Semiannual Technical Summary

1 April - 30 September 1994

Kjeller, November 1994

REPORT DOCUMENTATION PAGE				
ia. REPORT SECURITY CLASSIFICATION Unclassified	1b. RESTRICTIVE MARKINGSNot applicable			
2a. SECURITY CLASSIFICATION AUUTHORITY Not Applicable. b DECLASSIFICATIONIDOWNGRADING SCHEDULE	3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; distribution unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) Scientific Rep. 1-94/95	5. MONITORING ORGANIZATION REPORT NUMBER(S) Scientific Rep. 1-94/95			
Sa. NAME OF PERFORMING ORGANIZATION 6b. OFICE SYMBOL (If applicable) NFR/NORSAR.	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (City, State, and ZIP Code) Post Box 51 $\mathrm{N}-2007$ Kjeller, Norway	Patrick AFB, FL 32925-6001			
Ba. NAME OF FUNDING / SPONSORING ORGANIZATION Advanced Ab. OFFICE SYMBOL ('f applicable) Research Projects Agency NMRO	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract No. F08606-89-C-0005			
BC. ADDRESS (City, State, and ZIP Code)3701 N. Fairfax Dr. \#717Arlington, VA 22203-1714	10. SOURCE OF FUNDING NUMBERS			
	PROGRAM ELEMENT NO. R\&D	$\begin{gathered} \text { PROJECT } \\ \text { NO NORSAR } \\ \text { Phase } 3 \\ \hline \end{gathered}$	TASK ${ }^{\mathrm{NO}} \mathrm{SOW}$ Task 5.0	WORK UNIT AGSESquN NA No No 004A?

11. TITLE (Include Security Classification)

Semiannual Technical Summary, 1 Apr - 30 Sep 1994
12. PERSONAL AUTHOR(S)

16. SUPPLEMENTARY NOTATION

COSATI CODES			
17.			
FIELD	GROUP	SUB-GROUP	
-8	11		

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

NORSAR, Norwegian Seismic Array
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This Semiannual Technical Summary describes the operation, maintenance and research activities at the Norwegian Seismic Array (NORSAR) , the Norwegian Regional Seismic Array (NORESS), the Arctic Regional Seimsic Array (ARCESS) and the experimental Spitsbergen Regional Array for the period for the period 1 April - 30 September 1994. Statistics are also presented for additional seismic stations, which through cooperative agreements with institutions in the host countries provide continuous data to the NORSAR Data processing Center (NDPC). These stations comprise the Finnish Experimental Seismic Array (FINESS), the German Experimental Seismic Array (GERESS), and an experimental regional seismic array in Apatity, Russia.
(cont.)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT \square UNCLASSIFIED/UNLIMITED \square SAME AS RPT. \square DTIC USERS	21. ABSTRACT SECURITY CIASSIFICATION	
		22c. OFFICE SYMAROAC/TTS

83 APR edition may be used until exhausted. Allother editions are obsolete.

- SECURITY CLASSIFICATION OF THIS PAGE

Abstract (cont.)

This Semiannual Report also presents statistics from operation of the Intelligent Monitoring System (IMS). The IMS has been operated in an experimental mode, with continuous automatic detection and location and with analyst review of selected events of interest. Since October 1991, a new version of the IMS that accepts data from an arbitrary number of arrays and single 3 -component stations has been operated.

The NORSAR Detection Processing system has been operated throughout the period with an average uptime of 99.3% as compared to 98.3% for the previous reporting period. A total of 2015 seismic events have been reported in the NORSAR monthly seismic bulletin. The performance of the continuous alarm system and the automatic bulletin transfer by telex to AFTAC has been satisfactory. The system for direct retrieval of NORSAR waveform data through an X. 25 connection has been used successfully for acquiring such data by AFTAC. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

Since 1 October 1991, an effort has been undertaken to carry out a complete technical refurbishment of the NORSAR array. This project is funded jointly by AFTAC, ARPA and NFR. During the reporting period, all the new Science Horizons data acquisition hardware and software have been acquired and delivered. See NORSAR Sci. Rep. No. 2-93/94 for a system description. The data acquisition software XAVE and communication interface module CIM II were installed on 5 October 1994 at NDPC. At subarray 06C, a CIM II was installed in the Central Terminal Vault -- CTV -- and an AIM24-1 has been installed in one remote SP vault (SPV) for testing purposes. The data acquisition is running satisfactorily. Contractual arrangements for the delivery of "posthole" KS54000 seismometers have been completed.

As an intermediate step in the NORSAR Refurbishment, a modified version of the NORSAR data acquisition system was implemented on 1 January 1994. This modified version has continued to be in operation during the reporting period. The main reason for this change, which utilizes a previously established backup solution, was to circumvent some data timing problems due to deteriorating hardware. At the same time, this change has provided valuable experience in preparing the full refurbishment.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two experimental small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, have been recorded and processed in an experimental mode. Monthly processing statistics for the arrays as well as results of the IMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved testing of the NORSAR communications systems, preparations for the NORSAR refurbishment and work in connection with the experimental small-aperture arrays in Spitsbergen and Russia.

Summaries of six scientific contributions are presented in Chapter 7 of this report.
Section 7.1 is a final report on the global continuous Threshold Monitoring project, which is an effort to develop and implement a prototype, workstation-based Threshold Monitoring System for the GSETT-3 International Data Center (IDC). The main focus of this work has been to develop an environment that facilitates both real-time operation as well as testing of new ideas in the context of continuous seismic threshold monitoring. The current operational system is not fully optimized with respect to processing parameters, but the framework for a stepwise improvement exists. We can as of today demonstrate the potentials of using continuous seismic threshold monitoring as part of a global seismic verification system, but some caution has to be taken during the interpretation of the derived magnitude thresholds. Further improvements will rely heavily on the possibility of conducting extensive event analysis and associated calibration efforts.

Section 7.2 presents observations of the Lop Nor nuclear explosions of 10 June and 7 October 1994. Some comparisons are also made with the Lop Nor explosions conducted on 21 May 1992 and 5 October 1993. Most of the automatic systems at NORSAR showed good performance for these events. Particularly impressive is the high signal-to-noise ratios observed at NORESS and ARCESS. Among the available sources, the most accurate location is provided by the PDE bulletin, which uses a world-wide network for location purposes. The solutions by the Intelligent Monitoring System (IMS), both automatic and after analyst processing, are also quite satisfactory. The NORSAR automatic location was acceptable for only one of the two events, but reruns gave adequate results for both.

Section 7.3 describes the results of a study to investigate the benefits of NORSAR-NORESS joint processing. As is well known, the teleseismic NORSAR array and the regional NORESS array have to some extent overlapping capabilities as far as seismic event detection is concerned. However, when it comes to locating events, the two arrays are complementary. NORSAR has a superior location capability for teleseismic events, whereas NORESS is superior for locating local and regional events. Furthermore, NORESS has the ability to unambiguously classify an event as "regional" or "local", whereas NORSAR will usually assign a teleseismic location estimate (the "best beam") to any event, whether it is of local, regional or teleseismic origin.

The study has shown that a clear improvement in the automatic NORSAR processing can be achieved by combining NORSAR and NORESS. By a simple masking algorithm, most of the NORSAR detected local and regional events can be identified as such using NORESS data. Furthermore, NORESS complements NORSAR by giving an "independent" confirmation of the majority of teleseismic phases. Even further improvements might be possible by joint beamforming techniques, although this has not been attempted in this study.

Section 7.4 contains a study undertaken in cooperation with the Norwegian Institute of International Affairs, and addressing satellite imagery in connection with the Novaya Zemlya northern nuclear test site.

Using Landsat TM images, one craterlike feature was found close to the southwestern mountain slopes of the Matochkin Shar Strait. SPOT panchromatic 10 m resolution
images were purchased, and these revealed three features, most probably craters that were created by underground nuclear explosions. This was unexpectedly confirmed when German aerial photographs of the Matochkin Shar from the summer of 1942 became available. The craters did not show up on these and thus proved that they were formed sometime after 1942.

Three digital SPOT scenes of the Novaya Zemlya northern underground nuclear test site were purchased. The pixel and line coordinates of the crater centers were measured for each of the SPOT scenes. The three separate sets of measurements were combined with their associated ancillary SPOT data. The preliminary results of geographical coordinate determination using this method are presented.

Section 7.5 describes a study of mislocation vectors. To improve the location capabilities of the small aperture arrays (Apatity, ARCESS, FINESS, GERESS, NORESS and Spitsbergen), we compared the results of the automatic fk-analysis (i.e., slowness and azimuth) with theoretically accepted values.

In a first step, we compiled a data base for the time period from 1989 to June 30, 1994, of 157,825 reference events distributed world-wide. The following sources for reference events were used: bulletins of the ISC and NEIC (monthly and weekly), regional bulletins of the seismological institutes in Bergen and in Helsinki, a special bulletin for the Vogtland earthquake swarm region, listings of well-located mining-induced events in Poland, and confirmed quarry blasts in Russia (Kola Peninsula), the Czech Republic and in southern Germany.

For all reference events, theoretical azimuth and slowness values and onset times were calculated using the IASPEI91 tables. All theoretical onsets of local and regional P and S phases and of all teleseismic P-phases were compared with detections and results of the automatic fk -analysis of all arrays.

After carefully checking associations between theoretically expected and observed onsets, 91,290 mislocation vectors could be estimated (Apatity 1,882; ARCESS 29,738; FINESS 15,482 ; GERESS 17,852 ; NORESS 26,083 ; and Spitsbergen 253). Although a large scatter was observed for single mislocations, mean mislocation vectors could be defined and estimated with their standard deviations for all arrays. The mean mislocation vectors can now be used regularly to correct automatically estimated slowness and azimuth values. The corrections and the mean standard deviations of slowness and azimuth will improve the accuracy of event locations from single arrays, GBF and IMS.

Section 7.6 is a follow-up of previous studies of the promising automatic post-processing technique for extremely precise event location in mining regions (exemplified by the Khibiny Massif in the Kola Peninsula). The contribution is directed in particular toward comparing the error ellipses of various approaches, and relating the size of these ellipses to the actual location errors, using a ground-truth data base obtained from the Kola Regional Seismological Centre. The error ellipses are found to be representative both for interactive IMS processing and automatic post-processing, but not in the case of automatic IMS analysis. The main reason in the latter case seems to be that the formal calculation of error ellipses does not take into account effects of occasional erroneous phase identification.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the Air Force Technical Applications Center or the U.S. Government.

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by AFTAC, Patrick AFB, FL32925, under contract no. F08606-89-C-0005 and F08650-93-C-0002.

Table of Contents

Page

1. Summary 1
2. NORSAR Operation 4
2.1 Detection processor (DP) operation 4
2.2 Array communications 8
2.3 NORSAR event detection operation 15
3. Operation of Regional Arrays 20
3.1 Recording of NORESS data at NDPC, Kjeller 20
3.2 Recording of ARCESS data at NDPC, Kjeller 24
3.3 Recording of FINESS data at NDPC, Kjeller 27
3.4 Recording of Spitsbergen data at NDPC, Kjeller 30
3.5 Event detection operation 34
3.6 IMS operation 61
4. Improvements and Modifications 63
4.1 NORSAR 63
4.2 Regional arrays 64
5. Maintenance Activities 65
6. Documentation Developed 68
7. Summary of Technical Reports / Papers Published 69
7.1 A system for continuous global seismic threshold monitoring 69
7.2 The Lop Nor nuclear explosions of 10 June and 7 October 1994 79
7.3 Combining NORSAR and NORESS processing 91
7.4 Epicenter location and cratering at the Novaya Zemlya 96underground nuclear test site
7.5 Mislocation vectors for small aperture arrays -- a first step towards 104 calibrating GSETT-3 stations
7.6 On the reliability of event location estimates from automatic and interactive 119 processing

1 Summary

This Semiannual Technical Summary describes the operation, maintenance and research activities at the Norwegian Seismic Array (NORSAR), the Norwegian Regional Seismic Array (NORESS), the Arctic Regional Seismic Array (ARCESS) and the experimental Spitsbergen regional array for the period 1 April - 30 September 1994. Statistics are also presented for additional seismic stations, which through cooperative agreements with institutions in the host countries provide continuous data to the NORSAR Data Processing Center (NPDC). These stations comprise the Finnish Experimental Seismic Array (FINESS), the German Experimental Seismic Array (GERESS), and an experimental regional seismic array in Apatity, Russia.

This Semiannual Report also presents statistics from operation of the Intelligent Monitoring System (IMS). The IMS has been operated in an experimental mode, with continuous automatic detection and location and with analyst review of selected events of interest. Since October 1991, a new version of the IMS that accepts data from an arbitrary number of arrays and single 3 -component stations has been operated.

The NORSAR Detection Processing system has been operated throughout the period with an average uptime of 99.3% as compared to 98.3% for the previous reporting period. A total of 2015 seismic events have been reported in the NORSAR monthly seismic bulletin. The performance of the continuous alarm system and the automatic bulletin transfer by telex to AFTAC has been satisfactory. The system for direct retrieval of NORSAR waveform data through an X. 25 connection has been used successfully for acquiring such data by AFTAC. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

Since 1 October 1991, an effort has been undertaken to carry out a complete technical refurbishment of the NORSAR array. This project is funded jointly by AFTAC, ARPA and NFR. During the reporting period, all the new Science Horizons data acquisition hardware and software have been acquired and delivered. See NORSAR Sci. Rep. No. 2-93/94 for a system description. The data acquisition software XAVE and communication interface module CIM II were installed on 5 October 1994 at NDPC. At subarray 06C, a CIM II was installed in the Central Terminal Vault -- CTV -- and an AIM24-1 has been installed in one remote SP vault (SPV) for testing purposes. The data acquisition is running satisfactorily. Contractual arrangements for the delivery of "posthole" KS54000 seismometers have been completed.

As an intermediate step in the NORSAR Refurbishment, a modified version of the NORSAR data acquisition system was implemented on 1 January 1994. This modified version has continued to be in operation during the reporting period. The main reason for this change, which utilizes a previously established backup solution, was to circumvent some data timing problems due to deteriorating hardware. At the same time, this change has provided valuable experience in preparing the full refurbishment.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two experimental small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, have been recorded and processed in an experimental mode. Monthly processing statistics for the arrays as well as results of the IMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved testing of the NORSAR communications systems, preparations for the NORSAR refurbishment and work in connection with the experimental small-aperture arrays in Spitsbergen and Russia.

Summaries of six scientific contributions are presented in Chapter 7 of this report.
Section 7.1 is a final report on the global continuous Threshold Monitoring project, which is an effort to develop and implement a prototype, workstation-based Threshold Monitoring System for the GSETT-3 International Data Center (IDC). The main focus of this work has been to develop an environment that facilitates both real-time operation as well as testing of new ideas in the context of continuous seismic threshold monitoring. The current operational system is not fully optimized with respect to processing parameters, but the framework for a stepwise improvement exists. We can as of today demonstrate the potentials of using continuous seismic threshold monitoring as part of a global seismic verification system, but some caution has to be taken during the interpretation of the derived magnitude thresholds. Further improvements will rely heavily on the possibility of conducting extensive event analysis and associated calibration efforts.

Section 7.2 presents observations of the Lop Nor nuclear explosions of 10 June and 7 October 1994. Some comparisons are also made with the Lop Nor explosions conducted on 21 May 1992 and 5 October 1993. Most of the automatic systems at NORSAR showed good performance for these events. Particularly impressive is the high signal-to-noise ratios observed at NORESS and ARCESS. Among the available sources, the most accurate location is provided by the PDE bulletin, which uses a world-wide network for location purposes. The solutions by the Intelligent Monitoring System (IMS), both automatic and after analyst processing, are also quite satisfactory. The NORSAR automatic location was acceptable for only one of the two events, but reruns gave adequate results for both.

Section 7.3 describes the results of a study to investigate the benefits of NORSAR-NORESS joint processing. As is well known, the teleseismic NORSAR array and the regional NORESS array have to some extent overlapping capabilities as far as seismic event detection is concerned. However, when it comes to locating events, the two arrays are complementary. NORSAR has a superior location capability for teleseismic events, whereas NORESS is superior for locating local and regional events. Furthermore, NORESS has the ability to unambiguously classify an event as "regional" or "local", whereas NORSAR will usually assign a teleseismic location estimate (the "best beam") to any event, whether it is of local, regional or teleseismic origin.

The study has shown that a clear improvement in the automatic NORSAR processing can be achieved by combining NORSAR and NORESS. By a simple masking algorithm, most of the NORSAR detected local and regional events can be identified as such using NORESS data. Furthermore, NORESS complements NORSAR by giving an "independent" confirmation of the majority of teleseismic phases. Even further improvements might be possible by joint beamforming techniques, although this has not been attempted in this study.

Section 7.4 contains a study undertaken in cooperation with the Norwegian Institute of International Affairs, and addressing satellite imagery in connection with the Novaya Zemlya northern nuclear test site.

Using Landsat TM images, one craterlike feature was found close to the southwestern mountain slopes of the Matochkin Shar Strait. SPOT panchromatic 10 m resolution images were purchased, and these revealed three features, most probably craters that were created by underground nuclear explosions. This was unexpectedly confirmed when German aerial photographs of the Matochkin Shar from the summer of 1942 became available. The craters did not show up on these and thus proved that they were formed sometime after 1942.

Three digital SPOT scenes of the Novaya Zemlya northern underground nuclear test site were purchased. The pixel and line coordinates of the crater centers were measured for each of the SPOT scenes. The three separate sets of measurements were combined with their associated ancillary SPOT data. The preliminary results of geographical coordinate determination using this method are presented.

Section 7.5 describes a study of mislocation vectors. To improve the location capabilities of the small aperture arrays (Apatity, ARCESS, FINESS, GERESS, NORESS and Spitsbergen), we compared the results of the automatic fk-analysis (i.e., slowness and azimuth) with theoretically accepted values.

In a first step, we compiled a data base for the time period from 1989 to June 30, 1994, of 157,825 reference events distributed world-wide. The following sources for reference events were used: bulletins of the ISC and NEIC (monthly and weekly), regional bulletins of the seismological institutes in Bergen and in Helsinki, a special bulletin for the Vogtland earthquake swarm region, listings of well-located mining-induced events in Poland, and confirmed quarry blasts in Russia (Kola Peninsula), the Czech Republic and in southern Germany.

For all reference events, theoretical azimuth and slowness values and onset times were calculated using the IASPEI91 tables. All theoretical onsets of local and regional P and S phases and of all teleseismic P-phases were compared with detections and results of the automatic fk -analysis of all arrays.

After carefully checking associations between theoretically expected and observed onsets, 91,290 mislocation vectors could be estimated (Apatity 1,882; ARCESS 29,738; FINESS 15,482 ; GERESS 17,852; NORESS 26,083; and Spitsbergen 253). Although a large scatter was observed for single mislocations, mean mislocation vectors could be defined and estimated with their standard deviations for all arrays. The mean mislocation vectors can now be used regularly to correct automatically estimated slowness and azimuth values. The corrections and the mean standard deviations of slowness and azimuth will improve the accuracy of event locations from single arrays, GBF and IMS.

Section 7.6 is a follow-up of previous studies of the promising automatic post-processing technique for extremely precise event location in mining regions (exemplified by the Khibiny Massif in the Kola Peninsula). The contribution is directed in particular toward comparing the error ellipses of various approaches, and relating the size of these ellipses to the actual location errors, using a ground-truth data base obtained from the Kola Regional Seismological Centre. The error ellipses are found to be representative both for interactive IMS processing and automatic post-processing, but not in the case of automatic IMS analysis. The main reason in the latter case seems to be that the formal calculation of error ellipses does not take into account effects of occasional erroneous phase identification.

2 NORSAR Operation

2.1 Detection Processor (DP) operation

There have been 82 breaks in the otherwise continuous operation of the NORSAR online system within the current 6 -month reporting interval. The uptime percentage for the period is 99.3 as compared to 98.3 for the previous period.

Fig. 2.1.1 and the accompanying Table 2.1.1 both show the daily DP downtime for the days between 1 April and 30 September 1994. The monthly recording times and percentages are given in Table 2.1.2.

The breaks can be grouped as follows:
a) Hardware failure 8
b) Stops related to program work or error 0
c) Hardware maintenance stops 0
d) Power jumps and breaks 0
e) TOD error correction 0
f) Communication lines 2

The total downtime for the period was 32 hours and 52 minutes. The mean-time-betweenfailures (MTBF) was 16.4 days, as compared to 1.4 for the previous period.
J. Torstveit

Fig. 2.1.1. Detection Processor uptime for April (top), May (middle) and June (bottom) 1994

Fig. 2.1.1. Detection Processor uptime for July (top), August (middle) and September (bottom) 1994.

Date	Time	Cause
22 Apr	$1827-$	Hardware failure
23 Apr	-0801	
25 Apr	$0803-0828$	Hardware failure
27 Apr	$1051-1110$	Hardware failure
02 May	$0735-0750$	Hardware failure
02 May	$1154-1159$	Hardware failure
08 May	$2239-$	Hardware failure
09 May	-0627	
10 May	$0921-0930$	Hardware failure
23 Jun	$0531-0542$	Line failure
19 Jul	$2106-0635$	Hardware failure
20 Jul	-0635	Line failure
01 Aug	$0948-1012$	

Table 2.1.1. The major downtimes in the period 1 April - 30 September 1994.

Month	DP Uptime Hours	DP Uptime $\%$	No. of DP Breaks	No. of Days with Breaks	DP MTBF* (days)
Apr 94	705.67	98.01	3	3	7.4
May 94	731.71	98.88	4	3	6.1
Jun 94	719.78	99.97	1	1	15.0
Jul 94	730.53	98.72	1	1	15.5
Aug 94	739.56	99.94	1	1	15.5
Sep 94	719.93	99.99	0	0	30.0
		99.25	98	63	16.1

*Mean-time-between-failures $=$ total uptime/no. of up intervals.
Table 2.1.2. Online system performance, 1 April-30 September 1994.

2.2 Array Communications

As described in the previous Semiannual Report, the Modcomp/SLEM-based communication system experienced serious problems toward the end of 1993.

