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7. 7 Statistically optimal event detection using small array 
data 

A generalization of Capon's maximum likelihood technique for detection and 
estimation of seismic signals is introduced. By using a multidimensional au­
toregressive approximation of seismic array noise, we have developed a tech­
nique to use Capon's group filter for on-line processing. Such autoregressive 
adaptation to the current noise matrix power spectrum yields-go<>d suppres­
sion of mutually correlated array noise processes. An example is shown of this 
technique as applied to detection of the a small Semipalatinsk underground 
explosion recorded at the ARCESS array. 

Nuclear explosion monitoring using seismic data is faced with the problem 
that signals of small explosions are masked by noise, and thus have to be 
extracted using features of both the noise and the signal. Small arrays appear 
to be especially suited for that purpose. This is due to the strong correlation of 
noise between different closely located receivers which gives us an opportunity 
to obtain significant noise suppression. To realize this opportunity, special 
software is needed. 

We have to solve two main problems: (1) to detect event signals, and (2) 
to classify detected signals as originating from either an explosion or an earth­
quake. The second task is very complex. The proper identification needs first 
of all estimation of signal waveform and then estimation of signal parameters 
such as onset times of different phases, power and spectral features, and so on. 
While the detection of a signal can be done in a relatively narrow frequency 
band (for example using a high frequency band only) the classification must 
in principle be based on wide band methods. This is so because bandpass fil­
tering distorts not only the noise but also the signal, thus possibly eliminating 
useful classification features. 

The problems mentioned can be formulated in terms of mathematical 
statistics, and optimal decision rules for these mathematical problems have 
to be found. The first task is to detect the signal. The time series received by 
the array has the following structure: Xt = St+ ~t, t E ... - 1, 0, 1, ... , where 
St is signal and ~t is noise, Xt is a vector of different receiver outputs. These 
outputs are observed through a moving window. Using data in the window 
we must make a decision: does it contain a signal or not. This problem can 
be solved in terms of statistical hypothesis testing theory. It is necessary to 
test hypothesis H0 : observations in the moving window are pure noise, versus 
hypothesis H1 : they comprise signal plus noise. We consider hypothesis Ho 
to be simple, but hypothesis Hi to be complex. This is because the statistical 
characteristics of noise can be measured before the signal arrival in a stage of 
adaptation, but the statistical features of seismic signals are almost completely 
unknown. 
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The problem is now to choose a decision function which would provide the 
smallest average error probability for all possible signals. This problem can 
be solved using a Bayesian approach and finite dimensional parameterization 
of the signal (Kushnir and Lapshin, 1984) (see Appendix). The decision has 
the form of an algorithm as shown in Fig. 7.7.1. It consists of a group filter 
followed by autocorrelators, calculation of a quadratic form and a trigger which 
compares the quadratic form with a threshold. The transfer function of the 
group filter is a vector described as a product of the inverse matrix power 
spectrum F-1 of the noise 6 and a vector G of phase shift factors due to 
signal delays r1 . The algorithm shown has a form which can be easily realized 
as an on-line procedure. This is mostly due to the use of multidimensional 
autoregressive (AR) estimation of the matrix power spectrum density F of 
the noise. This allows us to avoid direct inversion of spectral power matrices 
and is very convenient in an adaptive procedure (Haykin, 1979; Kushnir et al, 
1980). 

The second problem mentioned above is to estimate properly the signal 
waveform. The main purpose of this estimation is to make a correct decision 
of whether we have an explosion or an earthquake. We must do it as precisely 
as possible. The model of observation here has the following form: Xt = Gt * 
Ut +~t. where* is a sign of convolution, Ut is a signal waveform to be estimated 
- (the particle motion along the seismic ray), Gt is the transfer function on 
the path from the seismic source to the receiver. For plane waves, this vector is 
defined by time delays only. For solving the estimation problem, a conditional 
Wiener filter can be constructed. This filter minimizes the variance of the 
estimate E{( Ut-Ut) 2} under the condition that the mathematical expectation 
of the estimate coincides with the real signal: E{ ilt} = Ut. 

It so happens that the Wiener filter we are looking for consists of the same 
group filter which is used for the detection followed by a restitution filter 
(which makes it possible to obtain the signal undistorted). Capon was the 
first to propose this filter for seismic signal extraction from array data (Capon, 
1970). The complete array procedure for detection and classification is shown 
in Fig.7.7.2. We adapt to the noise matrix power spectrum by estimating its 
AR parameters and computing vector coefficients of the group filter. Then 
we perform group filtration in the moving window and detect the signal. The 
first two operations are made periodically according to the interval of noise 
stationarity. The third - group filtration - can be devised as an on-line 
procedure. After the signal is detected it must be filtered by the restitution 
filter, which refines its shape. And finally classification may be done using the 
estimates of signal parameters. 

