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7 Summary of Technical Reports I Papers Published 

7 .1 Statistical optimization of seismic holography algorithms for 
array data processing 

In this paper we describe the application of statistical parameter estimation theory to the 
problem of locating weak seismic radiation sources in the lithosphere. The radiation may 
have two origins. The first is scattering generated by an earthquake or other type of source. 
These scattered seismic waves are to be extracted from the background primary waves. 
The other origin is a weak seismic emission in the medium. The problem of mapping of a 
weak seismic radiation source's spatial distribution on the basis of seismic array data pro­
cessing is called seismic holography. 

Theory 

The seismic fields (t, P> measured on the smface may be given as the sum of the "signal" 
field, produced by the source, located in the medium at point r, and the residual field 
Tl (t, p) : 

+oo 

s(t,p) = f µs(t-r)G(r,i-,p}dr+T)(t,p) (1) 

-oo 

where j) is the point on the smface, µs (t) is a scalar waveform generated by the source at 
point r, G (t, r, j)) is the Green function of the medium, and µ is a scaling factor. Accord­
ing to eq. (1), the multidimensional time series x1 = (s(tlf

8
,p1), ••• ,s(tlf

8
,pm)) (x1 is a 

column vector) recorded by one-component array sensors has the following structure 

00 

x1 = I µs1_ Ji1 {r) + tj1 = µs,* h1 (r) + tj1, (t e 1, N) (2) 
1=0 

where s, = s (tlf
8
), hr (r) = G ( r, r, p1), i e 1, m is a column vector of the medium's 

impulse response for the seismic wave propagating from the source at point r to the sen­
sors at points p1; ~' is the "noise" time series, generated by other sources located away 
from point r; fs is the sampling rate and * denotes convolution. In the case of scattering, ri, 
contains strong components generated by the primary wave, and may therefore influence 
the estimation of scattered wave power. 

In most cases there is no a priori information about the source waveform and the "noise" 
field features. So from a statistical point of view it is reasonable to assume the scalar pro­
cess s1 and the vector process ~ 1 to be realizations of Gaussian stationary time series with 
zero mean and power spectral densities<!> (A.) and F (A.), respectively. Under the additional 
assumption that s 1 and ~ 1 are statistically independent, the matrix spectral density of the 
time series 11 becomes: 
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,,. ,,. * 
Fx (A., 0) = 0<j> (A.) hr (A.) hr (A.)+ F

11 
(A.), A. e [0, 27t] 

0 = µ2 
27t (3) 

f <!>(A.) dA. = 1 
0 

where 
00 

hr (Id L h1 (r) e
0

" 

I= 0 

is the vector response of the propagation paths from point r to the array sensors; e is the 
power of the seismic source at point rand A. = 2nf Ifs is a normalized frequency. 

For simple reference models, hr (A.) may be computed by solving the "direct" seismic 
problem. With reference model of the medium, we mean the model which determines the 
main features of the seismic wave propagation without accounting for the inhomogenei­
ties which are to be detected by the analysis of the scattered waves. This means that in 
equation (2), we ignore the effect of secondary scattering of the seismic waves caused by 
the inhomogeneities. 

Equations (2) and (3) allow consideration of the problem of locating seismic scatterers as 
the statistical problem of source power 9 estimation, which is successively solved for 
each point of the "scanned" medium area (Troitsky et al, 1980). Under the assumption 
that the power spectra<!> (A.) and F (A.) are known, statistically optimal algorithms may be 
proposed for this estimation problem. But in practice these assumptions are never fulfilled 
and these algorithms must be modified to make them efficient also when we do not have 
full information about statistical features of the observations. 

Statistically optimal algorithms for estimation of the seismic source power 0 may be 
developed using the maximum likelihood method (in its asymptotical modification). 
Using the Bartlett formula (Bartlett, 1951) for inversion of the matrix in equation (3), we 
obtain: 

(4) 

For the maximum likelihood estimate SN of the power of a seismic source, located at point 
r, Kushnir (1989) shows that the following equation holds: 

(5) 
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.. t -I _,. .. t -1 .. 
where ljl. = ljl(A..), Z

1
. = hr (A..)Fn (A..)Xj, V

1
. = V(A..), V(A.) = hr (A.)Fn (A.)hr(A.), 

J J . J J J 
N ·;._ 

Xi = ( 1 I (JN>) I x/ l. A.i = 2rtjl N, N is the number of observations, and t denotes the 
j=l 

Hermitian conjugation. 