As an intermediate solution, it was decided on 1 January 1994 to implement a backup version of the NORSAR recording system, thus eliminating the Modcomp/SLEM-based recording. This change succeeded in improving both the timing reliability and the individual subarray uptimes.

During the reporting period, the communication lines to all subarrays except 02B and 06C were in operation essentially 100% of the time. Subarrays 02B and 06C were inoperative during the last part of the reporting period in connection with testing and preparation for the NORSAR refurbishment.

The intermediate communication solution will remain in effect until the NORSAR Refurbishment project is completed.

A simplified daily summary of the communications performance for the seven individual subarray lines is summarized, on a month-by-month basis, in Table 2.2.1.

F. Ringdal

Table 2.2.1 (page 1 of 6) NORSAR Communication Status Report Month: April 1994

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	I	X	X	X	X
12	X	X	I	X	X	I	X
13	X	X	I	X	X	I	X
14	X	X	I	X	X	I	X
15	X	X	I	X	X	I	X
16	X	X	I	X	X	I	X
17	X	X	I	X	X	I	X
18	X	X	I	X	X	I	X
19	X	X	I	X	X	I	X
20	X	X	I	X	X	X	X
21	X	X	I	X	X	X	X
22	X	X	I	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
Total hours normal operation	720	7200	443	720	720	553	720
\% normal operation	100.3	1000	61.5	100	100	76.8	100

Legend :

X : Normal operations
A : All channels masked for more than 12 hours that day
B : All SP channels masked for more than 12 hours that day
C : All LP channels masked for more than 12 hours that day
I : Communication outage for more than 12 hours

Table 2.2.1 (page 2 of 6)
NORSAR Communication Status Report Month: May 1994

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	$\overline{\text { X }}$
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
$\begin{aligned} & \hline \text { Total hours } \\ & \text { normal operation } \end{aligned}$	744	744	744	744	744	744	744
\% normal operation	100	100	100	100	100	100	100

Legend :

X : Normal operations
A : All channels masked for more than 12 hours that day
B : All SP channels masked for more than 12 hours that day
C : All LP channels masked for more than 12 hours that day
I : Communication outage for more than 12 hours

Table 2.2.1 (page 3 of 6)
NORSAR Communication Status Report
Month: June 1994

Day	Subarray						
	01A	018	02B	02 C	03C	04 C	06 C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31							
Total hours normal operation	720	720	720	720	720	720	720
\% normal operation	100	100	100	100	100	100	100

Legend :

X	\vdots	Normal operations
A	\vdots	All channersm masked for more than 12 hours that day
B	\vdots	All SP channels masked for more than 12 hours that day
C	\vdots	All LP channels masked for more than 12 hours that day
I	\vdots	Communication outage for more than 12 hours

Table 2.2.1 (page 4 of 6)
NORSAR Communication Status Report Month: July 1994

Day	Subarray						
	01A	01B	02B	02C	03C	04 C	06 C
01	X	X	X	X	X	X	A
02	X	X	X	X	X	X	A
03	X	X	X	X	X	X	A
04	X	X	X	X	X	X	A
05	X	X	X	X	X	X	A
06	X	X	X	X	X	X	A
07	X	X	A	X	X	X	A
08	X	X	A	X	X	X	A
09	X	X	A	X	X	X	A
10	X	X	A	X	X	X	A
11	X	X	A	X	X	X	A
12	X	X	A	X	X	X	A
13	X	X	A	X	X	X	A
14	X	X	A	X	X	X	A
15	X	X	A	X	X	X	A
16	X	X	A	X	X	X	A
17	X	X	A	X	X	X	A
18	X	X	A	X	X	X	A
19	X	X	A	X	X	X	A
20	X	X	A	X	X	X	A
21	X	X	A	X	X	X	A
22	X	X	A	X	X	X	A
23	X	X	A	X	X	X	A
24	X	X	A	X	X	X	A
25	X	X	X	X	X	X	A
26	X	X	X	X	X	X	A
27	X	X	X	X	X	X	A
28	X	X	X	X	X	X	A
29	X	X	X	X	X	X	A
30	X	X	X	X	X	X	A
31	X	X	X	X	X	X	A
Total hours normal operation	744	744	290	744	744	744	0
\% normal operation	100	100	39	100	100	100	0

Legend :

X	$:$	Normal operations
A	\vdots	All channels masked for more than 12 hours that day
B	\vdots	All SP channels masked for more than 12 hours that day
C	\vdots	All LP channels masked for more than 12 hours that day
I	$:$	Communication outage for more than 12 hours

Table 2.2.1 (page 5 of 6)
NORSAR Communication Status Report Month: August 1994

Day	Subarray						
	01A	01B	02B	02 C	03C	04C	06C
01	X	X	X	X	X	X	A
02	X	X	X	X	X	X	A
03	X	X	X	X	X	X	A
04	X	X	X	X	X	X	A
05	X	X	X	X	X	X	A
06	X	X	A	X	X	X	A
07	X	X	A	X	X	X	A
08	X	X	A	X	X	X	A
09	X	X	A	X	X	X	A
10	X	X	A	X	X	X	A
11	X	X	A	X	X	X	A
12	X	X	A	X	X	X	A
13	X	X	A	X	X	X	A
14	X	X	A	X	X	X	A
15	X	X	A	X	X	X	A
16	X	X	A	X	X	X	A
17	X	X	A	X	X	X	A
18	X	X	A	X	X	X	A
19	X	X	A	X	X	X	A
20	X	X	A	X	X	X	A
21	X	X	A	X	X	X	A
22	X	X	A	X	X	X	A
23	X	X	A	X	X	X	A
24	X	X	A	X	X	X	A
25	X	X	A	X	X	X	A
26	X	X	A	X	X	X	A
27	X	X	A	X	X	X	A
28	X	X	A	X	X	X	A
29	X	X	A	X	X	X	A
30	X	X	A	X	X	X	A
31	X	X	A	X	X	X	A
Total hours normal operation	744	744	132	744	744	744	0
\% normal operation	100	71	18	100	100	100	0

Table 2.2.1 (page 6 of 6)
NORSAR Communication Status Report
Month: September 1994

Day	Subarray						
	01A	01B	02B	02C	03C	04 C	06C
01	X	X	A	X	X	X	A
02	X	X	A	X	X	X	A
03	X	X	A	X	X	X	A
04	X	X	A	X	X	X	A
05	X	X	A	X	X	X	A
06	X	X	A	X	X	X	A
07	X	X	A	X	X	X	A
08	X	X	A	X	X	X	A
09	X	X	A	X	X	X	A
10	X	X	A	X	X	X	A
11	X	X	A	X	X	X	A
12	X	X	A	X	X	X	A
13	X	X	A	X	X	X	A
14	X	X	A	X	X	X	A
15	X	X	A	X	X	X	A
16	X	X	A	X	X	X	A
17	X	X	A	X	X	X	A
18	X	X	A	X	X	X	A
19	X	X	A	X	X	X	A
20	X	X	A	X	X	X	A
21	X	X	A	X	X	X	A
22	X	X	A	X	X	X	A
23	X	X	A	X	X	X	A
24	X	X	A	X	X	X	A
25	X	X	A	X	X	X	A
26	X	X	A	X	X	X	A
27	X	X	A	X	X	X	A
28	X	X	A	X	X	X	A
29	X	X	A	X	X	X	A
30	X	X	A	X	X	X	A
31							
Total hours normal operation	720	720	0	720	720	720	0
\% normal operation	100	100	0	100	100	100	0

Legend :

X	:	Normal operations
A	\vdots	All channels masked for more than 12 hours that day
B	\vdots	All SP channels masked for more than 12 hours that day
C	\vdots	All LP channels masked for more than 12 hours that day
I	\vdots	Communication outage for more than 12 hours

2.3 NORSAR Event Detection operation

In Table 2.3.1 some monthly statistics of the Detection and Event Processor operation are given. The table lists the total number of detections (DPX) triggered by the on-line detector, the total number of detections processed by the automatic event processor (EPX) and the total number of events accepted after analyst review (teleseismic phases, core phases and total).

	Total DPX	Total EPX	Accepted events		Sum	Daily
			P-phases	Core Phases		
Apr 94	9670	808	192	66	258	8.6
May 94	6227	751	314	56	370	11.9
Jun 94	8025	861	246	50	296	9.9
Jul 94	6734	1065	242	103	345	11.1
Aug 94	7990	1024	376	60	436	14.1
Sep 94	8970	884	262	48	310	10.3
			1632	383	2015	11.0

Table 2.3.1. Detection and Event Processor statistics, 1 April - 30 September 1994.

NORSAR Detections

The number of detections (phases) reported by the NORSAR detector during day 091, 1994 , through day 273,1994 , was 46,071 , giving an average of 252 detections per processed day (183 days processed). Table 2.3 .2 shows daily and hourly distribution of detections for NORSAR.

B. Paulsen

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	1	20	21	22	23	Sum		
91	25	25	14	23	22	22	18	15	29	18	20	27	21	17	18	20	30	23	18	23	43	14	19	16	520 A	Apr 01	Friday
92	13	18	20	25	22	21	15	12	15	14	11	16	16	16	14	31	26	16	23	19	21	24	32	20	460 R	Apr 02	Saturday
93	23	38	30	31	28	30	19	17	23	29	17	23	10	35	22	17	12	16	1.9	27	18	19	28	18	549	Apr 03	Sunday
94	18	21	24	17	22	14	17	24	16	22	21	12	19	13	28	9	16	7	18	19	11	24	13	23	428 7	Apr 04	Monday
95	21	15	5	12	8	5	4	5	7	13	7	8	10	9	12	14	12	11	8	16	7	13	4	18	2447	Apr 05	Tuesday
96	19	20	16	16	11	16	4	19	6	11	4	3	21	8	21	3	9	14	19	8	12	18	12	24	3147	Apr 06	Wednesday
97	16	18	20	14	12	12	5	6	5	5	2	9	13	3	12	9	12	13	10	8	9	5	6	8	232	Apr 07	Thursday
98	10	22	8	19	18	4	5	4	2	6	3	12	13	13	37	7	8	5	6	15	9	28	14	12	280	Apr 08	Friday
99	15	22	25	24	10	20	16	15	11	14	15	17	13	19	13	21	12	17	15	16	18	16	17	25	406	Apr 09	Saturday
100	17	17	17	17	18	10	15	17	12	8	14	10	8	27	10	5	3	22	5	15	9	18	15	17	326	Apr 10	Sunday
101	19	33	12	24	18	9	5	10	6	6	6	16	10	9	7	3	8	7	14	8	10	10	14	19	283	Apr 11	Monday
102	21	19	23	21	13	4	4	5	2	4	13	16	38	23	18	20	4	7	10	5	10	6	6	11	303 \%	Apr 12	Tuesday
103	22	14	18	15	14	10	9	5	3	11	20	11	7	16	19	11	9	8	17	13	8	21	27	11	319	Apr 13	Wednesday
104	10	14	13	26	10	10	4	11	4	6	9	22	14	7	10	8	5	18	29	9	16	12	10	19	2967	Apr 14	Thursday
105	14	12	20	15	13	8	2	10	6	7	0	17	11	15	7	5	2	6	11.	13	9	9	15	17	244	Apr 15	Eriday
106	16	14	16	18	18	13	16	14	18	15	13	18	13	9	14	24	21	20	28	21	21	16	27	26	429 7	Apr 16	Saturday
107	31	29	21	28	46	32	20	23	36	13	14	10	12	20	16	12	18	11	11	9	10	16	10	18	466	Apr 17	Sunday
108	16	14	17	18	9	0	2	4	13	8	1	6	9	4	12	3	13	34	12	6	17	8	10	8	244	Apr 18	Monday
109	9	13	5	7	9	2	12	4	7	4	1	11	10	15	21	6	20	13	8	15	3	20	7	24	246	Apr 19	Tuesday
110	29	12	11	7	12	5	11	43	13	9	15	11	10	8	7	13	15	20	16	5	3	14	19	18	326	Apr 20	Wednesday
111	10	15	15	20	24	4	5	4	13	2	2	33	7	16	13	4	6	15	17	8	8	17	16	17	291	Apr 21	Thursday
112	18	13	11	10	4	10	12	19	27	5	8	5	3	12	5	9	13	4	5	0	0	0	0	0	193	Apr 22	Friday
113	0	0	0	0	0	0	0	0	10	6	10	5	8	9	20	17	13	12	18	20	22	20	19	14	223	Apr 23	Saturday
114	13	16	20	20	22	22	19	18	14	14	19	14	10	10	8	9	15	13	5	9	8	10	8	12	328	Apr 24	Sunday
115	30	9	12	13	5	1	3	0	0	7	15	1	13	24	21	2	12	8	4	11	6	4	14	9	224	Apr 25	Monday
116	6	6	10	9	12	1	5	1	2	5	11	9	8	14	8	11	7	20	6	16	16	10	24	33	250	Apr 26	Tuesday
117	15	18	17	18	12	7	4	1	9	12	7	5	8	12	13	7	14	11	10	7	8	8	8	5	236	Apr 27	Wednesday
118	6	9	4	5	7	1	5	5	3	11	2	1	14	15	10	17	8	14	10	10	3	4	10	9	183	Apr 28	Thursday
119	8	9	4	13	5	3	42	44	36	15	1	5	1	10	4	5	4	6	2	4	4	2	2	11	240	Apr 29	Friday
120	3	4	3	17	5	7	9	13	7	10	10	33	18	7	19	6	14	8	10	10	13	15	19	20	280	Apr 30	Saturday
121	24	15	20	16	28	15	13	18	10	26	18	14	29	10	12	16	10	7	12	9	15	15	5	9	366	May 01.	Sunday
122	14	10	12	17	7	4	0	1	0	7	6	2	10	8	1	1	3	15	5	2	10	9	12	7	163	May 02	Monday
123	7	7	6	8	12	4	3	10	5	11	5	8	11	14	9	6	7	8	1	4	3	10	12	9	180	May 03	Tuesday
124	5	4	7	6	5	7	16	2	6	15	15	6	9	4	3	9	3	5	6	4	2	2	8	6	155	May 04	Wednesday
125	4	11	4	6	3	15	18	3	2	8	13	18	8	7	7	7	2	0	3	11	3	4	3	4	164	May 05	Thursday
126	7	8	9	12	11	1	2	3	8	13	3	8	3	7	8	8	4	1	10	6	3	15	13	6	169	May 06	Friday
127	3	16	6	5	6	6	12	3	5	10	0	6	2	22	7	19	1	3	10	2	4	5	12	16	181	May 07	Saturday
128	2	6	10	3	7	17	2	1	3	7	6	7	2	5	1	2	0	1	5	3	2	1	8	0	101	May 08	Sunday
129	0	0	0	0	0	0	2	10	2	13	7	3	15	3	5	17	5	2	8	1	2	4	1	0	100	May 09	Monday
130	5	0	14	2	6	4	22	18	12	6	3	7	10	13	0	0	4	5	10	13	2	6	0	5	167	May 10	Tuesday
131	8	10	1	0	0	6	7	3	18	5	4	2	7	6	6	0	4	6	1	2	9	26	0	2	133	May 11	Wednesday
132	6	3	2	3	3	8	2	1	3	6	3	4	0	0	1	12	6	1	0	12	3	0	0	6	85	May 12	Thursday
133	2	0	2	1	2	1	0	0	1	6	6	5	6	14	0	0	0	0	0	0	5	0	1	0	52	May 13	Friday
134	0	6	0	2	4	1	1	11	13	3	2	2	1	2	0	8	0	2	0	0	1	3	11	5	78	May 14	Saturday
135	7	2	8	3	1	17	5	3	6	4	7	4	1	4	3	7	8	2	4	11	5	6	6	10	134	May 15	Sunday
136	16	10	16	10	3	5	3	3	7	5	3	6	6	2	7	8	6	10	7	11	6	8	11	6	175	May 16	Monday
137	9	7	12	10	5	11.	6	11	3	31	18	14	18	12	28	8	3	8	15	4	15	5	9	6	268	May 17	Tuesday
138	14	7	16	9	18	2	7	9	2	17	15	16	24	18	16	12	23	12	3	23	14	8	7	7	299	May 18	Wednesday
139	4	6	4	6	11	2	3	11	2	3	20	10	7	7	3	1	6	2	8	7	7	10	7	5	152	May 19	Thursday
140	9	2	3	5	1	1	2	9	2	15	8	14	8	5	2	1.	17	3	9	5	7	7	3	7	145	May 20	Friday
141	6	6	7	8	6	7	5	6	4	2	1	4	6	7	9	2	13	3	6	5	5	2	12	13	145	May 21	Saturday
142	10	7	5	6	3	10	8	9	9	9	5	9	6	2	2	4	6	9	2	5	7	4	5	11	153	May 22	Sunday
143	7	13	9	5	3	14	21	15	5	4	10	4	2	10	2	6	2	6	3	5	3	6	10	9	174	May 23	Monday
144	7	10	24	19	32	2	18	8	2	8	9	19	2	14	6	3	8	7	8	5	6	18	11	12	258	May 24	Tuesday
145	8	19	11	8	21	4	0	19	8	1	4	11	8	10	15	5	6	7	10	13	7	19	19	18	251	May 25	Wednesday
146	22	12	7	26	11	4	5	12	19	5	14	4	10	7	18	7	5	9	6	8	8	10	6	12	247	May 26	Thursday

Table 2.3.2 (Page 1 of 4)

Day

147	6	13	13	12	15	3	1	5	13	6	2	12	10	4	12	8	6	1	16	5	3	22	14	12
148	14	10	12	8	10	4	6	6	9	19	30	9	10	6	6	9	8	5	19	11	12	11	23	13
149	18	10	17	11	16	10	15	10	11	9	7	17	12	12	21	25	12	9	1	8	11	14	11	10
150	8	15	11	15	10	4	1	0	10	5	16	6	8	17	5	7	6	12	12	16	11	16	14	26
151	16	21	10	23	23	13	15	9	5	11	15	16	23	7	13	16	18	19	20	13	19	15	17	19
152	22	14	16	15	18	7	1	9	3	14	3	13	9	13	20	17	14	21	15	4	7	8	10	14
153	7	4	3	8	6	1	6	3	2	8	0	17	6	22	5	26	19	18	34	0	1	8	3	4
154	7	6	8	6	1	6	1	5	0	13	5	9	15	8	11	4	14	7	7	10	10	47	23	15
155	11	38	14	7	10	6	8	13	8	10	5	6	5	2	27	19	3	5	8	10	16	5	4	8
156	4	22	17	4	6	8	8	4	7	2	4	1	3	3	11	6	14	8	16	12	5	9	2	10
157	7	6	11	24	6	2	3	24	13	15	11	12	13	12	18	2	5	14	17	16	15	19	8	7
158	11	12	12	23	16	14	6	4	1	5	6	12	18	33	12	6	4	4	11	11	7	3	3	8
159	7	5	5	6	8	2	1	8	4	3	3	4	9	10	14	14	3	10	5	2	14	11	11	14
160	20	34	30	15	25	12	11	18	11	9	9	13	13	4	7	0	10	4	4	4	10	9	5	6
61	10	10	9	30	3	3	7	4	3	11	6	13	10	12	13	19	13	34	5	14	15	21	26	22
162	24	15	12	11	18	6	11	18	28	23	23	20	10	17	18	11	41	27	18	13	20	23	20	19
163	12	16	26	16	13	13	20	18	17	10	23	10	21	12	18	3	15	13	6	15	4	8	7	5
164	28	10	16	17	5	5	3	4	2	7	3	1	9	6	13	6	13	22	7	5	17	26	18	18
165	14	13	11	19	13	11	5	3	7	4	2	17	14	6	7	12	10	13	13	21	20	20	18	20
66	20	8	24	11	15	11	7	6	4	17	9	6	15	7	14	9	12	15	16	10	19	17	32	21
167	13	16	20	13	8	6	3	5	7	20	30	4	14	18	11	6	3	9	9	11	36	16	19	11
168	19	15	8	19	16	8	13	1	9	29	15	21	12	15	16	6	6	5	9	1	6	6	15	7
169	10	10	19	27	25	20	14	16	16	12	9	8	12	11	10	16	13	10	6	7	13	16	15	22
170	10	12	20	7	18	26	12	11	16	14	12	15	15	15	21	14	18	17	15	12	21	18	21	18
171	14	19	18	8	6	4	1	3	6	28	19		7	4	3	4	6	5	5	3	11	9	11	18
172	40	20	24	12	12	1	1	5	9	12	10	2	5	8	3	12	7	4	3	1	3	4	6	11
173	14	14	9	6	7	8	5	10	11	8	0	11	8	9	8	9	5	5	9	9	21	15	7	9
174	13	13	18	14	14	10	8	10	5	5	6	7	8	17	11	10	12	13	13	11	15	11	14	16
175	14	19	13	12	11	7	6	5	2	4	2	6	3	7	6	3	10	7	5	12	3	6	9	11
17	9	11	9	15	14	17	12	16	26	19	11	14	14	10	14	15	16	22	16	12	5	16	27	10
177	12	17	7	10	8	9	8	13	2	6	10	14	9	8	7	14	7	9	11	8	13	7	8	8
178	7	11	6	12	5	3	0	4	2	1	6	6	5	1	10	1	6	8	11	9	16	3	8	9
179	11	5	11	12	4	7	2	0	1	2	9	16	11	11	15	5	4	4	13	8	2	8	2	10
180	14	9	20	4	11	0	10	4	4	6	0	10	7	10	8	4	6	1	6	4	9	4	5	7
181	17	3	6	3	9	4	16	5	7	14	14	12	6	12	16	3	7	3	6	3	9	8	7	8
182	12	5	8	9	6	13	4	1	0	4	32	6	3	15	7	4	2	1	6	13	19	1	20	6
183	4	4	3	7	5	10	10	7	2	22	2	29	14	5	3	3	5	5	1	1	26	12	13	2
184	0	4	2	13	2	0	2	5	5	2	2	3	5	2	4	2	4	1	0	9	5	10	6	5
185	10	15	7	6	7	7	4	2	1	2	9	3	5	3	3	9	9	5	3	8	9	10	8	8
186	8	4	5	13	6	1	2	10	4	7	15	13	10	15	6	4	7	4	6	0	5	11	5	2
187	7	4	8	2	2	7	2	3	7	26	1	19	32	17	3	14	3	1	7	2	5	10	4	2
188	12	13	9	9	2	3	3	5	5	4	11	20	12	17	0	11	3	14	7	10	9	6	15	12
189	12	8	8	12	0	3	5	4	7	11	22	17	14	5	6	15	6	14	11	4	10	19	4	11
190	3	2	7	2	6	2	9	0	2	1	2	5	13	31	25	13	38	9	4	10	12	12	7	16
191	12	17	15	21	13	10	6	10	4	8	4	0	6	9	7	5	7	5	2	4	5	6	10	13
192	4	7	7	7	12	3	15	0	0	3	1	14	12	6	0	1	4	4	0	11	7	17	14	9
193	16	5	5	8	8	4	7	4	7	3	10	8	15	17	4	3	4	9	11	3	4	10	7	7
194	6	6	18	35	2	10	1	3	5	10	8	4	27	3	5	2	5	6	4	1	3	3	6	3
195	17	5	8	3	14	12	15	2	13	13	4	13	10	15	5	16	2	0	11	9	16	13	2	7
196	3	2	6	0	1	0	0	13	4	7	19	59	60	10	1	6	4	52	15	10	3	6	7	11
197	14	1	6	6	8	1	15	2	2	1	0	5	1	0	2	2	4	8	21	4	8	8	0	5
198	7	11	7	4	2	9	4	4	5	1	8	1	4	4	4	4	7	7	3	9	4	7	18	8
199	24	6	12	9	8	12	4	4	2	7	7	18	3	5	15	11	21	5	28	3	17	10	11	15
200	7	7	4	6	22	8	5	2	9	5	5	10	14	3	6	1	14	3	1	3	0	0	0	0
201	0	0	0	0	0	0	3	8	7	7	3	5	9	5	12		11	2	17	0	10	4	8	10
202	2	10	14	15	6	4	6	3	1	3	11	7	11	25	17	13	31	9	17	21		15	1	

