. VII.2.4 Transmission matrices in % for the 6, 8 and 10 first 
Love modes across a continental margin model, at 10 s of 
period. The matrix elements are amplitude transmission 
coefficients for modes which carry a unit energy flux. 