Equation (5) must in general be solved by numerical methods, but in some practically 
important cases the solution may be written in "closed" form. Namely, if the source 
power is much less than the "noise" power, then from (5) the following approximate solu­
tion may be obtained (Kushnir, 1989): 

N (1z~2 l) "<j>.V. - - -
- .~ J J v~ v. 
e _J=l J J 

N - N 

'° <j>~V~ 
~ J J 
j=l 

(6) 

This is a consistent and asymptotically normal estimate, but it has larger variance than the 
exact solution of equation (5). 

Estimates based on solving equation (5) do not provide answers to the problem of map­
ping of scattered seismic radiation sources formulated in the inu·oduction, because such 
estimates assume that the power spectrnm F n (A.) of the "noise" and source waveform 
power spectrum <!>(A.) are known. It can be shown that the information about F n (A.) is 
very important because F n (A.) determines the statistical prope1ties of all power e estima­
tors. When Fn (A.) is unknown, it is reasonable tq_ use the adaptive approach. In that case, 
Fn (A.) in equations (5) and (6) is substituted by Fn (A.) derived from the observations 
themselves. But in the first of the problems outlined in the introduction, it is impossible to 
consistently estimate Fn (A.) from observations. Often the same is trne for the second 
groblem. Substituting for Fn (A.) in the expressions (5) and (6), any consistent est~mate 
F x (A.) of the matrix power spectrnm of the observations xi yields, values eN and eN 
approaching zero in probability. In other words, adaptation of the estimates in expressions 
(5) and (6) is impossible. 

Nevertheless, the solution of the problem under the assumption of full a priori information 
about the observations' statistical features is useful. It allows us to find the important sta­
tistic, which is contained in all statistically optimal algorithms for ruTay data processing. 
This statistic is the output of the optimal group filter (OGF): 

Yt = i·,*.t, t,j E 1, N 

where 
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_. 
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R (I ... ) = _!_ ; vi 

27t 

r1 = (I I (27t)) R ('A) e' d'A J.... "'At 

0 

November 1991 

(7) 

If the input time series x1 fits the observational model (2), (3), then it is easy to show that 
the filter R. 0 .. ) minimizes the mean square value of the output noise component provided 
the signal component is undistorted. The remarkable feature of the filter R. (A.) is that 
replacement in the expression (7) of the unknown spectral matrix F n (A.) of the noise by 
the spectral matrix F x (A.) of the observations, does not change its output: it keeps the sig­
nal undistorted and minimizes the noise component power. The new filter 

K('A) = (8) 

h t ('A) F~1 ('A) h ('A) 

is equivalent to the filter given by equation (7). This can be shown using Bartlett's formula 
( 4). Due to this property, each statistic, depending only on the output of OGF, has the 
adaptive feature. This means that in this statistic we may substitute instead of the unknown 
noise matrix power spectrum F 

11 
(A.) any consistent estimate F x (A.) of the matrix power 

spectrum of the observations x1, thus providing the adaptive (AOGF) filter k (A.). 

Let us now consider some practically interesting modifications of OGF R. (A.) • In the case 
when the noise field mainly consists of coherent primary waves, generated by a seismic 
source, the matrix spectrum F 11 (A.) may be written in the foim: 

(9) 

where F
8 

(A.) is the matrix power spectrum of the "diffuse noise" component, e is a scal­
ing factor, 'If (A.) is the scalar power spectrum of the primary waveform, and 
q (A.) = (qe (A.) ,1 e 1, m) is the frequency response of the medium for the primary wave 
paths from the source to the atTay sensors. Using the Baitlett formula ( 4) it is easy to show 
that for the matrix spectrum (9), OGF R (A.) has the form: 

ht ('A) B ('A) 

ht ('A) B ('A) h ('A) 

(10) 

where 

11°A. (c) II~ 0 if c~O 

I is the identity matrix. 
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ll:l<A.) II is the norm of the vector function/'. So if the "diffuse" components of the noise 
and signal fields are weak and hence the matrices F~1 

(A.) and F~ 1 (A.) are close to singular, 
it is reasonable to use the stable form of OGF with frequency response Ro (A.) • 

In the opposite particular case, when the noise field is purely "diffuse", i.e., it may be 
modeled as white noise, the matrix power spectrum F 11 (A.) = o2 (A.) I and 

R Ct..> (11) 

The undistorted group filter r (A.) is the mathematical expression for the conventional 
algorithm of seismic holography (Troitsky, et al, 1980), comprising the "focusing of rays" 
radiated from a given point r of the scanned medium area. It compensates for the phase 
and amplitude distortions of the ruTay records caused by the wave propagation from the 
source to the array sensors. 