Sum Date
214 May 27 Friday 270 May 28 Saturday 297 May 29 Sunday 251 May 30 Monday 376 May 31 Tuesday 287 Jun 01 Wednesday 211 Jun 02 Thursday 238 Jun 03 Friday 248 Jun 04 Saturday 186 Jun 05 Sunday 280 Jun 06 Monday 242 Jun 07 Tuesday 173 Jun 08 Wednesday 283 Jun 09 Thursday
313 Jun 10 Friday
446 Jun 11 Saturday
321 Jun 12 Sunday
261 Jun 13 Monday
293 Jun 14 Tuesday
325 Jun 15 Hednesday
308 Jun 16 Thursday
277 Jun 17 Friday
337 Jun 18 Saturday
378 Jun 19 Sunday
216 Jun 20 Monday
215 Jun 21 Tuesday 217 Jun 22 Wednesday 274 Jun 23 Thursday 183 Jun 24 Friday 350 Jun 25 Saturday 225 Jun 26 Sunday
150 Jun 27 Monday
173 Jun 28 Tuesday
163 Jun 29 Wednesday
198 Jun 30 Thursday
197 Jul 01 Friday
195 Jul 02 Saturday
93 Jul 03 Sunday
153 Jul 04 Monday
163 Jul 05 Tuesday
188 Jul 06 Wednesday
212 Jul 07 Thursday 228 Jul 08 Friday 231 Jul 09 Saturday 199 Jul 10 Sunday 158 Jul 11 Monday 179 Jul 12 Tuesday 176 Jul 13 Wednesday 225 Jul 14 Thursday 299 Jul 15 Friday 124 Jul 16 Saturday
142 Jul 17 Sunday 142 Jul 17 Sunday 257 Jul 18 Monday 135 Jul 19 Tuesday
126 Jul 20 Wednesda 126 Jul 20 Wednesday
263 Jul 21 Thursday

Table 2.3.2. (Page 2 of 4)

Day

| 203 | 9 | 11 | 11 | 8 | 7 | 3 | 4 | 4 | 8 | 2 | 19 | 12 | 5 | 8 | 1 | 11 | 7 | 23 | 16 | 7 | 7 | 14 | 18 | 21 |
| ---: |
| 204 | 12 | 22 | 14 | 22 | 18 | 32 | 24 | 28 | 12 | 13 | 15 | 13 | 12 | 8 | 12 | 12 | 11 | 12 | 15 | 11 | 17 | 11 | 7 | 16 |
| 205 | 12 | 17 | 25 | 23 | 16 | 22 | 21 | 18 | 8 | 11 | 9 | 14 | 4 | 10 | 24 | 12 | 6 | 4 | 12 | 10 | 10 | 10 | 35 | 19 |
| 206 | 18 | 34 | 54 | 20 | 13 | 9 | 11 | 4 | 1 | 2 | 6 | 11 | 2 | 5 | 11 | 5 | 13 | 15 | 0 | 2 | 7 | 3 | 25 | 9 |
| 207 | 9 | 11 | 5 | 6 | 13 | 4 | 2 | 1 | 4 | 3 | 10 | 6 | 1 | 13 | 6 | 12 | 12 | 14 | 17 | 6 | 11 | 8 | 5 | 7 |
| 208 | 2 | 8 | 8 | 5 | 11 | 13 | 10 | 7 | 10 | 12 | 15 | 14 | 18 | 7 | 1 | 12 | 2 | 20 | 14 | 16 | 7 | 13 | 3 | 7 |
| 209 | 2 | 5 | 4 | 2 | 8 | 9 | 7 | 8 | 11 | 14 | 20 | 13 | 5 | 5 | 4 | 0 | 8 | 7 | 4 | 14 | 5 | 3 | 3 | 7 |
| 210 | 19 | 12 | 12 | 12 | 9 | 15 | 1 | 4 | 8 | 9 | 0 | 33 | 13 | 10 | 9 | 8 | 9 | 6 | 13 | 7 | 8 | 10 | 11 | 6 |
| 211 | 7 | 7 | 9 | 5 | 6 | 14 | 20 | 1 | 5 | 1 | 11 | 12 | 6 | 13 | 10 | 0 | 4 | 10 | 4 | 1 | 4 | 14 | 11 | 5 |
| 212 | 5 | 4 | 4 | 1 | 8 | 25 | 13 | 6 | 0 | 2 | 1 | 6 | 4 | 1 | 11 | 10 | 6 | 10 | 5 | 5 | 8 | 12 | 12 | 5 |
| 213 | 10 | 13 | 12 | 6 | 8 | 1 | 2 | 10 | 2 | 3 | 4 | 6 | 8 | 8 | 7 | 4 | 18 | 4 | 4 | 10 | 2 | 7 | 4 | 13 |
| 214 | 9 | 3 | 8 | 11 | 5 | 2 | 4 | 0 | 3 | 2 | 7 | 3 | 10 | 9 | 15 | 5 | 9 | 3 | 8 | 0 | 8 | 4 | 3 | 5 |
| 215 | 1 | 8 | 18 | 3 | 3 | 10 | 0 | 11 | 7 | 15 | 1 | 11 | 6 | 6 | 0 | 17 | 6 | 7 | 17 | 9 | 3 | 6 | 7 | 3 |
| 216 | 10 | 2 | 16 | 5 | 3 | 3 | 10 | 2 | 1 | 20 | 5 | 0 | 8 | 7 | 15 | 14 | 7 | 6 | 10 | 7 | 5 | 14 | 30 | 5 |
| 217 | 11 | 11 | 11 | 17 | 15 | 13 | 15 | 4 | 9 | 10 | 5 | 12 | 10 | 26 | 14 | 2 | 2 | 3 | 23 | 4 | 10 | 3 | 2 | 8 |
| 218 | 5 | 13 | 13 | 5 | 5 | 11 | 8 | 6 | 3 | 7 | 4 | 11 | 19 | 14 | 13 | 26 | 12 | 15 | 15 | 16 | 10 | 17 | 11 | 10 |
| 219 | 6 | 9 | 9 | 15 | 17 | 14 | 18 | 10 | 11 | 9 | 6 | 2 | 10 | 13 | 6 | 15 | 11 | 6 | 2 | 4 | 2 | 9 | 13 | 13 |
| 220 | 9 | 10 | 10 | 7 | 7 | 8 | 2 | 4 | 4 | 1 | 3 | 12 | 10 | 5 | 10 | 3 | 4 | 7 | 3 | 6 | 16 | 18 | 7 | 6 |
| 221 | 17 | 13 | 8 | 12 | 3 | 1 | 16 | 15 | 3 | 10 | 6 | 2 | 12 | 7 | 8 | 6 | 8 | 18 | 9 | 8 | 4 | 12 | 10 | 22 |
| 222 | 4 | 16 | 20 | 9 | 4 | 0 | 1 | 1 | 4 | 17 | 2 | 12 | 17 | 14 | 9 | 19 | 9 | 6 | 8 | 18 | 14 | 6 | 9 | 15 |
| 223 | 9 | 15 | 9 | 17 | 8 | 1 | 8 | 1 | 7 | 6 | 11 | 11 | 15 | 5 | 7 | 1 | 6 | 1 | 2 | 23 | 8 | 18 | 15 | 11 |
| 224 | 11 | 9 | 11 | 5 | 5 | 7 | 0 | 4 | 4 | 9 | 13 | 18 | 8 | 0 | 12 | 7 | 12 | 3 | 7 | 4 | 6 | 19 | 12 | 10 |
| 225 | 21 | 17 | 19 | 13 | 24 | 17 | 18 | 8 | 10 | 14 | 28 | 26 | 10 | 13 | 18 | 28 | 17 | 16 | 17 | 15 | 23 | 13 | 16 | 23 |
| 226 | 24 | 23 | 21 | 22 | 11 | 8 | 16 | 16 | 7 | 15 | 11 | 15 | 18 | 12 | 12 | 15 | 16 | 14 | 12 | 17 | 19 | 21 | 17 | 14 |

| 203 | 9 | 11 | 11 | 8 | 7 | 3 | 4 | 4 | 8 | 2 | 19 | 12 | 5 | 8 | 1 | 11 | 7 | 23 | 16 | 7 | 7 | 14 | 18 | 21 |
| ---: |
| 204 | 12 | 22 | 14 | 22 | 18 | 32 | 24 | 28 | 12 | 13 | 15 | 13 | 12 | 8 | 12 | 12 | 11 | 12 | 15 | 11 | 17 | 11 | 7 | 16 |
| 205 | 12 | 17 | 25 | 23 | 16 | 22 | 21 | 18 | 8 | 11 | 9 | 14 | 4 | 10 | 24 | 12 | 6 | 4 | 12 | 10 | 10 | 10 | 35 | 19 |
| 206 | 18 | 34 | 54 | 20 | 13 | 9 | 11 | 4 | 1 | 2 | 6 | 11 | 2 | 5 | 11 | 5 | 13 | 15 | 0 | 2 | 7 | 3 | 25 | 9 |
| 207 | 9 | 11 | 5 | 6 | 13 | 4 | 2 | 1 | 4 | 3 | 10 | 6 | 1 | 13 | 6 | 12 | 12 | 14 | 17 | 6 | 11 | 8 | 5 | 7 |
| 208 | 2 | 8 | 8 | 5 | 11 | 13 | 10 | 7 | 10 | 12 | 15 | 14 | 18 | 7 | 1 | 12 | 2 | 20 | 14 | 16 | 7 | 13 | 3 | 7 |
| 209 | 2 | 5 | 4 | 2 | 8 | 9 | 7 | 8 | 11 | 14 | 20 | 13 | 5 | 5 | 4 | 0 | 8 | 7 | 4 | 14 | 5 | 3 | 3 | 7 |
| 210 | 19 | 12 | 12 | 12 | 9 | 15 | 1 | 4 | 8 | 9 | 0 | 33 | 13 | 10 | 9 | 8 | 9 | 6 | 13 | 7 | 8 | 10 | 11 | 6 |
| 211 | 7 | 7 | 9 | 5 | 6 | 14 | 20 | 1 | 5 | 1 | 11 | 12 | 6 | 13 | 10 | 0 | 4 | 10 | 4 | 1 | 4 | 14 | 11 | 5 |
| 212 | 5 | 4 | 4 | 1 | 8 | 25 | 13 | 6 | 0 | 2 | 1 | 6 | 4 | 1 | 11 | 10 | 6 | 10 | 5 | 5 | 8 | 12 | 12 | 5 |
| 213 | 10 | 13 | 12 | 6 | 8 | 1 | 2 | 10 | 2 | 3 | 4 | 6 | 8 | 8 | 7 | 4 | 18 | 4 | 4 | 10 | 2 | 7 | 4 | 13 |
| 214 | 9 | 3 | 8 | 11 | 5 | 2 | 4 | 0 | 3 | 2 | 7 | 3 | 10 | 9 | 15 | 5 | 9 | 3 | 8 | 0 | 8 | 4 | 3 | 5 |
| 215 | 1 | 8 | 18 | 3 | 3 | 10 | 0 | 11 | 7 | 15 | 1 | 11 | 6 | 6 | 0 | 17 | 6 | 7 | 17 | 9 | 3 | 6 | 7 | 3 |
| 216 | 10 | 2 | 16 | 5 | 3 | 3 | 10 | 2 | 1 | 20 | 5 | 0 | 8 | 7 | 15 | 14 | 7 | 6 | 10 | 7 | 5 | 14 | 30 | 5 |
| 217 | 11 | 11 | 11 | 17 | 15 | 13 | 15 | 4 | 9 | 10 | 5 | 12 | 10 | 26 | 14 | 2 | 2 | 3 | 23 | 4 | 10 | 3 | 2 | 8 |
| 218 | 5 | 13 | 13 | 5 | 5 | 11 | 8 | 6 | 3 | 7 | 4 | 11 | 19 | 14 | 13 | 26 | 12 | 15 | 15 | 16 | 10 | 17 | 11 | 10 |
| 219 | 6 | 9 | 9 | 15 | 17 | 14 | 18 | 10 | 11 | 9 | 6 | 2 | 10 | 13 | 6 | 15 | 11 | 6 | 2 | 4 | 2 | 9 | 13 | 13 |
| 220 | 9 | 10 | 10 | 7 | 7 | 8 | 2 | 4 | 4 | 1 | 3 | 12 | 10 | 5 | 10 | 3 | 4 | 7 | 3 | 6 | 16 | 18 | 7 | 6 |
| 221 | 17 | 13 | 8 | 12 | 3 | 1 | 16 | 15 | 3 | 10 | 6 | 2 | 12 | 7 | 8 | 6 | 8 | 18 | 9 | 8 | 4 | 12 | 10 | 22 |
| 222 | 4 | 16 | 20 | 9 | 4 | 0 | 1 | 1 | 4 | 17 | 2 | 12 | 17 | 14 | 9 | 19 | 9 | 6 | 8 | 18 | 14 | 6 | 9 | 15 |
| 223 | 9 | 15 | 9 | 17 | 8 | 1 | 8 | 1 | 7 | 6 | 11 | 11 | 15 | 5 | 7 | 1 | 6 | 1 | 2 | 23 | 8 | 18 | 15 | 11 |
| 224 | 11 | 9 | 11 | 5 | 5 | 7 | 0 | 4 | 4 | 9 | 13 | 18 | 8 | 0 | 12 | 7 | 12 | 3 | 7 | 4 | 6 | 19 | 12 | 10 |
| 225 | 21 | 17 | 19 | 13 | 24 | 17 | 18 | 8 | 10 | 14 | 28 | 26 | 10 | 13 | 18 | 28 | 17 | 16 | 17 | 15 | 23 | 13 | 16 | 23 |
| 226 | 24 | 23 | 21 | 22 | 11 | 8 | 16 | 16 | 7 | 15 | 11 | 15 | 18 | 12 | 12 | 15 | 16 | 14 | 12 | 17 | 19 | 21 | 17 | 14 | $\begin{array}{lllllllllllllllllllllllllllllllllll}218 & 5 & 13 & 13 & 5 & 5 & 11 & 8 & 6 & 3 & 7 & 4 & 11 & 19 & 14 & 13 & 26 & 12 & 15 & 15 & 16 & 10 & 17 & 11 & 10\end{array}$

219

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}227 & 19 & 23 & 18 & 17 & 15 & 13 & 16 & 7 & 13 & 2 & 10 & 5 & 4 & 2 & 11 & 10 & 4 & 2 & 9 & 5 & 7 & 8 & 6 & 8 \\ 228 & 11 & 4 & 11 & 13 & 17 & 3 & 2 & 10 & 2 & 13 & 19 & 14 & 23 & 7 & 15 & 4 & 13 & 2 & 2 & 1 & 1 & 7 & 8 & 11\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllllll}229 & 18 & 9 & 9 & 9 & 7 & 5 & 5 & 5 & 1 & 2 & 1 & 14 & 14 & 16 & 1 & 8 & 11 & 6 & 17 & 6 & 14 & 12 & 8 & 8\end{array}$

$\begin{array}{lllllllllllllllllllllllllllll}231 & 14 & 11 & 23 & 24 & 11 & 10 & 10 & 7 & 9 & 14 & 24 & 11 & 7 & 8 & 14 & 14 & 6 & 13 & 8 & 19 & 9 & 19 & 13 & 18\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllll}232 & 16 & 11 & 19 & 15 & 17 & 9 & 12 & 6 & 13 & 16 & 13 & 13 & 19 & 13 & 11 & 1.4 & 11 & 11 & 21 & 16 & 19 & 24 & 12 & 11\end{array}$
233
$\begin{array}{rr}233 & 12 & 8 & 17 & 12 & 19 & 18 & 15 & 9 & 12 & 4 & 6 & 6 & 2 & 3 & 3 & 5 & 10 & 7 & 7 & 4 & 2 & 5 & 5 & 14 \\ 234 & 3 & 9 & 3 & 2 & 4 & 2 & 6 & 3 & 3 & 7 & 16 & 20 & 42 & 9 & 3 & 3 & 7 & 12 & 7 & 7 & 13 & 19 & 6 & 8\end{array}$

$\begin{array}{llllllllllllllllllllllllllllllll}244 & 15 & 17 & 16 & 10 & 5 & 6 & 1 & 9 & 8 & 10 & 7 & 25 & 27 & 10 & 3 & 23 & 24 & 17 & 7 & 15 & 21 & 14 & 8 & 23\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllllll}245 & 17 & 16 & 17 & 11 & 9 & 6 & 4 & 6 & 3 & 6 & 4 & 6 & 3 & 4 & 10 & 6 & 4 & 4 & 11 & 11 & 8 & 22 & 14 & 18\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}248 & 8 & 13 & 24 & 16 & 4 & 15 & 1 & 1 & 2 & 7 & 3 & 12 & 16 & 16 & 7 & 13 & 2 & 17 & 11 & 37 & 11 & 16 & 16 & 12\end{array}$

$\begin{array}{lllllllllllllllllllllllllll}251 & 14 & 17 & 17 & 12 & 2 & 7 & 15 & 6 & 12 & 33 & 12 & 20 & 11 & 6 & 15 & 17 & 9 & 4 & 8 & 11 & 15 & 7 & 16 & 15\end{array}$

$\begin{array}{lllllllllllllllllllllllllllllllllllll}253 & 9 & 8 & 11 & 7 & 5 & 11 & 6 & 4 & 4 & 6 & 6 & 14 & 12 & 8 & 8 & 10 & 7 & 11 & 14 & 16 & 18 & 10 & 15 & 13\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}254 & 13 & 31 & 12 & 21 & 20 & 16 & 13 & 12 & 12 & 11 & 12 & 10 & 19 & 8 & 21 & 20 & 15 & 18 & 19 & 12 & 12 & 10 & 13 & 13\end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllll}256 & 16 & 14 & 20 & 20 & 13 & 2 & 4 & 6 & 3 & 7 & 20 & 12 & 20 & 15 & 13 & 7 & 13 & 9 & 11 & 15 & 13 & 10 & 17 & 16\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}257 & 16 & 16 & 30 & 18 & 7 & 3 & 8 & 3 & 20 & 15 & 0 & 17 & 16 & 5 & 6 & 1 & 13 & 2 & 13 & 7 & 10 & 10 & 11 & 12\end{array}$

Sum Date

236	Jul 22	Friday
369	Jul 23	Saturday
352	Jul 24	Sunday
280	Jul 25	Monday
186	Jul 26	Tuesday
235	Jul 27	Wednesday
168	Jul 28	Thursday
244	Jul 29	Friday
180	Jul 30	Saturday
164	Jul 31	Sunday
166 A	Aug 01	Monday
1367	Aug 02	Tuesday
175	Aug 03	Wednesday
205 A	Aug 04	Thursday
240 7	Aug 05	Friday
269 A	Aug 06	Saturday
230 A	Aug 07	Sunday
172	Aug 08	Monday
230 A	Aug 09	Tuesday
234 A	Aug 10	Wednesday
215 A	Aug 11	Thursday
196	Aug 12	Friday
424 2	Aug 13	Saturday
376	Aug 14	Sunday
234 A	Aug 15	Monday
213 A	Aug 16	Tuesday
206 A	Aug 17	Wednesclay
287 I	Aug 18	Thursday
316	Aug 19	Friday
342 R	Aug 20	Saturday
205	Aug 21	Sunday
214	Aug 22	Monday
191 A	Aug 23	Tuesday
244	Aug 24	Wednesday
232 A	Aug 25	Thursday
221	Aug 26	Eriday
288	Aug 27	Saturday
329 1	Aug 28	Sunday
333 1	Aug 29	Monday
290	Aug 30	Tuesday
244	Aug 31	Hednesday
321	Sep 01	Thursday
220	Sep 02	Friday
216	Sep 03	Saturday
247	Sep 04	Sunday
280	Sep 05	Monday
228	Sep 06	Tuesday
270	Sep 07	Wednesday
301	Sep 08	Thursday
258	Sep 09	Eriday
233	Sep 10	Saturday
363	Sep 11	Sunday
187	Sep 12	Monday
296	Sep 13	Tuesday
259	Sep 14	Wednesday
294	Sep 15	Thursday

352 Jul 24 Sunday
280 Jul 25 Monday
186 Jul 26 Tuesday
235 Jul 27 Wednesday
168 Jul 28 Thursday
244 Jul 29 Friday
180 Jul 30 Saturday
164 Jul 31 Sunday
166 Aug 01 Monday
136 Aug 02 Tuesday
175 Aug 03 Fednesday
205 Aug 04 Thursday
240 Aug 05 Friday
269 Aug 06 Saturday
230 Aug 07 Sunday
172 Aug 08 Monday
230 Aug 09 Tuesday
234 Aug 10 Wednesday
215 Aug 11 Thursday
196 Aug 12 Friday
424 Aug 13 Saturday
376 Aug 14 Sunday
234 Aug 15 Monday
213 Aug 16 Tuesday
206 Aug 17 Wednesday
287 Aug 18 Thursday
316 Aug 19 Friday
342 Aug 20 Saturday
205 Aug 21 Sunday
191 Aug 23 Tuesday
244 Aug 24 Wednesday
232 Aug 25 Thursday
221 Aug 26 Friday
288 Aug 27 Saturday
329 Aug 28 Sunday
333 Aug 29 Monday
290 Aug 30 Tuesday
244 Aug 31 Wednesday
321 Sep 01 Thursday
220 Sep 02 Friday
216 Sep 03 Saturday
247 Sep 04 Sunday
280 Sep 05 Monday
228 Sep 06 Tuesday
270 Sep 07 Wednesday
301 Sep 08 Thursday
258 Sep 09 Friday
233 Sep 10 Saturday
363 Sep 11 Sunday
187 Sep 12 Monday
259 Sep 14 Wednesday
294 Sep 15 Thursday

Table 2.3.2. (Page 3 of 4)

Table 2.3.2. Daily and hourly distribution of NORSAR detections. For each day is shown number of detections within each hour of the day and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day. (Page 4 of 4)

3 Operation of Regional Arrays

3.1 Recording of NORESS data at NDPC, Kjeller

Table 3.1.1 lists the main outage times and reasons.
The average recording time was 94.37% as compared to 96.48% during the previous reporting period.