The software designed was tested using simulated data with the aim of 
comparing its actual efficiency with the theoretical one. The results of these 
tests are shown in Fig. 7.7.3. The depicted curves are the gains in power signal-
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to-noise ratio of undisturbed optimal group filtration relative to a conventional 
beam versus the coherence coefficient of the noise. The latter is defined as 
the ratio between the largest and the smallest eigenvalues of the noise power 
spectrum matrix. We see that the mentioned gain may be very significant if 
the array noise is coherent enough. This happens in practice at small aperture 
arrays. The calculations were made for the central subarray of the NORSAR 
array. 

Highly promising results were obtained by the use of ARCESS data for 
signals from one of the smallest nuclear tests known to have been conducted 
at the Semipalatinsk test site. In Fig. 7.7.4 we display the records for four 
ARCESS channels and note that the signal is obscured by the noise. For the 
conventional beam trace (Fig. 7. 7 .5) the signal is likewise not seen, but inspect­
ing the output of the undisturbed group filter we can see the signal clearly. 
The power signal-to-noise ratio gain relative to the beam is approximately a 
factor of 70-80 and it is 140-160 when compared with a single channel. The 
trace shown is calculated using 6 matrix AR parameters of noise. We also 
used other numbers of AR parameters and the results seemed to be stable. 
Such high suppression of noise is achieved mainly due to the high correlation 
of noise records in the inner ARCESS stations (see Fig. 7. 7.4, traces AO,A3). 

Fig. 7. 7 .6 shows that the group filter used does in fact retain the shape of 
the original waveform. The first trace is a wide frequency band waveform used 
for simulating the plane wave arriving at ARCESS. These simulated data were 
processed by the group filter used for the previously shown signal extraction. 
The resulting (second) trace practically coincides with the first. So, if the real 
signal is plane wave, it will be undisturbed by the group filter in the frequency 
band from 0.5 to 5 Hz. 

The conventional method used for the detection of weak signals is the fil­
tration of the array beam in a band of optimum signal-to-noise ratio (Kv<:erna, 
1989). The two traces at the bottom of Fig. 7.7.5 show the signal filtered in 
the frequency band 2.5-4 Hz after beamforming and after undisturbed group 
filtration. The gain here is not as large as in broad band, but still exceeds a 
factor of 5 in power SNR. Fig. 7. 7. 7 (at the top) shows the same signals, but 
in another time scale. The chosen frequency band seems to be the best for 
filtering the signal after beamforming. For comparison we have plotted two 
traces at the bottom of Fig. 7.7.7 presenting the same signals filtered in the 
frequency band 3-5 Hz. 

For the detection of signals in our experiments, 4 different variants of the 
optimal detector previously described were used. All of these detectors are 
sensitive not only to the increase in trace power due to signal arrival, but also 
to changes of the trace spectrum (Kushnir et al, 1983). The first is optimal in a 
statistical sense, the second is a modification of STA/LTA using prewhitening 
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of the noise} and the last two are components of the first. Fig. 7.7.8 shows 
how the detectors work when applied to the beam and group filter outputs. 
The gain due to optimal group filtration is evident. 

The final picture (Fig. 7. 7 .9) shows the results of the signal onset time 
estimation. Estimation is performed by an algorithm based on the maximum 
likelihood method applied to the problem of estimating the moment in time 
when parameters of the AR process are abruptly changed (Pisarenko et al, 
1987).- One can see that the likelihood function maximum coincides exactly 
with the beginning of the signal. 

Conclusions 

1. Application of an adaptive optimal group filtration technique to small 
aperture arrays can provide large gains in SNR in comparison with con­
ventional beamforming due to high mutual correlation of array noise. 

2. By using AR estimation of the power noise spectrum for group filter 
adaptation, we greatly reduce time and memory needed for the adapta­
tion procedure while providing high quality of noise suppression. 

3. Optimal group filtration does not distort the signal. Thus, when seen 
in connection with 1. and 2. above, it is clear that optimum filtration 
has great advantages as a preprocessor to be applied prior to subsequent 
broad band operations such as source classification. 

In future work, it is recommended that the following studies be undertaken: 

1. To perform a large-scale experiment concerning detection and classifi­
cation capability of optimal group filtration applied to seismic signals 
recorded at NO RESS and ARCESS. Comparison of false alarm rates of 
the optimum detector versus conventional beam detectors should form 
part of this investigation. 

2. To develop algorithms for the compensation of signal frequency depen­
dent waveform distortions due to propagation in real media under the 
array. This will give us an opportunity to equalize signal waveforms in 
different array receivers and improve signal extraction at high frequen­
cies. 

3. To implement these algorithms in an operational environment at the 
NORSAR data center. 
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4. To develop algorithms for designing optimal array geometry on the basis 
of the optimal group filtration features. 

5. To use optimal group filtration for holographic investigations of the 
earth's interior using NORSAR data. 

We plan to continue further work along these lines in future co-operative 
projects between NORSAR and the Institute of Physics of the Earth, Moscow. 