N 

Let us consider the dispersion S~ = 1 L, y~ of the group filter R.0 (A.) output y1, re 1, N. In 
I= 1 

case the input .X, has a matrix power spectrum described by the formulas (3) and (9), the 
property of the matrix B (A.) : B (A.) q (A.) = O yields: 

P - lim oi = e + ~e 
N~oo 

(12) 

where ~e ~ O if E ~ O. So if the "diffuse" noise (caused, particulru·ly, by scatterers located 
away from point r) is small enough, the statistic S~ provides a consistent estimate of the 
scattered wave source power, thus suppressing the array noise generated by the primary 
wave. The OGF K (A.) (8) has the same important feature. And, finally, it is clear that the 
relation (12) is valid for the adaptive filter K (A.) • 

Thus, in the case of coherent noise, the problem of consistent estimation of the seismic 
wave power radiated from point r can be solved rather effectively by using OGF Ro (A.) or 
AOGF k(A.). 

At the same time, the conventional holographic group filter r (A.) cannot suppress the 
coherent noise and does not provide a consistent estimator of the seismic wave power 
radiated from point r .This is so because the dispersion of the holographic filter r (A.) out­
put (when the input x1 matrix power spectrum is defined by (3) and (9)) does not tend to 
the seismic wave power radiated from the point r when the "diffuse" noise component 
decreases. 

Results of simulation 

The benefits of using the optimal statistical algorithms for mapping of scattered wave 
sources have been analyzed by computer modeling. The records of a Hindu Kush earth­
quake on 22 February 1972 with magnitude 5.6 recorded by NORSAR have been used in 
this modeling. To check the algorithm's capability to process data recorded at arrays with 
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a small number of sensors and a small aperture, the six sensors of the central NORSAR 
subarray OlA have been chosen. The location of these sensors are shown in Fig. 7.1.l, and 
a record of the Hindu Kush earthquake is shown in Fig. 7 .1.2. 

The numerical experiments consisted of processing data from the six sensors of the central 
NORSAR subarray OlA. The data were composed as a sum of primary and scattered 
waves. As primary waves we have tested two cases: 1) observed array records of the 
Hindu Kush earthquake; 2) A plane P-wave with an apparent velocity and azimuth corre­
sponding to that of the Hindu Kush earthquake. The modelling of this plane wave was 
done to check how the deviation from a plane wavefront affects the quality of the seismic 
holography algorithms. The scattered wave was simulated as a P-wave radiated from a 
point source located in a homogeneous medium 4 km beneath the NORSAR central subar­
ray. The source waveform s1 of the simulated scattered wave was synthesized as a sample 
function of the stationary Gaussian random process with power spectrum estimated using 
the Hindu Kush earthquake P-wave record. 

In Figs. 7 .1.3-7 .1.5 the results from processing four different data sets are depicted. The 
array data sets were the following: 

a. The simulated plane wave from the Hindu Kush direction 

b. The sum of a) and the simulated scattered wave from the point source beneath NOR­
SAR 

c. The original Hindu Kush earthquake records 

d. The sum of c) and the simulated scattered wave from the point source beneath NOR­
SAR. 

The power of the scattered wave was equal to that of the primary wave. 

In each of the four experiments the airny signals were processed by the following algo­
rithms: a) the conventional algorithm of seismic holography based on the filter r {A) (11 ); 
b) the statistical algorithm based on the adaptive group optimal filter K (A) (8) with the 
power spectral density inverse matrix F~ 1 (A) estimated by the multidimensional autore­
gressive modeling of the observations .t1 ; c) the statistical algorithm based on the undis­
torted group filter R. 0 (A.) (10), in which the vector q (A.) was chosen in correspondence 
with the plane wave with the azimuth and apparent velocity of the Hindu Kush earthquake 
P-wave. 