Date	Time		Cause
06 May	1518	-	Hardware failure
07 May		0843	
12 May	2007	-	Hardware failure
13 May		0629	
16 May	1459	-	Hardware failure
18 May		0602	
18 May	1125	1143	Hardware failure
22 May	0726	- 0956	Hardware failure
31 May	0237	- 0622	Hardware failure
31 May	0849	- 0904	Hardware failure
13 Jun	1316	1329	Hardware failure
27 Jun	1329	-	Continuous gaps of length from 1 sec to several minutes
29 Jun		- 1300	
08 Jul	0746	- 0902	Power failure due to thunderstorm
18 Jul	0501	- 0604	Hardware failure
26 Jul	1858	- 2047	Hardware failure
27 Jul	1342	- 1619	Power failure due to thunderstorm
27 Jul	2100	-	Power failure due to thunderstorm
29 Jul		- 0145	
10 Aug	0914	- 1047	Hardware maintenance
10 Aug	1109	- 1122	Hardware maintenance
02 Sep	1550	-	Hardware failure
05 Sep		- 0617	
22 Sep	0349	- 0620	Hardware failure
25 Sep	0100	- 0200	Software failure

Table 3.1.1. Interruptions in recording of NORESS data at NDPC, 1 April-30 September 1994.

Monthly uptimes for the NORESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

April 94	$:$	99.21
May	$:$	88.12
June	$:$	95.79
July	$:$	95.42
August	$:$	98.25
September	$:$	89.42

Fig. 3.1.1 shows the uptime for the data recording task, or equivalently, the availability of NORESS data in our tape archive, on a day-by-day basis, for the reporting period.

J. Torstveit

Fig. 3.1.1. NORESS data recording uptime for April (top), May (middle) and June (bottom) 1994.

Fig. 3.1.1. (cont.) NORESS data recording uptime for July (top), August (middle) and September (bottom) 1994.

3.2 Recording of ARCESS data at NDPC, Kjeller

Table 3.2.1 lists the main outage times and reasons.
The average recording time was $\mathbf{9 9 . 2 8 \%}$ as compared to $\mathbf{9 9 . 1 9 \%}$ for the previous reporting period.
Date Time Cause

16 Jun	$2239-$	Satellite link failure	
17 Jun		-0406	
07 Jul	$0743-1446$	Work on power line to Hub	
10 Jul	$0537-2202$	Transmission line failure	
13 Aug	$1341-1450$	Hardware failure	
13 Aug	$1504-1541$	Hardware failure	
23 Aug	$0634-0919$	Power failure Hub	
28 Aug	$1556-$	Hardware failure	
29 Aug		-0700	

Table 3.2.1. The main interruptions in recording of ARCESS data at NDPC, 1 April - 30 September 1994.

Monthly uptimes for the ARCESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

April 94	$:$	100.00%
May	$:$	99.94%
June	$:$	99.23%
July	$:$	96.49%
August	$:$	98.72%
September	$:$	97.89%

Fig. 3.2.1. shows the uptime for the data recording task, or equivalently, the availability of ARCESS data in our tape archive, on a day-by-day basis, for the reporting period.
J. Torstveit

Fig. 3.2.1. ARCESS data recording uptime for April (top), May (middle) and June (bottom) 1994

Fig. 3.2.1. ARCESS data recording uptime for July (top), August (middle) and September (bottom) 1994.

3.3 Recording of FINESS data at NDPC, Kjeller

The average recording time was 95.7%.

Date	Time	Cause	
11 May	$1916-2312$	Transmission line failure	
12 May	$1450-2214$	Transmission line failure	
08 Jun	$1306-$	Transmission line failure	
09 Jun		-0638	
21 Jul	$0416-1022$	Transmission line failure	
12 Aug	$1940-$		Transmission line failure
15 Aug		-0632	
27 Aug	$0459-$	Transmission line failure	
29 Aug		-0551	
30 Aug	$1014-2017$	Transmission line failure	
09 Sep	$0513-1012$	Hub failure	
16 Sep	$1553-$	Problems in Finland	
17 Sep		-1300	

Table 3.3.1. The main interruptions in recording of FINESS data at NDPC, 1 April - 30 September 1994.

Monthly uptimes for the FINESS on-line data recording task, taking into account all factors (field installations, transmission lines, data center operation) affecting this task were as follows:

April 94	$:$	99.95%
May	$:$	98.44%
June	$:$	97.55%
July	$:$	99.17%
August	$:$	84.31%
September	$:$	96.40%

Fig. 3.3.1 shows the uptime for the data recording task, or equivalently, the availability of FINESS data in our tape archive, on a day-by-day basis, for the reporting period.

J. Torstveit

Fig. 3.3.1. FINESS data recording uptime for April (top), May (middle) and June (bottom) 1994.

Fig. 3.3.1. FINESS data recording uptime for July (top), August (middle) and September (bottom) 1994.

3.4 Recording of Spitsbergen data at NDPC, Kjeller

The average recording time was 91.8% as compared to 88.39% for the previous reporting period.

The main reasons for downtime follow:
Date Time Cause

08 Apr	2216	2300	Communication line failure
09 Apr	0034	0134	Communication line failure
22 Apr	2217	2245	Communication line failure
29 Apr	0400	0432	Communication line failure
05 May	0849	1250	Radio link problems
07 Jun	0619	-	Communication line failure
10 Jun		0738	
04 Jul	1612	-	Communication line failure
05 Jul		0804	
08 Jul	1016	1322	Maintenance communication line
12 Jul	0913	1051	Communication line failure
20 Jul	1749	-	Communication line failure
21 Jul		1128	
02 Aug	1450	-	Communication line failure
03 Aug		0735	
13 Aug	1019	-	Maintenance communication line
15 Aug		0908	
22 Aug	1406	-	Maintenance and site construction work
26 Aug		1741	
26 Aug	2219	-	Maintenance and site construction work
28 Aug		- 2050	
29 Aug	0955	- 1833	Maintenance and site construction work
31 Aug	1625	- 2214	Maintenance and site construction work
01 Sep	0639	- 1001	Maintenance and site construction work
15 Sep	0056	0408	Communication line failure

Monthly uptimes for the Spitsbergen online data recording task, taking into account all factors (field installations, transmission line, data center operation) affecting this task were as follows:

April 94	$:$	99.51%
May	$:$	98.45%
June	$:$	89.81%
July	$:$	94.42%
August	$:$	69.48%
September	$:$	99.12%

Fig. 3.4.1 shows the uptime for the data recording task, or equivalently, the availability of Spitsbergen data in our tape archive, on a day-by-day basis for the reporting period
J. Torstveit

Fig. 3.4.1. Spitsbergen data recording uptime for April (top), May (middle) and June (bottom) 1994.

Fig. 3.4.1. Spitsbergen data recording uptime for July (top), August (middle) and September (bottom) 1994.

3.5 Event detection operation

This section reports results from one-array automatic processing using signal processing recipes and "ronapp" recipes for the ep program (NORSAR Sci. Rep. No 2-8889).

Three systems are in parallel operation to associate detected phases and locate events:

1. The ep program with "ronapp" recipes is operated independently on each array to obtain simple one-array automatic solutions.
2. The Generalized Beamforming method (GBF) (see F. Ringdal and T. Kværna (1989), A mulitchannel processing approach to real time network detection, phase association and threshold monitoring, BSSA Vol 79, no 6, 1927-1940) processes the four arrays jointly and presents locations of regional events.
3. The IMS system is operated on the same set of arrivals as ep and GBF and reports also teleseismic events in addition to regional ones.

IMS results are reported in section 3.6.
In addition to these three event association processes, we are running test versions of the so-called Threshold Monitoring (TM) process. This is a process that monitors the seismic amplitude level at the four regional arrays continuously in time to estimate the upper magnitude limit of an event that might go undetected by the network. The current TM process is beamed to several sites of interest, including the Novaya Zemlya test site. Simple displays of so-called threshold curves reveal instants of particular interest; i.e., instants when events above a certain magnitude threshold may have occurred in the target region.
Results from the three processes described above are used to help resolve what actually happened during these instances.

NORESS detections

The number of detections (phases) reported from day 091, 1994, through day 273, 1994, was 36,245 , giving an average of 202 detections per processed day (179 days processed).

Table 3.5.1 shows daily and hourly distribution of detections for NORESS.

Events automatically located by NORESS

During days 091,1994 , through $273,1994,2267$ local and regional events were located by NORESS, based on automatic association of P- and S-type arrivals. This gives an average of 12.7 events per processed day (179 days processed). 71% of these events are within 300 km , and 89% of these events are within 1000 km .

ARCESS detections

The number of detections (phases) reported during day 091, 1994, through day 273, 1994, was 70,784 , giving an average of 387 detections per processed day (183 days processed).

Table 3.5.2 shows daily and hourly distribution of detections for ARCESS.

Events automatically located by ARCESS

During days 091,1994 , through $273,1994,4328$ local and regional events were located by ARCESS, based on automatic association of P-and S-type arrivals. This gives an average 23.7 events per processed day (183 days processed). 56% of these events are within 300 km , and 87% of these events are within 1000 km .

FINESS detections

The number of detections (phases) reported during day 091, 1994, through day 273, 1994, was 40,602 , giving an average of 226 detections per processed day (180 days processed).

Table 3.5.3 shows daily and hourly distribution of detections for FINESS.

Events automatically located by FINESS

During days 091,1994 , through $273,1994,2265$ local and regional events were located by FINESS, based on automatic association of P- and S-type arrivals. This gives an average of 12.6 events per processed day (180 days processed). 77% of these events are within 300 km , and 92% of these events are within 1000 km .

GERESS detections

The number of detections (phases) reported from day 091, 1994, through day 273, 1994, was 41,905 , giving an average of 235 detections per processed day (178 days processed).

Table 3.5 .4 shows daily and hourly distribution of detections for GERESS.

Events automatically located by GERESS

During days 091,1994 , through $273,1994,3743$ local and regional events were located by GERESS, based on automatic association of P - and S-type arrivals. This gives an average of 21.0 events per processed day (178 days processed). 72% of these events are within 300 km , and 89% of these events are within 1000 km .

Apatity array detections

The number of detections (phases) reported from day 091, 1994, through day 273, 1994, was 124,718 , giving an average of 931 detections per processed day (134 days processed).

As described in earlier reports, the data from the Apatity array are transferred by one-way (simplex) radio links to Apatity city. The transmission suffers from radio disturbances that
occasionally result in a large number of small data gaps and spikes in the data. In order for the communication protocol to correct such errors by requesting retransmission of data, a two-way radio link would be needed (duplex radio). However, it should be noted that noise from cultural activities and from the nearby lakes cause most of the unwanted detections. These unwanted detections are "filtered" in the signal processing, as they give seismic velocities that are outside accepted limits for regional and teleseismic phase velocities.

Table 3.5 .5 shows daily and hourly distribution of detections for the Apatity array.

Events automatically located by the Apatity array

During days 091, 1994, through 273, 1994, 1489 local and regional events were located by the Apatity array, based on automatic association of P - and S-type arrivals. This gives an average of 11.1 events per processed day (134 days processed). 34% of these events are within 300 km , and 70% of these events are within 1000 km .

Spitsbergen array detections

The number of detections (phases) reported from day 091, 1994, through day 273, 1994, was 66,989 , giving an average of 381 detections per processed day (176 days processed).

Table 3.5 .6 shows daily and hourly distribution of detections for the Spitsbergen array.

Events automatically located by the Spitsbergen array

During days 091,1994 , through 273, 1994, 1792 local and regional events were located by the Spitsbergen array, based on automatic association of P-and S-type arrivals. This gives an average of 10.2 events per processed day (176 days processed). 46% of these events are within 300 km , and 78% of these events are within 1000 km .

U. Baadshaug

1	2	2	6	2	5	1	4	10	14	10	2	14	4	11	13	19	8	8	6	6	3	5	8	3	166	Apr	01	Friday
92	0	5	8	5	2	5	4	7	3	5	7	21	25	6	21	24	16	9	0	4	4	2	5	3	191	Apr	02	Saturday
93	4	8	5	3	3	2	7	6	9	9	2	5	7	8	2	5	5	3	4	2	1	6	7	2	115	Apr	03	Sunday
94	10	6	6	9	3	7	4	0	7	7	8	6	2	15	4	6	1	4	4	1	1	7	0	5	123	Apr	04	Monday
95	3	2	6	0	1	0	2	0	3	7	11	6	7	15	5	3	0	7	0	4	3	6	2	5	98	Ap	05	Tuesday
96	3	4	3	4	9	8	2	12	3	5	3	7	19	9	14	3	9	16	10	9	14	3	1	4	174	Apr	06	Wednesday
97	4	3	3	3	1	2	4	2	5	9	2	12	9	9	10	14	9	7	1	4	14	8	14	4	153	Apr	07	Thursday
98	7	22	17	13	10	4	0	3	5	5	7	11	7	8	9	5	4	7	4	24	3	6	5	4	190	Ap	08	Friday
99	4	8	11	4	7	15	6	5	3	13	8	16	19	8	2	6	7	0	1	3	3	8	22	41	220	Apr	09	Saturday
100	35	18	1	4	7	2	6	8	1	3	1	3	3	13	4	4	2	14	10	4	3	7	3	9	165	A	10	Sunday
101	20	27	32	26	19	2	0	2	2	10	5	13	11	7	5	6	6	3	16	8	7	3	6	4	240	Apr	11	Monday
102	12	16	24	13	10	1	3	3	4	1	8	14	19	26	8	8	6	4	6	15	7	6	7	8	229	Ap	12	Tuesday
103	20	14	20	33	24	3	4	5	5	9	9	16	6	20	9	5	7	5	21	6	3	3	10	3	260	A	13	Wednesday
104	0	2	3	8	8	3	2	1	2	8	6	25	18	16	11	11	5	6	7	4	4	11	4	5	170	Apr	14	Thursday
105	1	1	8	1	5	4	2	3	14	5	1	14	5	9	7	2	2	0	12	3	12	2	1	12	126	Apr	15	Friday
106	1	8	5	3	3	3	4	5	6	4	10	6	3	3	5	10	5	8	1	2	2	6	2	8	113	Ap	16	Saturday
107	1	5	4	4	3	4	6	1	7	3	5	5	4	4	3	5	3	4	1	1	16	4	3	2	98	Apr	17	Sunday
108	4	28	15	10	7	1	1	0	4	2	5	6	9	9	10	8	5	18	10	3	27	3	15	3	203	Apr	18	Monday
109	6	5	4	3	4	3	3	2	3	8	7	19	3	3	5	3	11	9	6	10	6	1	1	3	128	Apr	19	Tuesday
110	6	2	7	5	6	5	1	27	9	5	11	9	9	7	7	13	13	10	27	4	10	3	5	5	206	Ap	20	Wednesday
111	10	3	5	2	12	1	4	1	7	3	2	13	5	11	15	7	8	14	8	11	0	3	4	2	151	APr	21	Thursday
112	2	0	2	2	3	2	10	24	23	6	6	3	14	4	4	0	8	6	3	14	15	2	1	1	155	Apr	22	Friday
113	2	6	0	5	8	3	6	8	1	1	3	5	1	2	7	8	2	5	3	5	0	3	2	4	90	Ap	23	Saturday
11.4	3	6	5	8	4	2	5	1	1	3	3	0	1	1	2	0	1	5	0	0	3	2	3	2	61	Ap	24	Sunday
115	15	1	2	1	3	0	1	0	0	9	16	7	18	20	14	1	8	4	4	21	0	9	4	6	164	Ap	25	Monday
116	2	0	3	8	13	3	6	8	2	1	6	7	5	13	1	6	6	12	4	12	4	12	8	11	153	Apr	26	Tuesday
117	6	6	7	5	3	2	0	5	6	5	4	10	7	4	13	5	12	3	4	7	4	1	3	6	128	Ap	27	Wednesday
118	12	8	4	2	5	2	4	3	4	10	2	0	14	11	7	10	13	7	8	2	4	3	1	1	137	Apr	28	Thursday
119	0	2	3	0	2	0	40	24	19	11	7	8	3	6	2	4	4	2	7	1	4	0	0	1	150	Apr	29	Friday
120	0	0	1	6	2	6	0	1	3	5	1	7	5	1	3	2	2	1	2	0	2	1	2	3	56	Apr	30	Saturday
121	3	4	1	1	3	3	2	1	1	4	2	0	8	3	4	0	1	1	0	4	8	8	6	6	74	May	01	Sunday
122	2	3	3	6	4	2	5	0	1	8	4	7	9	5	7	2	6	8	13	3	10	6	7	5	126	May	02	Monday
123	5	4	6	6	8	2	3	4	5	12	5	1	12	10	4	6	5	8	8	3	6	5	14	8	150	May	03	Tuesday
124	4	2	5	6	3	4	11	2	5	12	16	5	8	6	6	7	11	7	5	13	6	0	3	2	149	May	04	Wednesday
125	5	2	4	5	2	4	5	3	3	5	7	11	8	5	12	7	5	1	4	12	4	1	3	4	122	May	05	Thursday
126	0	3	1	6	7	3	0	1	1	7	5	9	11	4	8	1	0	0	0	0	0	0	0	0	67	May	06	Friday
127	0	0	0	0	0	0	0	0	2	7	2	4	3	9	3	9	1	1	5	5	2	4	2	3	62	May	07	Saturday
128	3	3	4	1	4	1	0	2	2	5	3	1	1	5	1	1	0	2	2	1	3	1	7	1	54	May	08	Sunday
129	0	3	2	1	3	0	2	6	5	7	7	6	13	9	11	4	8	6	6	6	4	1	3	5	118	May	09	Monday
130	3	1	7	6	7	1	14	11	5	7	8	10	13	10	3	7	7	5	9	17	7	6	0	3	167	May	10	Tuesday
131	1	7	2	0	4	1	7	4	6	7	6	4	12	9	8	2	5	9	7	7	5	14	5	2	134	May	11	Wednesday
132	4	6	1	3	0	1	3	1	3	5	3	3	0	0	1	8	2	0	2	10	0	0	0	0	56	May	12	Thursday
133	0	0	0	0	0	0	1	4	1	3	1	6	8	10	2	6	7	0	4	2	4	1	5	5	70	May	13	Friday
134	4	5	4	2	6	1	6	7	7	3	3	3	2	3	0	7	2	2	0	2	4	5	6	6	90	May	14	Saturday
135	3	3	3	2	2	11	4	2	4	2	2	3	4	4	1	2	2	3	2	3	1	1	2	2	68	May	15	Sunday
136	5	3	2	1	2	3	3	0	3	7	9	1	3	6	3	1	0	0	0	0	0	0	0	0	52	May	16	Monday
137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	May	17	Tuesday
138	0	0	0	0	0	0	3	8	0	11	17	16	21	22	16	7	12	7	5	8	4	6	5	9	177	May	18	Wednesday
139	4	7	5	6	6	4	0	13	4	7	9	7	8	9	5	1	7	3	2	10	1	6	4	5	133	May	19	Thursday
140	2	9	2	3	8	1	0	7	3	8	9	10	6	9	3	3	14	2	7	4	6	6	10	4	136	May	20	Friday
141	5	8	6	15	10	4	4	6	3	7	1	2	4	9	4	3	7	5	3	6	6	4	9	10	141	May	21	Saturday
142	4	9	8	6	9	5	7	7	0	0	1	8	12	9	7	15	10	8	11	10	11	10	12	9	188	May	22	Sunday
143	3	11	12	8	15	13	19	14	8	14	11	16	6	12	10	13	7	21	8	12	12	8	14	12	279	May	23	Monday
144	16	15	17	4	26	2	11	9	2	4	14	10	1	13	9	7	10	6	9	1	4	18	2	5	215	May	24	Tuesday
145	9	6	5	3	8	1	4	12	3	5	6	5	18	15	15	9	7	11	11	13	13	21	29	28	257	May	25	Wednesday
146	13	14	21	33	15	7	15	9	26	11	21	7	11	13	10	10	4	12	6	7	6	6	6	7	290	May		Thursday