A.F. Kushnir, Inst. of Physics of the Earth, Moscow 
V.I. Pinsky, Inst. of Physics of the Earth, Moscow 
J. Fyen, NORSAR 
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Fig. 7.7.1 Optimal group detector flowchart. 
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GAIN OF OPTIMAL FILTRATION 
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Fig. 7.7.5 
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APPENDIX 
Statistically optimal event detection using array data 

Let us assume that the noise tt = (ttt, ... , tmtf at the m receivers of the 
array is a multidimensional Gaussian time series with zero mean and matrix 
power spectral density F(>.), >. E [O, 211"] and that the signal is represented 
as a Gaussian scalar process µut( 0) at the seismic event source. The power 
spectral density of Ut ( 0) is denoted ge ( >.), >. E [ 0, 271"], where -0 is an un­
known vector parameter. The medium transfer functions are assumed to be 
linear. Then the observations Xt = (xit, ... , Xmtf become multidimensional 
Gaussian time series and have the form Gt * µut + tt and it is easy to write 
down the likelihood function w(XN I µ, 0) for the moving window observa­
tions XN = (xf, ... ,x'hf. Here Gt= (Gtt, ... ,Gmtf is the vector impulse 
response function of the media along the paths from the seismic source to the 
receivers; * is the sign of convolution. Then the hypothesis Ho is that µ = 0 
and hypothesis H1 is that µ f 0. We consider the function w(XN I 0) to be 
known through adapative esitmation. If the unknown signal parameters have 
an a priori distri bu ti on P( 0), then the best (Bayesian) test for testing these 
hypotheses (providing the least average signal miss probability for a given false 
alarm probability) has the form: 

where 

(X ) = { 1 (signal is present) if p(XN) > ko: 
q N O (signal is absent) if p( XN) < ko: 

p(XN) = f w(XN I µ2,0) dP(0) 
le w(XN I 0) 

(1) 

(2) 

Here, ko: is the detection threshold, determined on the basis of the given false 
alarm probability a. 

It is practically impossible to devise an on-line algorithm on the basis of 
the statistic (1) when the distribution P(0) is arbitrary. But in the important 
particular case of weak signal detection, where the SNR, µ 2 / 0'2 , is sufficiently 
small and the moving window size N is sufficiently large, the statistic p(XN) 
can be simplified. As it is shown in Kushnir and Lapshin (1984), if the like­
lihood ratio w(XN I 1../N, 0)/w(XN, 0) in (2) is replaced by its exponential 
approximation, i.e., the statistic p(XN) in (2) is replaced by the more compu­
tationally convenient statistic 

(3) 

the asymptotic error probability limits for the test (3), µ 2 = 'Y /N, N -+ oo, 
stay constant. 
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The functions 6.(XN, 0) and rN(0) in (3) have the following forms 

where 6.( XN, 0) is an asymptotically sufficient statistic of the observations 
XN, and 

rN(0) is the Fisher information quantity, divided by N, 

G(.X) is the Fourier transform of Gt, 

Xj = )& '2:~ 1 Xt exp(i>.jt) is the discr~te Fourier transform of the obser­

vations XN, 

\ 2 . 
"j = N7rJ, 

F( .A) is the matrix power spectral density of the noise et. 
For calculation of the integral (3) in analytic form we will assume that: 

p 

ge(.X) = 1 + L Ckcosk.X, 0 = (c1, .. . ,cp? (4) 
k=l 

where Ck = 2E { UtUt+d IE { un is the autocorrelation of the source signal. 

We further assume that the a priori distribution P(0) in (3) is Gaussian: 

dP(0) = {(27rl detB}- 1!2 exp{-~(0 - b?B-1(0- b)} (5) 
2 

Then we have 

where J( is a constant independent of XN, 6. = (6.i, ... ,6.p)T, 

N 

6.o = _1_ '"""I W'." x. 12 -V 
2'N~ J J J 

V lV J=l 
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6 = (61, ... ,Dp)T 

1 N 
Dk = -L: Vj2 cos(k>.j) 

4N i=l 

A= (f + ,-2B-1 ) =(Bf+ ,-2 J)-1 B 

1 N 
r = [ NL Vj2 cos(m>.j)cos(n>.j); m, n E 1, P] 

4 j=l 

Thereby, the asymptotically optimal Bayes test for array detection of seis­
mic signals with unknown spectrum is: 

( ) = { 1 (signal is present) if r,,(xN) > ka 
q,, XN O (signal is absent) if r,,(xN) < ka 

(7) 

where the threshold ka is determined on the basis of the given false alarm 
error probability, and the fitting parameter 'Y is determined so as to provide 
the highest asymptotical efficiency for the test (Kushnir et al, 1983). 

Let us consider in particular two important (diametrically opposite) cases, 
where: 

1. The power spectrum parameters of the source signal are almost known: 

II B II < < 11 r-1 
11 

2. The a priori information about these parameters is negligible: 

II B 11 > > 11 r-1 
II 

In these cases, the statistic r,,(xN) of the test (7) is simplified and looks 
like, respectively: 

1) rl(XN) 

2) r2,,(XN) 

~o +bT ~ 

'Y(~o - ~Ta)+~ ~Tr-1~ 
2 

(8) 

Calculation of the test statistic (8) can be realized in the time domain as 
shown in Fig. 7.7.1. 
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