The data processing procedure consisted of scanning, with steps of 0.8 km an 8 x 8 km 
plane parallel to the smface containing the scattered wave source in the central point. For 
each point scanned, the medium frequency response vector h,. (A.) was computed under the 
assumption of medium homogeneity. By this, the adjustment of the group filters for the 
extraction of the scattered wave radiated from the given point was provided. Then the fil­
ter output signals and their dispersion estimates were computed. As was pointed out, the 
dispersion of the outputs of all filters under investigation may be used as the estimates of 
the scattered wave power radiated from the given point. These estimates are biased 
because of primary wave power "leakage", and these biases have different values for the 
different filters. 
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The number of samples of the input vector time series .l:1 was as a rule equal to 128 in 
these experiments, and coJTesponded to the Hindu Kush earthquake P-wave record length. 
The matrix power spectrum Fx (A.) of the observations .X1 used for the undistorting group 
filter adaptation was estimated by multivariate AR-modeling of order 5. 

In Figs. 7.1.3-7 .1.5 the scattered radiation power maps are depicted. They are calculated 
as the results of the numerical experiments described, with the conventional holographic 
filter (11) (Fig. 7.1.3), with the adaptive optimal group filter (7) (Fig. 7.1.4), and with the 
"spatial rejecting" filter (10) which uses the a priori information concerning the propaga­
tion direction of the primary wave (Fig. 7.1.5) .. 

In these figures, the maps with label (a) are the results for the single simulated primary 
wave processing, with label (b) the results for the sum of the simulated primary wave and 
the simulated scattered wave processing, with label (c) the results for the Hindu Kush 
eatthquake P-wave processing, and with label (d), the results for the sum of the Hindu 
Kush ea1thquake P-wave and simulated scattered wave processing. 

Comparison of the maps in Fig. 7 .1.3 shows that the conventional algorithm of seismic 
holography applied to processing of data from atTays with a small ape1ture and small num­
ber of sensors does not provide detection of the scattered wave. This may be explained by 
the effect of the primary wave power "leakage", practically evenly strong for all points of 
the scanned area. At the same time, as it is seen from Figs. 7.1.4 and 7.1.5, the statistical 
seismic holography algorithms provide strong peaks in the power maps, the maxima of 
which coincide with the point of the scattered wave source location. The explanation may 
be that the mentioned algorithms are capable of suppressing "leakage" by the mutual 
compensation of primm·y wave components at the different atTay sensors. The adaptive 
and .. a priori .. algorithms demonstrate the same ability for the suppression of the primary 
wave "leakage" and location of the scattered wave source, while in the case of detection 
of the scattered wave on the background of the Hindu Kush emthquake, the adaptive opti­
mal group filter (Fig. 7.l .4d) has appem·ed more effective than the "a priori" filter (Fig. 
7 .1.5d). The advantage of the optimal group filter over an "a priori" filter in this experi­
ment may be explained by the deviations of the Hindu Kush ea1thquake signal from a 
plane wave. This deviation significantly reduces the pe1formance of the filter R. 0 (A.) (10). 
At the same time, for the adaptive filter k (A.) no assumptions m·e needed about the pri­
mary wave front shape, which makes it more flexible and effective. 

A.F. Kushnir, E.A. Gulko, MITPAN, Moscow 
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Fig. 7.1.1. NORSAR central subarray (OlA) geometry. 
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Fig. 7.1.2. Hindu Kush earthquake recordings at subarray OlA. 
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Fig. 7.1.3. Array data processing using conventional holographic group filter. (a) Simu­
lated plane wave from eruthquake; (b) simulated earthquake plane wave + simulated scat­
tered wave; (c) P-wave of the Hindu Kush earthquake; (d) Hindu Kush eruthquake P-wave 
+ simulated scattered wave. The contour levels reflect the estimated power of waves arriv­
ing from different points of the scanned plane. The power estimates ru·e not normalized, 
hence only relative values within each map should be considered. 
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Fig. 7.1.4. A1rny data processing using adaptive optimal group filter: (a) Simulated plane 
wave from earthquake; (b) Simulated earthquake plane wave+ simulated scattered wave; 
(c) P-wave of the Hindu Kush eatthquake; (d) Hindu Kush earthquake P-wave +simulated 
scattered wave; (e) the same as (b) but for N=1024, p=lO. 
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Fig. 7.1.5. An-ay data processing using spatial rejecting filter: (a) Simulated plane wave 
from earthquake; (b) Simulated earthquake plane wave+ simulated scattered wave; (c) P­
wave of the Hindu Kush ea1thquake; (d) Hindu Kush earthquake P-wave + simulated scat­
tered wave. 
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