Table 3.5.1. (Page 1 of 4)

	3	6	11	6	5	2	6	5	10	6	1	12	11	27	32	24	23	23	36	31	37	40	38	33
148	29	43	41	33	26	22	9	10	3	3	10	1	5	10	2	9	8	6	17	6	2	1	8	0
149	6	1	3	2	3	3	6	3	3	11	8	2	15	6	11	17	3	4	7	2	11	1	5	11
150	4	5	8	7	3	1	1	1	7	5	12	9	16	21	5	5	9	11	11	17	5	2	2	12
151	5	7	2	0	0	0	0	0	0	0	0	8	11	13	5	8	12	15	21	24	20	12	15	15
152	15	12	16	26	17	6	10	13	13	21	16	22	23	19	22	18	28	27	2	22	23	25	38	37
153	40	35	32	37	27	10	10	17	17	19	17	23	18	23	21	29	29	23	29	22	17	34	47	45
154	39	48	43	40	24	23	16	23	24	26	15	16	11	12	1	15	12	20	22	25	37	23	18	21
155	20	23	21	1	12	1	12	1	1	1	1	24	17	19	26	12	15	2	12	28	24	24	32	24
156	22	30	33	32	27	48	36	23	23	18	15	9	6	14	10	4	4	5	2	3	0	1	0	3
157	1	3	2	5	4	3	2	4	6	8	2	8	9	14	8	6	5	3	9	4	10	19	9	7
158	2	2	4	2	8	10	2	6	3	8	5	11	16	20	8	3	3	2	4	5	11	10	1	3
159	3	2	2	3	10	1	1	8	1	5	11	9	9	15	3	11	4	5	4	11	5	16	13	8
160	26	22	3	8	5	7	7	13	2	5	15	10	10	20	7	3	13	5	4	2	11	16	10	10
161	9	12	9	27	9	0	4	6	0	8	8	16	14	14	7	11.	11	10	8	10	15	5	9	14
16	5	5	3	1	20	17	2	3	1	8	5	2	2	5	23	45	48	45	42	52	41	43	52	57
163	47	48	39	44	31	36	35	42	42	34	32	23	30	30	26	29	25	22	25	28	29	15	26	18
164	21	24	1	6	9	0	3	1	1	6	8	6	13	6	10	7	8	15	6	7	7	3	5	7
16	5	10	6	11	10	5	1	9	4	10	5	15	12	12	11	15	12	13	12	12	13	10	6	2
16	5	10	12	12	9	5	6	10	10	12	8	12	13	18	19	16	17	20	20	16	6	5	3	3
167	2	0	4	7	3	2	1	7	7	9	15	11	13	16	1	2	3	4	6	10	7	9	3	2
168	1	3	0	14	1	6	5	7	3	13	13	11	14	11	13	7	3	1	1	15	0	19	4	0
169	3	3	4	8	3	6	2	9	7	14	2	2	6	1	4	4	7	2	4	5	2	3	2	4
1	4	22	29	20	7	3	1	9	1	3	9	5	10	0	7	2	5	4	2	4	5	4	2	3
1	4	9	2	2	6	1	3	3	8	14	14	0	7	5	8	8	5	6	4	9	2	13	1	9
17	12	5	9	9	12	4	3	5	6	9	10		10	9	13	9	4	4	2	11	0	4	1	1
173	3	2	2	3	2	2	4	9	5	6	1	6	13	9	15	9	3	2	3	1	10	7	10	2
174	2	2	2	4	3	2	9	6	4	4	7	7	15	20	14	4	6	2	6	11	4	9	1	5
17	7		3	2	4	10	8	2	7	7	5	9	6	5	0	9	5	7	2	11	3	12	5	3
176	2	3	1	6	6	11	5	5	10	5	7	5	7	0	4	4	5	9	8	7	4	6	0	5
177	7	2	0	5	4	0	14	3	2	2	8	6	2	2	3	0	8	4	5	7	1	2	4	1
178	3	0	3	4	4	3	4	7	7	3	12	10	11	12	19	0	0	0	0	0	0	0	0	0
179	0	7	11	9	5	3	6	5	9	10	15	44	28	0	0	0	0	2	1	0	12	63	47	13
180	20		10	4	3	2	13	11	13	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
181	0	1	1	4	6	5	10	5	11	11	11	16	9	16	20	10	22	9	11	16	13	19	21	24
182	23	21	24	20	20	16	17	20	19	29	31	23	23	28	36	38	44	29	40	42	44	37	45	37
183	40	29	34	35	31	30	29	44	28	47	36	43	41	39	5	47	48	48	30	47	39	43	49	35
184	35	30	17	30	13		3	11	0	0	1	3	6	2	21	42	4	0	0	0	2	41	27	11
185	8	5	3	3	8	1	13	0	6	14	16	30	4	5		13	12	14	7	15	3	10	4	0
186	0	0	0	0	0	0	0	0	7	7	13	12	11	12	3	8	11	9	3	12	5	15	2	1
187	5	2	5	6	1	1	1	5	7	15	4	12	16	25	7	10	11	6	8	17	6	10	1	2
188	1	9	0	3	2	2	7	1	9		13	21	17	10	6	12	8	11	4	17	11	1	3	15
189	4	2		3	0		7	3	0	5	1	7	1	10	5	12	8	11	15	13	4	17	4	5
190	6	2	7	4	4	8	11	8	1	5	10	11	13	4	8	4	6	9	2	2	5	9	5	8
191	0	6	7	12	3	6	3	3	12	3	7	1	5	4	3	1	4	1	6	6	3	6	5	7
19	6	4	4	1	5	1	10	2	2	10	12	16	12	13	5	4	12	7	5	6	16	3	15	2
193	9	4	4	2	9	33	16	22	26	21	18	16	21	11	13	11	9	7	12	12	5	11	9	0
194	6	2	18	11	4	16	48	17	18	5	8	13	36	1	11	7	8	6	3	10	4	7	4	1
195	12	2	3	3	7	14	24	23	21	9	12	13	20	22	9	10	4	6	12	15	16	10	1	3
196	6	5	3	1	4	23	25	22	17	17	20	41	12	9	6	5	4	3	5	10	4	1	4	5
197	8	0	3	4	9	13	49	36	45	23	22	38	57	32	6	0	1	6	10	2	5	4	0	3
198	6	6	3	2	2	1	7	8	6	1	3	2	6	3	6	0	3	8	4	0	2	5	6	3
199	9	1	10	2	7	1	10	5	17	17	2	6	8	30	28	8	4	3	15	18	2	11	7	1
200	7	4	3	3	7	3	8	8	15	29	20	42	29	20	26	19	10	2	2	9	4	14	5	4
201	2	2	7	3	9	10	17	16	15	21	14	15	11	9	8	7	13	3	15	10	11	4	9	2
202	4	3	4	2	6	11	19	17	11	7	10	5	10	11	5	13	9	13	17	26	9	17	1	

Table 3.5.1. (Page 2 of 4)

203	6	6	9	14	9	8	4	8	12	7	22	15	4	8	6	14	8	10	12	1	3	6	9	8
204	5	5	1	9	15	4	17	16	7	7	12	5	5	8	7	4	3	6	8	3	8	7	0	1
205	3	2	1	2	4	7	7	10	8	29	11	8	2	1	15	4	2	6		7	14		I	4
206	3	2	7	3	11	10	7	5	5	4	6	15	5	1	11	3	14	10	4	8	4	5	11	7
207	6	1	0	5	7	10	10	1	3	5	8	9	6	11	8	7	11	6	0	0	1	0	3	3
208	5	2	6	6	8	11	5	6	6	3	0	4	13	6	0	0	0	0	13	1	7	0	0	0
209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	0	0	0	0	0	0	0	0	0	13	10	2	0	19	7	7	5	9	9	16	6	6	7	5
211	3	8	7	4	4	13	16	3	4	10	24	12	9	12	7	5	10	9	4	6	7	1	6	5
212	9	4	0	3	8	20	12	4	3	2	5	8	6	1	6	7	5	15	4	6	5	9	6	1
213	10	11	16	8	6	5	7	9	2	4	5	6	6	10	11	14	12	2	6	10	1	4	10	2
214	4	5	12	11	7	3	9	3	6	7	10	6	11	10	18	5	8	12	5	18	4	10	7	2
215	4	10	10	6	5	9	2	5	13	12	10	6	10	15	5	23	10	23	23	19	14	19	7	21
216	15	13	17	15	4	12	30	10	13	27	15	4	13	14	12	13	8	31	20	36	16	39	23	21
217	27	14	10	36	10	8	7	7	14	4	22	20	10	30	23	23	12	9	23	34	13	34	3	4
218	5	19	14	10	9	21	13	4	16	7	3	5	9	11	7	11	11	4	9	5	4	9	4	2
219	4	9	5	7	7	12	5	6	5	2	8	4	0	7	4	2	5	2	5	1	8	4	3	3
220	0	0	4	4	5	3	0	4	5	3	5	5	5	7	6	8	14	13	3	21	7	18	5	4
221	4	2	6	6	1	7	16	7	5	13	9	7	13	14	11	7	17	20	3	17	5	15	8	13
222	4	4	7	6	3	3	9	4	6	4	3	8	14	7	11	11	13	7	10	8	22	3	2	6
223	0	11	5	10	4	6	10	1	4	11	7	11	6	5	9	4	7	7	5	13	2	22	6	9
224	5	5	7	3	2	2	11	4	11	7	6	9	13	1	13	5	4	4	16	9	1	8	15	3
225	9	9	9	15	12	20	9	12	7	7	6	5	11	8	3	9	6	5	9	2	6	4	7	9
226	9	21	12	4	4	2	5	10	5	6	8	4	10	12	6	3	5	7	4	8	4	5	1	2
227	7	7	3	1	2	0	6	2	5	1	6	5	7	11	10	4	10	2	8	7	4	12	1	3
228	2	4	4	9	12	2	6	8	4	4	11	10	19	6	8	7	10	4	8	9	4	6	7	1
229	7	2	4	6	4	6	8	10	8	2	8	8	11	10	7	11	13	8	14	10	7	5	4	3
230	6	10	1.	6	14	29	12	6	11	4	8	8	20	17	17	9	5	5	15	21	6	17	6	4
231	6	8	2	12	3	3	9	7	10	6	14	8	3	14	8	4	5	14	4	7	0	22	3	8
232	5	3	11	2	5	12	4	7	5	2	5	7	16	12	12	2	4	3	5	10	11	7	4	7
233	4	2	10	1	14	11	4	5	8	4	5	3	6	6	3	7	9	5	13	5	4	9	3	9
234	2	5	6	4	7	3	5	4	3	10	7	13	15	8	4	7	6	5	5	16	3	17	7	4
235	7	4	8	5	2	4	3	1	2	4	6	4	11	7	24	2	6	8	12	4	5	15	0	3
236	5	8	13	1	8	4	2	9	8	3	12	5	16	8	13	7	11	12	12	15	7	11	11	6
237	11	10	16	16	10	17	8	15	3	16	12	6	12	20	18	11	14	7	5	14	3	16	3	4
238	4	1	6	7	2	1	2	1	4	3	7	12	1	2	9	5	7	5	5	5	2	3	14	3
239	1	4	5	4	0	5	5	7	5	6	5	6	0	4	2	14	8	3	3	2	3	3	0	6
240	1	6	1	3	3	4	3	4	5	4	1	1	5	2	8	12	4	8	11	7	6	9	8	3
241	11	8	7	4	4	0	2	5	5	15	3	16	10	11	18	20	9	12	10	8	1	15	2	7
242	3	3	7	8	5	4	9	7	6	7	6	10	22	8	16	19	1.6	11	2	18	5	15	6	2
243	3	5	8	8	5	8	3	1	7	10	10	13	5	16	10	16	14	6	9	11	8	21	3	13
244	7	19	1	16	1	3	0	8	12	6	2	17	24	10	9	12	20	12	8	16	8	23	6	8
245	6	1	8	4	3	3	5	2	2	3	5	8	2	2	12	5	0	0	0	0	0	0	0	0
246	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
248	0	0	0	0	0	0	1	3	1	5	5	10	13	22	13	5	12	13	6	14	19	13	15	1
249	6	4	1.3	9	2	10	9	3	22	13	5	14	6	13	14	8	12	6	3	17	8	9	8	4
250	9	3	5	15	13	1.	0	4	2	5	3	7	10	11	11	13	7	5	2	11	4	23	3	11
251	6	10	6	10	1	5	7	5	13	17	14	11	14	14	16	17	10	7	5	9	5	22	7	8
252	3	10	11	4	3	4	5	8	11	8	6	6	6	15	10	14	3	3	3	13	1	11	2	6
253	2	4	2	4	1	6	4	16	2	8	7	7	8	21	34	52	34	40	46	44	42	51	42	58
254	42	44	40	35	34	42	41	30	34	35	35	39	40	20	31	30	23	27	19	16	15	10	12	12
255	13	3	5	2	12	4	3	4	3	10	12	13	8	6	5	8	8	10	4	10	5	12	4	10
256	9	8	11	7	13	3	1	2	3	8	12	12	17	7	11	4	9	11	9	15	7	7	8	12
257	5	3	6	12	7	2	4	1	12	8	4	10	15	9	16	3	14	9	18	19	7	13	6	7
258	4	6	7	6	3	2	5	8	6	4	3	5	4	6	13	11	2	7	6	10	7	10	1	5

```
209 Jul 22 Friday
163 Jul 23 Saturday
170 Jul 24 Sunday
161 Jul 25 Monday
121 JuI 26 Tuesday
102 Jul 27 Wednesday
    O Jul 28 Thursday
121 Jul 29 Friday
189 Jul 30 Saturday
149 Jul 31 Sunday
177 Aug 01 Monday
193 Aug 02 Tuesday
281 Aug 03 Wednesday
421 Aug 04 Thursday
397 Aug 05 Friday
212 Aug 06 Saturday
118 Aug 07 Sunday
149 Aug 08 Monday
226 Aug 09 Tuesday
175 Aug 10 Wednesday
175 Aug 11 Thursday
164 Aug 12 Friday
199 Aug 13 Saturday
157 Aug 14 Sunday
124 Aug 15 Monday
165 Aug 16 Tuesday
176 Aug 17 Wednesday
257 Aug 18 Thursday
180 Aug 19 Friday
161 Aug 20 Saturday
150 Aug 21 Sunday
166 Aug 22 Monday
147 Aug 23 Tuesday
207 Aug 24 Wednesday
267 Aug 25 Thursday
111 Aug 26 Friday
101 Aug 27 Saturday
119 Aug 28 Sunday
203 Aug 29 Monday
215 Aug 30 Tuesday
213 Aug 31 Wednesday
2 4 8 \text { Sep 01 Thursday}
    7 1 \text { Sep 02 Friday}
    0 Sep 03 Saturday
    0 Sep 04 Sunday
171 Sep 05 Monday
218 Sep 06 Tuesday
178 Sep 07 Wednesday
239 Sep 08 Thursday
166 Sep 09 Friday
535 Sep 10 Saturday
7 0 6 \text { Sep 11 Sunday}
174 Sep 12 Monday
206 Sep 13 Tuesday
210 Sep 14 Wednesday
141 Sep 15 Thursday
```

Table 3.5.1. (Page 3 of 4)

Day $\begin{array}{lllllllllllllllllllllllllllllllllllllll} & 00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & \text { Sum } & \text { Date }\end{array}$

25	3	0	3	11	4	0	14	2	5	6	15	3	12	4	5	11	12	18	22	33	32	31	27	34	307	Sep	16	Friday
260	30	36	27	26	26	34	7	12	11	5	7	6	6	5	13	11	9	11	13	12	10	5	11	8	341	Sep	17	Saturday
261	5	4	8	10	2	1	10	8	4	8	8.	2	6	8	11	5	5	11	9	3	7	5	3	3	146	Sep	18	Sunday
262	1	2	3	5	5	1	2	5	2	3	3	14	3	2	15	16	9	19	3	12	3	8	7	8	151	Sep	19	Monday
263	8	2	7	4	3	6	4	3	6	2	4	14	2	8	7	9	7	7	6	7	10	10	4	3	143	Sep	20	Tuesday
264	3	12	2	6	1	3	2	2	3	3	6	18	16	3	8	7	4	7	3	10	2	11	1	2	135	Sep	21	Wednesday
265	1	12	21	1	0	0	1	11	1	3	2	17	7	7	12	12	9	10	8	7	3	1	11	2	159	Sep	22	Thursday
266	3	3	9	8	9	6	1	3	1	3	6	15	12	7	10	2	11	4	1	12	8	23	2	4	163	Sep	23	Friday
267	8	6	9	9	11	8	7	4	7	14	13	15	4	5	3	10	2	11	8	9	3	2	10	4	182	Sep	24	Saturday
268	15	0	2	6	7	2	3	7	8	7	9	10	7	12	5	3	9	4	5	8	5	11	8	14	167	Sep	25	Sunday
269	8	11	12	11	6	3	2	2	3	3	9	7	4	18	5	15	10	14	8	4	6	11	4	14	190	Sep	26	Monday
270	5	4	2	2	11	0	12	1	12	6	20	4	15	10	9	10	6	8	7	2	4	4	14	6	174	Sep	27	Tuesday
271	2	1	3	12	2	7	2	5	9	8	20	7	14	5	8	6	14	22	4	4	10	8	11	3	187	Sep	28	Wednesday
272	4	13	5	11	4	7	4	4	7	9	4	13	6	14	18	11	10	13	2	5	7	2	8	5	186	Sep	29	Thursday
273	8	5	3	16	3	7	3	6	5	15	14	8	10	6	15	15	11	1.3	0	6	19	4	10	11	213	Sep	30	Friday

NRS $\begin{array}{llllllllllllllllllllllllllllllllllllll}00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}$

Table 3.5.1. Daily and hourly distribution of NORESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

8	5	8	5	3	11	13	32	29	21	7	18	16	21	20	9	19	14	10	11	6	5	21	
9	9	12	6	6	13	3	8	17	4	24	17	11	7	7	13	7	5	18	9	5	6	11	2
3	10	5	7	2	3	0	14	10	20	3	5	13	14	2	6	17	12	5	11	9	12	26	5
2	4	5	6	6	1	12	11	8	7	8	8	13	3	6	19	15	34	14	15	10	6	18	6
6	10	3	4	4	7	10	4	17	23	10	16	7	14	6	21	5	6	5	4	7	10	12	2
4	5	2	8	6	24	8	15	4	17	12	34	17	11	9	19	7	9	5	4	14	9	18	4
6	4	8	12	12	11	13	7	9	10	19	20	11	13	5	9	9	16	9	18	10	7	20	10
2	13	8	10	12	8	25	18	21	21	24	28	19	21	17	15	14	4	13	17	12	9	23	11
46	50	98	14	13	15	5	9	9	23	18	21	15	12	10	16	13	7	3	8	19	19	24	16
9	9	8	10	13	23	13	12	11	20	10	6	11	18	7	18	20	23	9	12	7	7	21	6
2	12	13	7	9	4	8	26	21		061	24	21	14	21	14	94	251			41	31	34	11
12	15	20	21	12	6	6	18	17	11	17	20	27	16	24	10	4	9	21	12	12	7	19	4
17	4	6	5	13	4	6	12	14	16	19	18	13	12	7	23	20	23	5	5	10	12	24	4
5	1	8	20	7	3	14	26	6	7	30	41	32	16	25	10	7	14	15	9	14	11	19	5
12	10	9	14	6	13	20	13	19	23	13	39	19	13		2	8	7	23	15	16	11	24	7
10	5	22	10	21	19	10	4	15	19	20	9	4	17	12	13	16	3	23	5	13	13	18	8
1	7	3	4	15	13	14	3	20	9	4	8	13	10	19	11	3	7	12	3	5	4	22	4
7	5	1	6	9	3	13	21	12	11	17	20	21	6	13	15	9	21	6	8	7	10	13	9
6	7	6	1	12	8	10	6	16	14	17	22	14	10	15	15	9	10	12	11	12	9	24	9
19	5	7	9	3	4	5	29	18	25	26	24	29	15	14	8	9	13	18	10	10	10	27	13
24	12	20	17	14	9	12	18	15	9	11	33	27	15	4	31	10	17	19	6	19	21	45	41
23	38	38	27	25	16	14	22	26	16	18	12	19	17	9	4	11	8	6	14	11	4	12	3
10	5	2	11	10	11	5	3	10	4	25	14	15	8	15	19	8		8	12	8	4	12	5
5	8	15	6	9			9	6	8	14	8	5	20			7		4	13	12	11	22	8
13	5	6	7	11	3	6	8	7	9	10	15	11	10	9	8	4	8	7	10	7	5	19	5
5	13	8	10	6	5	6	10	14	13	11	8	17	26	6	6	15	16	18	19	15	4	12	12
12	6	4	10	3	4	7	7	5	28	14	33	20	15	14	14	6	6	8	8	18	6	20	1
	5	4	5	17	8	28	16	10	11	9	22	18	25	13	12	24	16	17	14	17	9	25	7
9	9	5	26	7	11	31	34	23	21	22	34	25	9	15	17	14	9	16	4	8	11	27	14
44	12	3	17	15	10	4	8	10	15	24	20	9	11	10	15	26	37	38	57	52		101	85
94	94	71	69	55	40	33	28	38	27	29	31	34	13	7	2	70	93	47	70	85	62	47	56
61	51	67	61	53	71	53	4	4	10	18	32	32	24	14	13	15	25	15	19	22	5	23	7
7	24	23	38	43	34	55	37	37	11	20	20	15	5	19	53	71	19	10	6	13	13	23	9
6	23	4	6	12	18	24	16	24	36	42	61	41	20	17	26	16	17	24	15	14	11	20	10
5	8	3	10	10	11	14	17	1	15	26	27	20	15	11	11	11	4	8	15	8	11	25	8
5	9	8	,	6	8	17	18	11	26	8	25	14	12	20	31	17	15	13	18	8	6	21	5
8	17	10	4	5	5	11	11	11	14	19	20		15	22	17	9	12	14	8	10	9	23	8
3	7		16	11	10	0	7	17	6	7	11	4	23	13	12	12	18	17	9	19	6	18	7
3	2	1	2	9	6	8	6	9	11	16	15	23	12	18	8	7	13	10	8	7	19	14	5
5	4	17	6	10	10	21	25	18	16	17	9	11	14	8	10	5	8	13	9	9	9	19	7
7	10	3		3	2	9	14	20	5	26	9	21	11	4	18	7	8	15	8	15	14	25	5
9	10	7	8	8	2	11	12	11	9	12	12	12	20	14	30	16	28	16	18	15	6	26	6
10	6	5	6	7		19	22	21	23	31	42	18	8	4	20	12	6	8	9	11	10	20	11
10	10	1	9	6	6	10	13	11	8	10	13	6	11	3	12	1	4	12		9	11	23	6
4	5	2	7	18	12	7	4	4	9	9	11	18	15	21	8	7	10	21	25	54	64	95	3
00	60	31	25	33	16	43	41	29	17	17	18	10	11	9	11	20	3	13	10%	10	7	13	3
	1	8	2	1	4	3	10	9	13	5	13	12	7	13	9	5	2	7	10	6	12	24	13
7	1	13	9	13	4	26	28	21	27	29	26	20	28	33	37	42	58	18	12	21	8	17	4
3	3	13	10	12	4	13	9	17	17	34	16	19	15	14	35	18	9	9	10	33	19	28	10
11	10	6	6	25	7	22	21	33	19	37	52	33	13	10	19	9	9	22	12	11	2	20	26
50	21	10	9	6	5	13	4	6	15	12	22	8	17	12	13	11	11	4	9	15	6	24	17
11	9	4	6	3	17	19	7	14	5	8	14	5	13		12.	6	7	3	12	9	13	22	5
1	11	4	2	7	7	17	17	10	9	5	16	3	8	3	10	4	15	8	6	7	2	23	3
2	4	25	8	26	11	16	6	13	4	15	16	27	13	18	18	15	14	24	2	8	17	29	6
13	7	13	7	14	7	13	13	19	17	13	35	20	11	17	19	10	10	16	18	23	18	30	12
30	11	11		17			21	26	16	24	24							20				25	

	Apr 01	Friday
229	Apr 02	Saturday
214	Apr 03	Sunday
237	Apr 04	Monday
213	Apr 05	Tuesday
265	Apr 06	Wednesday
268	Apr 07	Thursday
375	Apr 08	Friday
483	Apr 09	Saturday
303	Apr 10	Sunday
1090	Apr 11	Monday
340	Apr 12	Tuesday
292	Apr 13	Wednesday
345	Apr 14	Thursday
343	Apr 15	Friday
309	Apr 16	Saturday
214	Apr 17	Sunday
263	Apr 18	Monday
275	Apr 19	Tuesday
350	Apr 20	Wednesday
449	Apr 21	Thursday
393	Apr 22	Friday
228	Apr 23	Saturday
209	Apr 24	Sunday
203	Apr 25	Monday
275	Apr 26	Tuesday
269	Apr 27	Wednesday
337	Apx 28	Thursday
401	Apr 29	Friday
690	Apr 30	Saturday
1195	May 01	Sunday
699	May 02	Monday
605	May 03	Tuesday
503	May 04	Wednesday
309	May 05	Thursday
327	May 06	Friday
289	May 07	Saturday
257	May 08	Sunday
232	May 09	Monday
280	May 10	Tuesday
263	May 11	Wednesday
318	May 12	Thursday
336	May 13	Friday
213	May 14	Saturday
523	May 15	Sunday
550	May 16	Monday
198	May 17	Tuesday
502	May 18	Wednesday
370	May 19	Thursday
435	May 20	Friday
320	May 21	Saturday
228	May 22	Sunday
198	May 23	Monday
337	May 24	Tuesday
375	May 25	Wednesday
336	May 26	Thursday

Table 3.5.2 (Page 1 of 4)

	4	16	6	9	9	2	10	12	6	12	23	30	13	8	10	3	11	5	20	12		5		2
148	13	8	15	8	5	5	7	17	12	8	34	13	9	7	9	18	8	4	20	10	9	21	24	3
149	5	4	8	4	7	4	5	3	6	7	3	2	12	3	7	10	7	4	8	1	6	8	20	6
150	7	9	5	8	9	7	6	12	9	4	14	17	10	18	16	8	14	14	13	15	19	26	23	
151	4	2	3	5	5	6	7	6	4	12	8	22	20	23	18	23	25	39	22	19	1.9	5	30	14
15		3	15	12	3	6	7	22	28	14	16	26	1	21	35	5	67	51	30	6	6	13	12	3
153		0	9	6	7	2	7	3	1	2	15	1	33	28	6		46	2			7	5	8	4
154	3	7	1	5	5	10	21	47	35	17	27	22	22	14	14	8	10	2	1.4	5	29	22	24	1
155	4	2	11	6	4	2	8	17	1	5	8	2	9	8	6	6	7	2	3	10	6	10	14	6
156		16	10	2	6	7		8	2	8	3	3	1		7	3	7	4		1	4	1	3	2
157	5	5	2	6	2	5	4	11	11	22	12	19	10	5	18	19	17	11	7	12	16	16	20	11
158	4	4	9	8	13	9	24	16	13	10	19	16	19	18	24	13	17	13	18	24	12	12	16	14
159	4	4	5	7	8	10	6	1	1	1	25	2	15	10	4	3	3	8	11	6	13	10	17	6
16	21	38	6	5	4	12	17	17	34	34	3	23	12	7	9	10	23	8	22	8	8	3	21	3
161	6	10	6	25	2	3	21	19	10	21	36	32	24	17	14	21.	4	11	8	16	7	33	22	9
16	3	8	0	2		9	8	6	11	32	21	26	7	11	34	23	26	22	22	1.1	4	3	7	3
16	5	8	3	3	12	5	3	1	1	9	20	15	9	18	1	8	12	12	1	6	20	10	0	13
16	12	20	6	8	9	15	19	17	12	17	16	21	10	13	28	29	27	15	14	12	13	12	18	17
165	9	6	4	10	4	7	4	13	14	8	7	10	6	5	8	10	7	7	32	8	14	9	0	
16	12	12	14	16	10	10	16	25	32	37	36	31	16	13	12	1	13	18	25	7	7	2	6	12
16	12	10	7	6	13	10	18	1.	19	17	3	20	32	2	20	23	19	38	44	11	6	8	1	
168	0	0	0	0	1	27	2	2	5	3	41	3	19	3	1	1	10	9	15	7	7	7	9	
16	13		9	27	2	9	14	18	18	10	3	26	53	34	2	41	14	8	23	12	7	9	8	
170	4	4	16	18	11	8	13	1	19	2	22	23	18	2	2	17	1	9	13	11.	20	10	4	16
17	7	5	14	16	2	8	29	70	3	46	3	3	22	22	1	21	11	9	7	11	9	3	2	
17	2	7	13	7	19	5	39		21	44	30	4	3		31	17	16	12	15	14	7	11	3	
173	2	8	5	11	13	1	16	24	2	3	2	47	4	25	16	24	16	12	21	19	32	22	14	12
174	4	6	9	9	14	15	18	30	1	30	2	23	2	2	13	14	15	7	24	8	6	8	5	
17	10	4	3	3	11		10	1.	12	15	2	15	1	19	3	16	4	4	9	6	7	16	4	
176		3	11	16	1		14	9	2	9	1	2	1	2	1	12	5	2	6	6	4	20	2	
177	6	5	4	10	16	9	1	10	12	11	1	4	17	2	17	1	17	15	12	7	8	9	15	20
8		4		8	8	5	3	24	8	2	25	1	5		1	6	8	13	18	12	12	15	26	13
179	7	10	8	19	13	15	2	46	21	28	2	2	22	2	2	2	41	14	21	22	9	16	21	
0	1	8	20	14	8	15	13	2	13	20	25	35	27	21	14	15	20	9	18	12	26	6	16	
181	16	5	10		11	20	1.3	2	1	2	2	8	2	12	15	5	9	4	10	6	13	10	23	
182	6	3	7	2	8	1	17	2	1	3	5	20	1	14	1	24	6	17	24	14	22	14	22	
183	12	5	6	13	11	23	25	2	14	43	2	33	1	11	1	8	12	9	13	6	14	16	8	
18	5	6	14	13	18	13	7	1	9	1	21	1	1	10	1	1	10	16	7	13	10	6	5	
185	5	5	5	6	18	16	23	10	22	26	2	21	2	2	18	21	32	21	18	0	0	0	0	
186	0	0	0	0			15	11	2	18	29	45	2	22	20	19	22	2	21	7	5	12	22	
187	7	11	7	8	6	9	16	25	19	21	25	26	26	22	14	25	1	27	21	17	10	6	22	17
188	25	1.5	10	24	9	12		1	0	0	0	0	0	0	6	23	17	9	14	10	22	8	22	14
189	5	13	22	12	16	10	2	1	1	25	34	32	38	27	10	16	5	10	8	15	13	14	16	
190	15	13	8	13	9	11	15	21	16	31	20	25	13		13		13	13	13	4	8	7	7	
191		11	11	15	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19		5	5	6	1	20	16	18	17	33	29	35	38	25	9	18	15	19	22	13	11	15	14	
193	6	3	11	15	15	8	4	1	23	31	4	38	3	23	16	1	23	23	16	13	13	5	13	
94	11	9	16	58	36	21	24	23	14	16	25	47	2	11	12	31	20	29	34	11	15	14	21	
195	16	10		9	18	20	20	24	4	29	27	44	29	2	2	17	25	22	31	25	28	13	18	
19	2	6	6	3	10		23	26	15	18	24	4	17	26	10	14		5	21	12	11	4	12	
197	15	14	10	11	22	4	9	7	11	31	31	29	48	25	16	10	5	17	20	2	1	3	5	
198	5	6	0	10	10	3	7	4	22	25	21	28	16	7	22	20	8	16	15	6	15	11	16	
199	10	3	12	13	16	10	19	42	33	30	28	52	23	24	26	25	17	16	15	21	8	13	15	
200	8	6	2	17	8	11	25	14	28	43	43	41	24	17	11	21	13	9	28	11	11	15	16	
201	9	2	17	9	10	6	12	27	22	6	63	60	61	46	7	35	20	11	0	45	19	21	2	

Sum Date
266 May 27 Friday 277 May 28 Saturday 162 May 29 Sunday 290 May 30 Monday 341 May 31 Tuesday 471 Jun 01 Wednesday 376 Jun 02 Thursday 375 Jun 03 Friday 205 Jun 04 Saturday 140 Jun 05 Sunday 266 Jun 06 Monday 345 Jun 07 Tuesday 237 Jun 08 Wednesday 394 Jun 09 Thursday 377 Jun 10 Friday 317 Jun 11 Saturday 270 Jun 12 Sunday 380 Jun 13 Monday 216 Jun 14 Tuesday 406 Jun 15 Wednesday 414 Jun 16 Thursday 424 Jun 17 Friday 481 Jun 18 Saturday 373 Jun 19 Sunday 475 Jun 20 Monday 478 Jun 21 Tuesday 462 Jun 22 Wednesday 369 Jun 23 Thursday 241 Jun 24 Friday 273 Jun 25 Saturday 334 Jun 26 Sunday 315 Jun 27 Monday 499 Jun 28 Tuesday 402 Jun 29 Wednesday 321 Jun 30 Thursday 421 Jul 01 Friday 365 Jul 02 Saturday 273 Jul 03 Sunday 347 Jul 04 Monday 333 Jul 05 Tuesday 406 Jul 06 Wednesday 273 Jul 07 Thursday 416 Jul 08 Friday 309 Jul 09 Saturday
66 Jul 10 Sunday 416 Jul 11 Monday 457 Jul 12 Tuesday 538 Jul 13 Wednesday 534 Jul 14 Thursday 342 Jul 15 Friday 350 Jul 16 Saturday 300 Jul 17 Sunday 483 Jul 18 Monday 422 Jul 19 Tuesday 524 Jul 20 Wednesday 637 Jul 21 Thursday

Table 3.5.2. (Page 2 of 4)

9	7	8	4	3	9	21	33	37	28	35	51	35	33	16	17	14	22	14	11	5	7	14	14	447	Jul 22	iday
2	2	4	22	15	8	17	17	22	29	34	17	29	14	6	10	8	10	10	10	11	7	5	4	313	Jul 23	Saturday
12	7	6	8	13	6	27	20	18	21	27	51	27	8	30	13	12	16	24	8	18	13	13	5	403	Jul 24	Sunday
4	7	11	15	15	11	20	28	19	21	41	37	38	24	12	29	19	39	23	10	5	7	37	18	490	Jul 25	Monday
2	4	4	9	19	11	12	7	22	27	32	44	26	23	15	14	7	21	27	24	6	3	17	6	382	Jul 26	Tuesday
4	2	7	6	8	12	8	15	21	29	38	37	27	25	18	33	19	22	22	21	13	14	14	7	422	Jul 27	Wednesday
7	10	4	6	14	7	8	16	7	41	16	34	38	24	13	10	10	11	15	28	8	11	23	15	376	Jul 28	Thursday
19	8	7	14	15	24	15	12	34	22	30	46	27	19	12	25	16	5	21	15	10	14	28	6	444	Jul 29	Friday
9	13	4	6	10	7	9	15	21	23	59	49	2	22	20	10	7	15	16	2	10	20	12	2	363	Jul 30	Saturday
5	6	3	3	6	18	29	16	14	31	35	30	20	23	11	27	9	15	8	20	6	8	7	6	356	Jul 31	Sunday
11	11	10	14	14	10	11	19	35	17	24	17	14	25	26	9	12	6	12	14	15	15	16	11	368	Aug 01	Monday
12	9	9	13	18	10	9	10	6	19	23	25	37	17	25	10	14	12	25	20	21	11	16	3	374	Aug 02	Tuesday
9	19	27	12	8	15	15	14	12	17	29	25	20	25	17	32	23	15	6	20	10	8	20	4	402	Aug 03	Wednesday
2	1	9	7	6	16	15	8	6	35	16	24	22	23	15	10	11	7	8	9	4	14	30	1	299	Aug 04	Thursday
4	16	10	21	33	43	23	25	25	32	34	30	24	20	9	12	26	4	18	8	9	12	13	7	458	Aug 05	Friday
5	15	7	7	9	10	7	10	19	19	22	9	19	17	17	17	20	20	12	5	9	18	19	8	320	Aug 06	Saturday
10	6	6	9	7	2	10	3	18	6	18	23	12	9	10	13	6	7	11	9	6	4	11	6	222	Aug 07	Sunday
5	9	4	0	2	8	7	15	13	18	27	27	8	11	15	19	38	85	74	66	67	71	81	78	748	Aug 08	Monday
77	59	53	38	48	63	34	28	19	49	23	25	27	31	37	22	13	47	52	72	62	65	73	72	1089	Aug 09	Tuesday
53	54	71	63	58	34	37	39	37	42	45	48	24	10	15	29	19	14	21	18	15	10	19	10	785	Aug 10	Wednesday
19	18	27	11	12	12	9	7	32	17	28	30	17	29	11	18	23	9	9	23	8	11	20	6	406	Aug 11	Thursday
8	1	10	14	14	8	8	16	20	18	38	37	24	30	9	14	10	15	3	17	5	11	29	8	367	Aug 12	Friday
5	5	10	11	6	6	17	14	17	35	19	38	65	70	5	8	17	12	7	11	5	9	15	8	415	Aug 13	Saturday
9	29	12	9	16	2	12	10	20	16	10	22	10	9	11	5	2	9	8	12	5	5	10	7	260	Aug 14	Sunday
8	5	4	9	9	6	9	0	0	0	8	33	18	22	6	17	18	17	10	17	14	9	10	12	261	Aug 15	Monday
11	4	9	10	11	4	12	30	16	22	22	24	22	19	25	12	14	15	10	11	11	7	37	8	366	Aug 16	Tuesday
4	4	5	11	13	14	25	36	18	29	19	26	33	16	15	25	13	23	16	20	8	5	31	10	419	Aug 17	Wednesday
11	12	13	11	37	31	22	16	24	14	26	40	23	31	18	8	8	10	18	18	5	10	17	2	425	Aug 18	Thursday
4	6	4	11	11	5	20	21	28	18	38	43	23	10	24	14	16	21	18	21	11	10	28	21	426	Aug 19	Friday
14	4	15	16	14	10	9	49	19	24	21	12	7	14	21	8	8	30	18	14	16	18	20	7	388	Aug 20	Saturday
5	1	14	8	18	8	11	5	14	10	37	5	3	12	14	17	25	18	15	13	14	8	17	12	304	Aug 21	Sunday
9	10	7	6	27	10	8	27	28	14	46	22	50	23	19	23	30	27	33	9	21	19	22	6	496	Aug 22	Monday
8	5	8	5	11	20	12	0	0	27	32	28	44	21	26	38	13	14	15	19	33	25	8	7	419	Aug 23	Tuesday
4	10	18	9	27	19	26	19	17	24	41	27	22	33	15	23	18	25	17	8	18	12	19	5	456	Aug 24	Wednesday
3	6	7	13	14	19	22	11	22	24	33	24	32	25	28	37	22	21	24	20	8	18	10	8	451	Aug 25	Thursday
14	0	10	14	8	13	12	24	26	36	42	21	31	30	22	27	14	8	21	2	6	7	22	1	411	Aug 26	Friday
6	5	13	16	8	5	18	20	8	16	25	11	10	12	10	9	18	22	12	7	10	11	14	8	294	Aug 27	Saturday
6	7	5	4	11	7	15	15	13	13	14	19	9	9	10	21	11	9	16	17	16	18	15	7	287	Aug 28	Sunday
12	10	15	7	12	2	18	23	31	34	23	30	27	43	27	26	13	21	19	14	8	11	19	22	467	Aug 29	Monday
14	2	1	9	16	6	24	21	10	24	28	17	8	12	16	15	18	11	14	15	10	13	21	8	333	Aug 30	Tuesday
6	7	10	10	10	11	10	13	23	21	19	33	15	14	19	28	32	13	25	15		4	28	7	377	Aug 31	Wednesday
6	14	11	9	16	11	11	12	36	20	18	17	23	25	16	30	43	28	28	14	14	18	19	10	449	Sep 01	Thursday
5	11	3	6	12	15	17	31	13	35	22	20	21	24	11	17	48	23	45	32	11	7	26	15	470	Sep 02	Friday
13	6	13	16	15	11	18	40	19	46	30	40	31	28	17	25	34	49	48	13	12	8	16	4	552	Sep 03	Saturday
8	8	12	5	13	18	7	24	24	40	34	22	25	27	59	20	38	22	29	39	32	16	11	13	546	Sep 04	Sunday
7	7	20	26	23	23	21	37	49	45	29	29	28	36	30	46	27	21	38	23	17	12	23	8	625	Sep 05	Monday
1	7	1	4	10	15	12	16	14	20	13	22	30	29	30	28	52	11	21	13	16	9	7	15	396	Sep 06	Tuesday
4	6	15	7	21	5	38	40	20	26	31	41	26	18	44	19	4	8	14	11	10	16	12	16	452	Sep 07	Wednesday
3	6	11	5	14	11	22	16	34	30	13	40	25	14	15	15	39	17	14	8	24	7	16	16	415	Sep 08	Thursday
	8	5	5	13	2	13	11	30	17	13	56	38	20	19	23	7	11	15	12	8	9	16	15	369	Sep 09	Friday
11	11	19	6	13	10	9	3	10	23	21	28	6	6	14	8	21	15	29	9	6	9	16	16	319	Sep 10	Saturday
3	12	3	3	9	1	15	9	14	20	14	9	10	7	9	4	19	13	13	8	12	7	21	7	242	Sep 11	Sunday
1	7	13	7	15	13	25	20	12	21	19	23	13	7	16	20	13	13	23	11	11	4	11	16	334	Sep 12	Monday
7	6	6	13	25	15	12	10	21	11	23	44	36	35	27	29	18	17	14	24	21	7	16	10	447	Sep 13	Tuesday
10	7	16	8	13	15	24	16	42	18	21	14	21	21	25	15	12	17	15	16	19	4	13	10	392	Sep 14	Wednesday
7	8	7	6	11	12	18	11	15	17	18	22	26	10	16	23	30	17	20	15	16	16	14	16	371	Sep 15	Thursday

Table 3.5.2 (Page 3 of 4)

Day	00	010	02	03	04	05	06	60	07	08		9	10		11	12		3	14	15	16	17	18	19	20		21	22	23	Sum	Date	
259	10	8	8	8	12	5	11		9	24		7	44		30	13		26	12	22	24	22	22	25	13		13	7	13	398	Sep 16	Friday
260	8	112	27	16	12	10	13		18	13		3	18		9	19		23	B	5	8	15	11	13	6	1	10	10	10	306	Sep 17	Saturday
261	3	13	8	12	4	4	7	7	7	10		3	7.		11	15		17	37	35	25	28	11	2	7		7	12	10	299	Sep 18	Sunday
262	10	13	7	10	10	8	16		19	14		3	12		19	20		8	30	37	26	16	28	9	7		10	14	13	389	Sep 19	Monday
263	18	0	4	12	15	28	31		36	38		1	45		56	60		13	17	26	17	36	18	34	11		17	18	14	605	Sep 20	Tuesday
264	9	7	8	11	16	620	30		32	39		36	47		27	28		30	23	23	6	10	15	10	15		20	11	12	485	Sep 21	Wednesday
265	4	9	4	5	15	24	20		22	35		20	27		17	14		14	22	27	35	16	32	20	26		8	18	13	447	Sep 22	Thursday
266	7	51	17	12	16	43	25		31	30		9	24		24	25		5	2	10	4	13	10	7	5		11	10	11	356	Sep 23	Friday
267	1	61	13	10	7	4	6	6	4	25		5	13		22	14		20	8	21	13	10	22	10	9		16	16	12	297	Sep 24	Saturday
268	15	121	11	7	9	9 8	18		9	7		9	5		6	12		8	10	11	8	10	11	6	12		8	9	10	231	Sep 25	Sunday
269	13	2	8	11	15	89	49	1	10	15		0	86		86	30		37	7	62	11	16	14	20	24		11	11	13	710	Sep 26	Monday
270	14	3	1	7	5	528	44		62	86		45	40		26	52		7	14	44	21	23	18	11	8		12	7	13	591.	Sep 27	Tuesday
271	16	4	6	14	20	29	24		33	33		4	30		64	64		43	23	15	0	0	0	0	0		0	0	0	492	Sep 28	Wednesday
272	0	0	0	0	0	0	0	06	68	72		40	20		20	39		26	16	62	42	8	6	-7	2		4	7	8	447	Sep 29	Thursday
273	11	3	3	12	18	73	10		60	27		26	37		55	12		22	15	9	29	6	67	24	8		10	5	17	499	Sep 30	Friday
ARC	00	010	02	03	04	05	06	60	07	08		09	10		11	12		13	14	15	16	17	18	19	20		21	22	23			
Sum		804		026		2244		340	03		863			5	57		0			324		828		567		32						
	1910	194	49		367	$7 \quad 29$	916	6		506			393			79			57		04		3194	25	583					70784	Total	um
183	10	101	11	11	13	12	16	61	19	19		21	24		27	21		18	16	18	17	15	17	14	14		13	20	11	387	Total	verage
126	10	91	10	11	14	14	18	82	21	21		23	27		30	24		19	16	20	18	16	19	15	15		13	20	11	414	Average	workdays
57	11	111	11	10	11	19	11	11	13	14		7	18		19	15		15	14	13	14	15	14	12	13		12	20	11	323	Average	e weekends

Table 3.5.2. Daily and hourly distribution of ARCESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

91	8	2	3	5	4	0	1	8	13	14	8	9	8	6	4	2	5	13	10	1	6	2	7	9
92	2	2	7	2	10	6	2	6	3	10	9	15	6	3	1	11	3	4	3	4	1	1	1	5
93	3	3	6	2	2	5	4	4	4	8	4	6	1	12	2	3	5	6	3	8	9	7	5	2
94	8	18	11	5	6	9	4	7	9	3	12	14	8	5	8	4	5	13	6	12	16	9	11	9
95	11	24	6	11	2	10	5	5	9	15	9	28	10	14	7	6	11	11	5	8	8	11	8	7
96	6	12	5	6	12	6	3	8	12	14	13	21	23	18	6	8	5	10	10	14	14	8	4	4
97	12	10	8	8	2	5	6	5	8	13	15	27	9	7	10	16	5	12	7	8	8	7	6	7
98	10	10	15	9	12	5	6	11	14	9	23	25	14	3	27	8	8	8	13	11	12	9	4	8
99	7	8	11	4	10	2	4	7	11	10	7	10	8	9	10	6	6	7	7	9	6	4	2	7
100	4	11	7	12	3	2	12	7	6	7	14	7	8	9	9	10	4	11	21	12	17	15	16	21
101	18	13	22	15	10	6	11	6	5	13	9	18	17	15	8	12	12	7	8	9	15	7	11	13
102	24	11	18	12	1	3	4	9	13	10	26	27	19	14	5	8	8	8	15	7	10	12	9	11
103	21	26	27	15	9	4	11	6	8	15	15	23	23	7	11	5	13	15	13	12	9	15	15	12
104	19	4	12	15	5	9	10	6	9	8	24	22	18	14	17	5	12	5	15	18	11	6	14	15
105	15	8	19	7	5	2	6	7	20	21	19	13	10	12	11	14	11	5	8	6	6	4	7	15
106	15	8	13	6	12	11	11	9	6	13	13	2	12	6	9	8	11	10	9	5	4	4	10	10
107	2	8	6	7	6	5	3	6	15	7	11	6	5	22	9	11	16	10	15	6	16	15	12	9
108	8	13	7	8	11	4	9	6	7	6	11	15	14	15	6	9	8	14	14	4	6	11	13	7
109	15	9	10	12	3	2	12	5	17	12	11	20	18	18	15	16	11	14	12	8	6	13	10	14
110	11	7	17	9	10	7	3	22	8	12	22	15	20	7	13	12	5	13	9	8	16	13	12	16
111	15	7	9	9	13	6	3	8	15	12	12	31	8	16	18	13	6	16	17	8	11	7	9	20
112	11	10	12	17	4	3	9	21	25	17	23	22	10	7	9	8	17	21	11	11	14	12	13	9
113	19	18	5	14	14	13	10	6	18	8	12	12	17	5	12	7	2	7	6	7	3	6	1	7
114	3	15	10	7	3	6	1	3	5	7	14	7	9	7	7	2	9	13	27	13	17	20	14	11
115	20	15	15	9	1	1	12	3	6	7	20	8	11	19	15	8	9	14	4	8	7	11	17	13
116	7	10	14	6	5	6	5	15	17	18	12	19	13	14	16	9	13	9	13	13	4	15	15	22
117	13	14	16	6	9	4	4	11	27	21	16	23	16	14	12	15	8	7	7	6	7	6	8	18
118	14	12	13	8	6	1	7	9	11	10	12	13	15	5	3	8	7	12	10	9	7	9	5	2
119	4	6	12	6	1	3	17	22	20	14	11	21	6	19	18	4	9	4	5	6	9	3	4	8
120	5	6	14	17	16	5	7	15	12	9	7	6	3	4	19	13	5	7	6	2	4	4	6	5
121	1	9	4	3	24	16	18	23	15	16	19	16	26	22	26	14	16	5	10	15	14	13	7	12
122	15	10	8	10	2	6	3	5	14	6	16	14	9	11	9	7	4	11	14	9	9	9	14	13
123	19	14	7	10	6	3	7	8	14	10	10	16	11	2	4	5	6	3	4	10	5	7	15	9
124	15	16	6	2	4	1	12	6	5	8	19	11	20	5	8	4	6	5	4	5	7	13	17	11
125	15	13	12	4	1	6	4	7	8	13	15	10	12	8	5	4	2	2	13	13	9	7	19	12
126	9	10	8	8	4	0	6	7	8	11	11	13	7	9	3	8	5	7	5	15	1	9	12	13
127	17	28	5	6	13	9	12	7	7	2	4	5	7	10	8	17	1	5	3	3	2	7	0	8
128	1	5	2	5	7	1	7	7	5	4	5	10	5	6	6	10	5	12	25	9	20	16	15	17
129	8	22	9	2	3	3	1	13	8	12	10	12	20	8	6	4	5	7	2	16	9	13	17	6
130	11	16	18	3	8	2	11	15	18	3	10	15	9	9	18	7	12	5	7	14	10	10	10	17
131	7	15	15	8	1	7	3	3	18	7	3	15	15	6	5	5	1	3	5	1	0	0	0	7
132	6	3	9	5	3	2	7	5	16	17	17	11	11	1	6	0	0	0	0	0	0	0	6	7
133	10	6	9	8	3	9	16	10	3	19	9	16	14	7	3	12	5	6	13	7	7	6	3	10
134	19	17	12	10	4	3	3	10	7	4	2	8	9	9	2	11	3	2	7	2	4	2	12	0
135	1	5	3		6	6	2	2	0	4	6	7	8	1	4	2	3	13	14	13	9		5	10
136	17	12	4	1	0	2	1	10	10	12	4	9	11	10	4	7	6	12	10	8	15	8	8	15
137	11	20	20	4	4	3	7	7	5	22	13	8	15	7	18	7	6	3	9	11	10	10		11
138	18	12	16	1	12	6	5	9	10	13	26	17	24	22	8	6	8	8	3	12	9	15	10	12
139	16	9	18	2	4	1	4	7	15	14	16	25	10	5	16	5	6	1	14	11	6	6	8	15
140	16	11	14	12	3	5	4	8	6	8	16	12	6	6	8	11	6	2	9	7	6	6	7	11
141	13	4	9	4	1	2	3	3	0	0	3	1	5	7	5	2	3	2	8	4	3			5
142	4	10	3	3	2	4	12	9	11	14	16	15	11	7	5	12	3	5	19	16	7	15	13	12
143	6	19	6	1	1	5	11	15	11	9	4	10	10	12	4	15	6	5	9	10	13	10	12	12
144	7	11	20	4	14	5	8	2	12	15	9	24	12	12	8	4	7	5	4	11	5	20	9	12
145	22	19	20	3	9	2	3	9	12	14	9	11	10	9	5	1	2	3	4	13	9	17	13	10
146	17	13	10	4	8	1	2	8	21	4	18	7	5	5	12	12	6	9	10	3	12	9	8	10

148	Apr	
117	Apr 02	Saturday
114	Apr 03	Sunday
212	Apr 04	Monday
241	Apr 05	Tuesday
242	Apr 06	Wednesday
221	Apr 07	Thursday
274	Apr 08	Friday
172	Apr 09	Saturday
245	Apr 10	Sunday
280	Apr 11	Monday
284	Apr 12	Tuesday
330	Apr 13	Wednesday
293	Apr 14	Thursday
251	Apr 15	Friday
217	Apr 16	Saturday
228	Apr 17	Sunday
226	Apr 18	Monday
283	Apr 19	Tuesday
287	Apr 20	Wednesday
289	Apr 21	Thursday
316	Apr 22	Friday
229	Apr 23	Saturday
230	Apr 24	Sunday
253	Apr 25	Monday
290	Apr 26	Tuesday
288	Apr 27	Wednesday
208	Apr 28	Thursday
232	Apr 29	Friday
197	Apr 30	Saturday
344	May 01	Sunday
228	May 02	Monday
205	May 03	Tuesday
210	May 04	Wednesday
214	May 05	Thursday
189	May 06	Friday
186	May 07	Saturday
205	May 08	Sunday
216	May 09	Monday
258	May 10	Tuesday
150	May 11	Wednesday
132	May 12	Thursday
211	May 13	Friday
162	May 14	Saturday
139	May 15	Sunday
196	May 16	Monday
240	May 17	Tuesday
282	May 18	Wednesday
234	May 19	Thursday
200	May 20	Friday
93	May 21	Saturday
228	May 22	Sunday
216	May 23	Monday
240	May 24	Tuesday
229	May 25	Wednesday
214	May 26	Thursday

Table 3.5.3 (Page 1 of 4)
$\begin{array}{llllllllllllllllllllllllllllllllllllll}00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & \text { Sum Date }\end{array}$

	11	8	14	1	5	1	3	7	11	7	1	4	3	4	2	6	3	2	4		5	16		10
148	6	14	19	6	6	2	5	8	10	9	10	7	7	3	0		3		3	8	0	6	5	2
149	6	12	2	4	15	12	41	6	8	4	10	3	12	10	11	8	2	4	19	11	12	10	15	8
150	11	19	15	1	0	2	1	2	5	10	19	13	12	6	10	1	5	6	7	4	4	6	7	4
151	0	5	7	2	0	2	1	4	10	11	16	9	18	7	12	14	7	16	7	9	13	4	9	10
152	17	6	21	8	11	3	5	10	8	16	13	15	12	9	7	18	11	9	10	11	14	5	12	9
153	18	10	14	6	6	3	5	8	12	12	18	37	25	25	15	28	11	21	20	8	6	7	8	7
15	9	17	21	12	5	13	4	14	10	11	22	18	1.9	15	12	10	14	15	13	8	16	21	13	1.9
155	15	16	12	11	10	3	5	10	18	3	5	5	5	15	12	6	9	3	9	12	4	5	3	11
156	10	13	8	8	3	12	10	9	5	8	11	1	1	11	7	6	5	17	7	14	16	10	8	11
15	17	17	16	10	9	4	8	5	17	15	18	25	31	9	13	11	9	12	10	5	21	1.9	21	5
15	16	10	10	5	12	0	9	19	34	21	1	26	35	17	13	6	12	9	14	13	12	10	11	1
159	15	14	16	9	3	2	21	15	12	10	12	13	13	0	0	0	0	0	0	0	0	0	0	0
160	0	0	0	0	0	0	6	23	24	8	13	14	10	7	9	14	10	15	15	10	14	14	16	14
1	1	15	13	17	2	. 2	5	8	4	12	17	22	15	11	9	6	9	7	8	10	11	12	12	13
1	4	16	24	1.	5	9	6	6	4	16	11	16	9	9	8	8	18	12	5	7	8	5	3	10
16	2	10	14	2		2	10	10	16	9	6	4	2	8	4	2	7	1	7	12	7	0		2
1	8	6	8	6	3	2	5	7	3	6	21	17	11	7	14	10	7	12	10	8	8	15	9	22
16	16	16	8	14	10	4	8	15	16	12	29	18	28	17	7	7	12	8	7	11	6	26	7	9
16	11	22	12	4			6	4	6	19	19	18	9	1	6	5	4	12	6	10	12	9	6	3
167	1.	4	15	9		8	11	9	5	8	1	13	19	10	11	7	1.5	7	13	14	15	10	7	6
1	4	10	10	10	7	4	8	5	9	10	17	20	8	6	9	8	8	9	8	4	5	5	3	2
16	1	9	8	9	20	13	5	28	24	9	8	5	1	9	5	3	9	10	4	3	3	3	6	6
17	8			17	5	5		0	5	13	6	13	10	23	12	4	7	17	12	20	19	15	14	11
171	12	7	6	4				7	15	23	37	3	1	19	10	10	8	11	22	15	13	15	2	7
17	15	1.8	21	10	3	7		7	16	11	15	15	19	2	3	8	10	4	11	13	8	10	12	12
1	11	11	8	6			8		13	11	15	21	11	10		7	8	1	7	9	8	5	5	12
174	8	8		8	4		2	5	2	10	8	15	8	15	9	10	9	10	10	6	7	3	5	4
1	9			10		5	5	4	2	4	15	1	26	10	6	55	8	2	7	7	1	4	8	
176	1	4	4	7	4	4	13	26	11	4	6	10		9	11	6	8	9	3	3	7	4	1	3
177	9	3	0	3	5	5	8	14	7	6	20	8	4	6	5	6	6	13	10	20	13	10	10	
178	13	19	14	15	8	4	3	12	9	11	8	1	11	13	14	7	5	9	10	7	15	11	6	
1	10	6	7	8	8	5	5	4	17	6	1	2	9	1	10	3	10	6	13	15	16	7	5	6
180	21	16	17		4	6	5	11	14	17	1	18	14	6	10	10	10	6	12	13	2	12	10	12
181	12	14	1		3	3	13	6	9	1	1	15	8	10	5	2	7	9	4	14	9	7	7	
18	15	14	1	6	3	6	13	10	19	3	2	1	15	8	11	11	8	5	6	17	8	4	7	
183	10	5	10	12	2	5	8	12	8	14	3	7	8		9	2	5	0	5	6	6	5	2	
184	7	5	3	4	5	2		8		2	8	6	1	5		10	9	14	5	12	11	9	1	
185	11	12	10	9	6	11	6	5	7	16	10	15	5	15	4	0	20	21	9	10	5	12	11	
1	10	11	10	12	6	9	5	4	8	13	21	19	18	19	11	14	12	7	10	10	6	11	10	15
18	12	1	19	15			5	5	9	1	1	17	15	14	15	11	7	14	14	9	12	1	12	26
188	12	22	16	12	7	6	13	18	15	12	20	21	30	16	28	14	11	6	15	8	11	12	19	11
1	8	11		16	10	10		11	9	12	24	20	9	13	10	10	16	10	5	5	10	9	4	
190	9	7	12									9					11	10	5	4	2	10	5	
191	9	8	6			6	6	6	3	9	3	1.	14	5	3	2	6	11	14	11	4	14	6	11
192	8	17	1		6	3	8	3	3	7	10	19	10	5	7	11	7	7	16	10	3	15	12	13
193	17	1	10	4	10	8	7	13	5	20	1	20	2	12	8	1	16	25	14	3	8	16	14	12
194	15	14	21	18	4	6	6	8	12	14	16	14	16	13	11	10	9	6	11	13	9	15	9	0
195	9	13	7	8	4	7	8	20	16	16	10	24	12	10	9	18	12	9	11	8	8	17	14	2
196	6	9	9	17	8	9	3	17	19	24	3		14	0	11	9	8	8	17	11	4	9	25	14
197	19	41	40	17	14	3	24	25	11	7	9	8	14	25	15	35	3	8	9	1	2	6	5	
198	8.	8	4	7	2	0	2	4	10	26	8	28	13	26	26	7	6	27	27	22	21	22	23	18
199	29	8	19	13	19	14	9	15	9	6	15	9	15	14	11	7	9	3	15	7	11	13	8	
200	6	7	10	6	5	2	6	2	6	6	10	10	13	8	9	16	10	9	10	22	15	13	5	
201	6	13	14	6	4		1	8	5	15	3	18	7	12	18	8	11	11	10	10	9	4	5	

156 May 27 Friday 141 May 28 Saturday 245 May 29 Sunday 170 May 30 Monday 193 May 31 Tuesday 260 Jun 01 Fednesday 330 Jun 02 Thursday 331 Jun 03 Friday 207 Jun 04 Saturday 211 Jun 05 Sunday 337 Jun 06 Monday 349 Jun 07 Tuesday 155 Jun 08 Wednesday 236 Jun 09 Thursday 254 Jun 10 Friday 243 Jun 11 Saturday 170 Jun 12 Sunday 225 Jun 13 Monday 311 Jun 14 Tuesday 221 Jun 15 Wednesday 245 Jun 16 Thursday 189 Jun 17 Friday 225 Jun 18 Saturday 248 Jun 19 Sunday 319 Jun 20 Monday 277 Jun 21 Tuesday 211 Jun 22 Hednesday 177 Jun 23 Thursday 213 Jun 24 Friday 165 Jun 25 Saturday 192 Jun 26 Sunday 247 Jun 27 Monday 227 Jun 28 Tuesday 269 Jun 29 Wednesday 210 Jun 30 Thursday 281 Jul 01. Friday 155 Jul 02 Saturday 159 Jul - 03 Sunday 247 Jul 04 Monday 271 Jul 05 Tuesday 299 Jul 06 Wednesday 355 Jul 07 Thursday 254 Jul 08 Friday 142 Jul 09 Saturday 169 Jul 10 Sunday 222 Jul 11 Monday 301 Jul 12 Tuesday 280 Jul 13 Wednesday 291 Jul 14 Thursday 300 Jul 15 Friday 346 Jul 16 Saturday 345 Jul 17 Sunday 281 Jul 18 Monday 213 Jul 19 Tuesday 206 Jul 20 Nednesday 170 Jul 21 Thursday

Table 3.5.3 (Page 2 of 4)
$\begin{array}{lrrrrrrrrrrrrrrrrrrrrrrrr}4 & 9 & 14 & 9 & 1 & 7 & 6 & 7 & 14 & 6 & 15 & 12 & 18 & 6 & 10 & 6 & 11 & 14 & 11 & 4 & 5 & 12 & 14 & 13\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllllll}6 & 13 & 15 & 14 & 8 & 10 & 24 & 21 & 9 & 3 & 14 & 22 & 19 & 26 & 34 & 21 & 0 & 5 & 14 & 56 & 26 & 48 & 51 & 31\end{array}$
$\begin{array}{lllllllllllllllllllllllll}39 & 42 & 21 & 37 & 23 & 10 & 22 & 36 & 27 & 12 & 18 & 17 & 24 & 12 & 24 & 13 & 28 & 26 & 20 & 10 & 23 & 31 & 37 & 11\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}21 & 17 & 31 & 13 & 5 & 2 & 8 & 9 & 10 & 9 & 19 & 16 & 15 & 11 & 14 & 13 & 19 & 12 & 13 & 35 & 16 & 13 & 35 & 15\end{array}$
$\begin{array}{lllllllllllllllllllllllll}22 & 31 & 22 & 24 & 28 & 9 & 4 & 3 & 11 & 16 & 21 & 28 & 14 & 14 & 4 & 8 & 11 & 17 & 25 & 16 & 21 & 14 & 37 & 9\end{array}$
$\begin{array}{llllllllllllllllllllllllll}8 & 4 & 8 & 11 & 5 & 9 & 3 & 9 & 18 & 19 & 24 & 31 & 24 & 33 & 13 & 17 & 14 & 20 & 8 & 15 & 14 & 10 & 6 & 6\end{array}$
$\begin{array}{lllllrrrrrrrrrrrrrrrrrrrrr}10 & 8 & 20 & 12 & 2 & 11 & 5 & 15 & 22 & 13 & 16 & 9 & 15 & 11 & 9 & 11 & 6 & 5 & 12 & 9 & 13 & 15 & 16 & 15\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll}18 & 8 & 10 & 10 & 7 & 5 & 4 & 5 & 17 & 24 & 10 & 17 & 21 & 18 & 11 & 13 & 12 & 11 & 12 & 9 & 7 & 12 & 11 & 3\end{array}$

$\begin{array}{lllllllllllllllllllllllll}6 & 12 & 25 & 10 & 9 & 8 & 2 & 5 & 11 & 7 & 8 & 15 & 17 & 13 & 9 & 15 & 9 & 8 & 20 & 11 & 6 & 8 & 9 & 9\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr}21 & 9 & 8 & 6 & 5 & 2 & 6 & 8 & 13 & 7 & 16 & 9 & 8 & 7 & 15 & 7 & 5 & 7 & 9 & 11 & 22 & 5 & 14 & 7\end{array}$
$\begin{array}{lllllllllllllllllllllllll}10 & 17 & 17 & 9 & 2 & 4 & 2 & 5 & 2 & 22 & 16 & 10 & 19 & 14 & 18 & 23 & 6 & 14 & 7 & 22 & 9 & 8 & 16 & 6\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}18 & 8 & 15 & 5 & 5 & 6 & 9 & 4 & 10 & 19 & 18 & 7 & 21 & 13 & 16 & 8 & 7 & 15 & 19 & 7 & 8 & 13 & 13 & 15\end{array}$

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}9 & 1 & 1 & 3 & 5 & 8 & 10 & 6 & 9 & 3 & 4 & 2 & 5 & 8 & 2 & 8 & 3 & 1 & 3 & 14 & 7 & 11 & 9 & 5\end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}9 & 13 & 5 & 8 & 3 & 13 & 11 & 27 & 18 & 7 & 11 & 12 & 8 & 8 & 3 & 8 & 12 & 7 & 5 & 12 & 4 & 21 & 11 & 10 \\ 5 & 10 & 8 & 1 & 2 & 1 & 2 & 6 & 9 & 11 & 14 & 11 & 3 & 11 & 5 & 6 & 5 & 9 & 4 & 7 & 8 & 12 & 5 & 10\end{array}$
221
222
223
224
224
225
227
228
230
23
231
232
233
234
235
237
239
240
241
242
243
244
245
246
247
247
248
249
250
251
252
253
254
254
255
256
257
258 $\begin{array}{lllllllllllllllllllllllll}6 & 13 & 15 & 14 & 8 & 10 & 24 & 21 & 9 & 3 & 14 & 22 & 19 & 26 & 34 & 21 & 0 & 5 & 14 & 56 & 26 & 48 & 51 & 31\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}22 & 31 & 22 & 24 & 28 & 9 & 4 & 3 & 11 & 16 & 21 & 28 & 14 & 14 & 4 & 8 & 11 & 17 & 25 & 16 & 21 & 14 & 37 & 9\end{array}$ $\begin{array}{lllllllllllllllllllllllll}8 & 4 & 8 & 11 & 5 & 9 & 3 & 9 & 18 & 19 & 24 & 31 & 24 & 33 & 13 & 17 & 14 & 20 & 8 & 15 & 14 & 10 & 6 & 6\end{array}$ $\begin{array}{llllllllllllllllllllllllll}18 & 8 & 10 & 10 & 7 & 5 & 4 & 5 & 17 & 24 & 10 & 17 & 21 & 18 & 11 & 13 & 12 & 11 & 12 & 9 & 7 & 12 & 11 & 3\end{array}$ $\begin{array}{lllllllllllllllllllllllll}10 & 17 & 17 & 9 & 2 & 4 & 2 & 5 & 2 & 22 & 16 & 10 & 19 & 14 & 18 & 23 & 6 & 14 & 7 & 22 & 9 & 8 & 16 & 6\end{array}$

$$
\begin{array}{rrrrr}
3 & 9 & 25 & 20 & 1 \\
4 & 12 & 14 & 11 &
\end{array}
$$

$$
\begin{array}{rrrrr}
4 & 12 & 14 & 11 & \\
6 & 16 & 7 & 12 & 1
\end{array}
$$

226
227 $\begin{array}{lllllllllllllllllllllllll}6 & 12 & 25 & 10 & 9 & 8 & 2 & 5 & 11 & 7 & 8 & 15 & 17 & 13 & 9 & 15 & 9 & 8 & 20 & 11 & 6 & 8 & 9 & 9\end{array}$
 $715 \quad 7 \quad 10$ $\begin{array}{rrrrrrrrrrrrrrr}5 & 10 & 8 & 1 & 2 & 1 & 2 & 6 & 9 & 11 & 14 & 11 & 3 & 11 \\ 6 & 6 & 10 & 8 & 2 & 0 & 2 & 3 & 9 & 25 & 20 & 12 & 31\end{array}$

$$
\begin{array}{rrrrrrrr}
12 & 7 & 5 & 12 & 4 & 21 & 11 & 10 \\
5 & 9 & 4 & 7 & 8 & 12 & 5 & 10 \\
8 & 6 & 8 & 7 & 10 & 7 & 7 & 4 \\
8 & 4 & 8 & 10 & 6 & 11 & 4 & 8
\end{array}
$$ 71210 712 0

0

$$
\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
4 & 5 & 11
\end{array}
$$

$$
\begin{array}{rrrrrrr}
5 & 1 & 11 & 7 & 2 & 3 & 6 \\
6 & 13 & 7 & 8 & 10 & 3 & 4
\end{array}
$$

$$
\begin{array}{rrrrrrrrr}
2 & 10 & 4 & 5 & 11 & 15 & 15 & 5 & 6 \\
9 & 7 & 8 & 10 & 18 & 15 & 13 & 7 & 6 \\
15 & 7 & 13 & 16 & 13 & 12 & 5 & 6 & 12
\end{array}
$$

$$
\begin{array}{rrrrrrrrr}
15 & 7 & 13 & 16 & 13 & 12 & 5 & 6 & 12 \\
6 & 12 & 4 & 23 & 12 & 9 & 10 & 5 & 4
\end{array}
$$

$$
\begin{array}{rrrrrrrrrrrrrrrrr}
17 & 10 & 6 & 11 & 14 & 18 & 7 & 6 & 12 & 4 & 23 & 12 & 9 & 10 & 5 & 4 \\
10 & 12 & 10 & 8 & 9 & 6 & 8 & 9 & 10 & 11 & 13 & 12 & 20 & 10 & 12 & 10 \\
9 & 6 & 8 & 4 & 5 & 3 & 9 & 2 & 6 & 5 & 12 & 11 & 15 & 8 & 11 & 13
\end{array}
$$

$$
\begin{array}{rrrrrrrrrr}
6 & 12 & 4 & 23 & 12 & 9 & 10 & 5 & 4 & 5 \\
9 & 10 & 11 & 13 & 12 & 20 & 10 & 12 & 10 & 4 \\
2 & 6 & 5 & 12 & 11 & 15 & 8 & 11 & 13 & 5
\end{array}
$$

233
234
235
236
237
$\begin{array}{llllll}4 & 9 & 14 & 9 & 1 & 7\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}1 & 5 & 7 & 2 & 7 & 16 & 12 & 6 & 6 & 1 & 2 & 6 & 8 & 6 & 4 & 3 & 5 & 12 & 15 & 16 & 13 & 3 & 11 & 7\end{array}$ $\begin{array}{rrrrrrr}8 & 11 & 9 & 12 & 6 & 4 & 17\end{array}$ $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 0
0
2

$$
\begin{aligned}
& 0 \\
& 0 \\
& 7
\end{aligned}
$$

$$
0
$$

$$
\begin{array}{rrr}
0 & 0 & 0 \\
2 & 10 & 4 \\
0 & 7 & 0
\end{array}
$$

228 Jul 22 Friday 490 Jul 23 Saturday 563 Jul 24 Sunday 371 Jul 25 Monday 409 Jul 26 Tuesday 329 Jul 27 Wednesday 280 Jul 28 Thursday 275 Jul 29 Friday 170 Jul 30 Saturday 174 Jul 31 Sunday 252 Aug 01 Monday 227 Aug 02 Tuesday 278 Aug 03 Wednesday 279 Aug 04 Thursday 296 Aug 05 Friday 152 Aug 06 Saturday 137 Aug 07 Sunday 246 Aug 08 Monday 165 Aug 09 Tuesday 218 Aug 10 Wednesday 211 Aug 11 Thursday 140 Aug 12 Friday

0 Aug 13 Saturday
0 Aug 14 Sunday 141 Aug 15 Monday 178 Aug 16 Tuesday 213 Aug 17 Wednesday 236 Aug 18 Thursday 237 Aug 19 Friday 177 Aug 20 Saturday 194 Aug 21 Sunday 258 Aug 22 Monday 274 Aug 23 Tuesday 251 Aug 24 Wednesday 176 Aug 25 Thursday 164 Aug 26 Friday 29 Aug 27 Saturday 0 Aug 28 Sunday 117 Aug 29 Monday 86 Aug 30 Tuesday 187 Aug 31 Wednesday 253 Sep 01 Thursday 185 Sep 02 Friday 90 Sep 03 Saturday 176 Sep 04 Sunday 154 Sep 05 Monday 206 Sep 06 Tuesday 179 Sep 07 Wednesday 191 Sep 08 Thursday 203 Sep 09 Friday 155 Sep 10 Saturday 187 Sep 11 Sunday 204 Sep 12 Monday 231 Sep 13 Tuesday 216 Sep 14 Wednesday
206 Sep 15 Thursday

Tsble 3.5.3 (Page 3 of 4)

259	11		510	0	7	8		3	8	2	15	13		2	10	17	14	17	17	0	0	0		0	0	0	0	0	169	Sep 16	Friday
260	0		00	0	0	0		0	0	0	0	0	0	0	0	0	1	7	7	7	9	6		3	3	6	4	2	55	Sep 17	Saturday
261	7		43	31	16	3		2	5	7	11	6	69	9	3	5	6	6	4	6	16	9		6	8	7	6	3	158	Sep 18	Sunday
262	4		64	4	6	2		1	3	7	2	9	9	0	9	9	5	11	12	3	4	4		8	8	8	7	9	141	Sep 19	Monday
263	9		74	4	2	3		4	4	2	11	7	716	6	16	9	7	8	13	6	3	6	1	11	7	10	7	9	181	Sep 20	Tuesday
264	5		812	2	5	1		7	3	4	6	2	215	15	20	18	12	12	8	5	2	8		9	5	8	6	7	188	Sep 21	Wednesday
265	6		410	0	3	4		7	7	6	7	11		13	14	9	12	8	11	5	5	4	1	10	6	11	3	10	186	Sep 22	Thursday
266	8	10	09	9	7	3		3	4	4	10		910	10	19	13	3	4	4	0	4	5		3	7	2	8	2	151	Sep 23	Friday
267	5		35	51	10	6		7	3	0	3	10		14	5	4	8	3	9	6	16	24		11	11	20	32	10	225	Sep 24	Saturday
268	2		611	11	12	16		9	9	4	6	11		18	8	4	3	0	2	5	4	13		6	13	6	13	11	192	Sep 25	Sunday
269	7	13	37	71	10	8		4	1	1	4	10		9	5	10	26	9	5	0	6		6	6	10	6	2	3	168	Sep 26	Monday
270	3		913	3	4	6		2	3	8	2	7	712	12	12	17	6	13	7	1	9	4		3	5	6	2	10	164	Sep 27	Tuesday
271	9		86	61	10	4		4	1	8	3	11		10	16	23	12	12	8	11	10	3	3	6	5	7	1	3	191	Sep 28	Wednesday
272	4	10	04	4	8	3		8	9	6	12	13		5	12	10	12	11	6	6	4	0		5	6	5	7	11	177	Sep 29	Thursday
273	7		512	2	9	2		1	1	6	0	10	015	15	6	15	15	7	4	3	4	4	4	6	5	10	4	10	161	Sep 30	Friday
FIN	00	01	102	20	03	04	05	50	6	07	08	09	10	10	11	12	13	14	15	16	17	18		19	20	21	22	23			
Sum		921			93		924		14			939			52		98		605		472		68			701		599			
	808		1927			098		123			841		2317			284		698		550		662			62		648		0602	Total	um
180	10	11	111	1	8	6		5	7	8	10	11	113	13	14	13	11	9	9	8	8		9	9	9	9	9	9	226	Total	average
126	11	11	112	2	8	5		5	6	8	11	12	215	15	17	14	11	10	10	8	8		9	9	8	9	9		234	Average	e workdays
54	8	10	09	9	8	8		6	8	9	8		8	9	8	8	9	8	7	6	9	9	9	9	9	9	9	8	19	verage	s

Table 3.5.3. Daily and hourly distribution of FINESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

Day

91	8	1	1	6	6	1	3	6	10	11	11	15	7	13	4	2	1	9
92	3	3	5	1	1	5	5	0	0	2	7	0	3	2	0	5	1	3
93	3	2	2	1	5	2	2	4	3	8	2	5	7	9	1	5	0	3
94	3	7	4	3	2	1	4	0	4	3	6	1	1	4	3	1	2	4
95	2	7	2	1	0	9	6	3	9	17	14	5	7	4	11	6	8	7
96	4	3	3	2	12	4	7	9	16	22	21	24	25	7	8	6	2	3
97	0	2	1	2	3	6	5	11	8	25	13	18	9	7	4	6	7	6
98	1	12	3	6	3	5	3	5	15	15	6	18	5	5	3	1	4	4
99	2	6	3	4	3	8	8	11	3	8	5	8	9	5	4	6	0	2
100	0	0	1	2	5	9	1	6	5	14	4	2	5	6	1	2	3	9
101	7	3	6	1	0	1	3	7	12	17	5	15	2	6	2	4	6	0
102	2	3	2	2	1	2	3	14	19	27	29	17	5	10	7	7	0	3
103	13	1	5	6	10	0	4	7	10	10	21	21	16	5	8	5	7	2
104	0	7	3	7	3	1	3	11	13	15	23	21	13	14	9	9	4	2
105	1	0	5	6	0	1	3	10	23	20	20	17	15	10	10	1	8	1
106	0	5	4	2	5	1	2	3	9	3	6	7	12	1	2	0	1	4
107	1	1	1	0	5	3	5	0	9	6	9	8	6	7	1	1	3	3
108	2	10	5	3	1	1	9	7	17	11	8	8	6	11	15	11	3	5
109	8	6	0	5	6	1	4	8	12	23	28	17	13	8	7	5	7	4
110	8	5	6	16	4	7	7	16	9	20	23	23	7	22	35	8	5	1
111	7	3	1	6	3	3	11	22	16	33	12	18	30	26	17	6	12	11
112	4	4	4	12	2	3	6	10	11	14	15	25	10	2	4	11	4	2
113	3	1	1	3	3	1	0	1	5	8	6	7	3	11	0	9	0	0
114	0	1	2	9	3	0	3	0	5	8	4	6	5	0	1	4	3	3
115	7	1	2	3	1	6	6	10	14	17	6	20	5	5	11	4	3	6
116	4	6	9	6	1	0	3	11	8	21	15	10	16	9	15	5	8	6
117	3	7	5	5	5	0	8	12	18	18	20	12	9	4	16	1	9	5
118	1	7	2	2	2	12	11	11	10	21	20	23	13	8	29	10	7	9
119	4	1	3	1	0	7	4	23	16	28	25	19	12	7	8	4	11	6
120	1	4	2	5	4	5	3	6	6	13	9	11	3	4	0	1	3	7
121	5	5	3	1	14	0	3	1	3	2	3	3	4	4	2	3	0	1
122	3	4	3	0	0	2	8	5	16	11	9	10	8	15	13	5	2	7
123	1	1	10	4	5	13	6	9	17	36	21	13	19	13	12	13	5	6
124	0	2	3	3	4	12	11	17	13	22	31	19	20	13	17	13	6	7
125	4	3	6	3	3	8	9	9	16	20	16	18	11	16	12	6	5	3
126	8	3	0	5	5	3	7	16	8	28	19	29	19	4	11	0	7	1
127	3	8	5	2	3	1	6	5	8	6	6	3	17	7	6	4	2	3
128	0	1	2	0	5	4	0	3	7	5	4	4	3	5	0	0	0	0
129	4	1	5	12	4	6	7	11	21	21	23	16	14	8	8	7	11	4
130	5	6	11	2	10	7	23	21	30	40	19	13	15	13	8	13	3	3
131	5	9	1	3	4	3	8	10	20	24	13	20	8	5	9	11	7	2
132	5	8	0	5	2	1	2	3	16	14	51	5	0	0	0	0	7	8
133	16	9	14	3	4	7	10	10	20	21	12	11	12	11	2	4	5	10
134	10	5	9	9	3	5	10	14	9	26	23	16	6	7	0	9	7	2
135	5	7	2	3	5	5	4	3	12	24	8	5	9	5	15	2	3	1
136	10	5	8	1	4	8	4	4	9	22	18	30	20	17	16	10	9	4
137	11	3	8	5	9	6	8	10	17	36	19	19	22	16	10	41	17	7
138	7	7	13	1	9	3	23	39	49	34	36	12	28	30	33	35	11	5
139	1	8	15	9	7	21	20	21	27	39	17	50	36	23	32	55	11	3
140	14	8	9	3	11	32	30	41	60	26	8	37	4	8	2	3	7	9
141	3	4	3	6	10	22	18	14	8	13	14	18	9	8	1.	4	2	6
142	7	1	1	4	4	8	4	7	0	3	2	10	2	7	6	6	0	6
143	2	5	2	1	2	5	13	10	8	19	14	50	24	29	7	6	2	3
144	4	3	16	9	33	27	20	13	27	28	18	49	23	39	21	19	20	3
145	4	8	3	4	5	11	28	22	24	22	30	17	15	13	12	13	27	6
																17		0

	4	9	12	12	10	18	16	1	13	16	3	20	14	7	0	1	10	-	2	
148	2	3	6	4	7	8	6	1	6	6	11.	16	23	10	2	2	3	1	2	7
149	9	3	1	3	8	3	0	1	1	6	8	6	5	7	13	11	3	0	4	1
150	6	4	8	3	10	34	15	15	22	19	20	18	15	9	19	31	20	0	7	6
151	3	5	4	8	5	11	6	10	32	23	14	26	25	26	41	42	8	5	13	8
152	4	0	0	0	0	0	0	0	0	0	12	21	23	14	17	19	10	9	1	3
153	3	5	7	5	4	1	6	6	8	19	22	24	16	6	1	6	6	10	8	5
154	13	9	11	16	10	10	11	6	20	13	18	29	28	4	7	8	7	14	8	2
155	5	11	4	7	12	7	8	14	20	10	18	27	21	9	11	4	5	5	5	3
156	3	9	5	4	4	5	5	16	14	19	14	9	0	8	10	18	11	2	4	5
157	4	7	12	7	12	34	31	36	44	23	22	31	16	27	26	68	16	3	3	0
158	10	2	7	2	15	13	6	22	24	27	20	9	16	17	17	16	14	7	7	4
159	3	6	2	10	8	4	6	18	10	34	16	17	22	12	19	4	14	12	10	3
160	15	27	4	8	9	6	4	8	30	48	21	17	26	20	15	3	12	1	3	5
161	4	14	5	6	9	10	7	9	10	9	14	31	13	8	5	7	5	5	2	16
162	5	4	3	0	9	4	5	6	5	9	13	8	8	6	11	6	8	5	2	5
163	3	2	0	6	1	3	7	9	6	10	5	6	1	9	10	3	5	5	2	1
164	5	3	10	7	3	6	15	27	35	52	40	28	12	22	27	15	16	6	5	7
165	5	7	7	6	3	8	16	14	31	11	34	30	8	18	23	15	11	6	2	13
166	2	4	7	0	8	5	1	11	23	25	36	16	10	18	15	16	15	5	4	
16	1	4	11	5	5	4	17	11	15	30	24	33	25	35	14	18	13	1	47	23
168	0	0	0	0	0	3	29	9	24	21	13	1.5	6	6	7	5	2	1	1	7
169	2	7	4	10	5	1.7	6	8	9	7	4	15	17	18	6	15	3	7	15	1
170	3	1	1	0	2	5	1	5	6	10	15	16	4	8	9	6	0	2	0	5
171	8	3	2	1	4	17	19	16	30	36	19	15	13	12	5	29	9	3	10	6
172	0	1	9	2	4	8	6	14	7	34	30	23	22	12	23	2	22	1	7	9
173	1	5	4	2	8	11	9	1	24	38	26	27	34	25	11	10	7	9	7	6
174	2	2	2	3	3	14	13	15	24	15	22	24	17	18	10	13	6	10	8	3
175	1	3	10	3	4	1	10	31	2	38	61	41	28	13	15	4	4	3	0	10
176	0	2	2	2	4	17	15	20	21	18	19	21	14	15	5	6	0	7	3	1
177	8	2	0	4	3	2	5	0	6	9	1	7	4	3	0	1	6	0	3	
178	5	7	11	3	9	45	43	49	51	36	34	48	22	18	34	70	13	11	5	1
17	2	1	5	8	23	2	26	49	29	32	27	25	37	19	17	35	57	15	13	12
180	0	3	9	2	8	4	37	18	21	26	13	33	22	14	20	40	78	25	6	
181	7	0	4	1	11	26	32	20	14	45	43	51	31	50	87	47	55	7	8	4
182	0	5	13	1	20	26	66	97	69	53	49	31	18	23	12	17	4	2	2	
183	5	1	4	22	30	58	25	34	37	32	44	41	30	22	23	1	0	0	9	0
184	2	1	4	6	3	1	1	4	3	8	3	4	1	6	3	10	3	2	3	3
185	3	4	1	2	6	7	14	17	18	22	11	15	18	13	15	40	11	2	2	
18	16	2	3	6	11	5	9	25	12	26	28	31	22	20	16	281	1261	9	26	
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
188	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
191	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	10	4	2	
193	2	7	9	0	11	11	15	18	24	17	24	27	38	31	21	31	6	2	1	
194	4	0	12	17	9	12	8	10	24	11	0	0	10	10	27	12	14	4	5	
195	4	3	9	2	14	7	6	10	24	17	14	15	10	16	15	25	18	7	21	3
196	0	2	3	4	2	11	12	5	22	13	32	15	13	14	10	1	7	0	7	
197	0	1	6	6	2	5	3	9	9	11	57	35	12	12	10	24	28	1	9	5
198	1	3	1	2	2	1	4	5	14	8	15	9	2	1	1	15	1	6	2	3
199	7	11	16	5	3	11	18	18	38	24	30	23	30	13	35	31	16	5	38	99
200	6	6	8	4	3	7	10	18	15	29	22	22	17	9	14	7	19	10	11	10
201	2	6	10	3	13	7	11	11	8	46	19	44	78	65	71	58	3	11	14	0
202	1	7	3	3	9	11	16	18	24	27	17	28	15	24	14	8	11	13	21	

236 May 27 Friday 146 May 28 Saturday 108 May 29 Sunday 297 May 30 Monday 339 May 31 Tuesday 154 Jun 01 Wednesday 205 Jun 02 Thursday 272 Jun 03 Friday 218 Jun 04 Saturday 193 Jun 05 Sunday 453 Jun 06 Monday 271 Jun 07 Tuesday 262 Jun 08 Wednesday 307 Jun 09 Thursday 219 Jun 10 Friday 138 Jun 11 Saturday 107 Jun 12 Sunday 366 Jun 13 Monday 290 Jun 14 Tuesday 247 Jun 15 Wednesday 399 Jun 16 Thursday 154 Jun 17 Friday 186 Jun 18 Saturday 122 Jun 19 Sunday 272 Jun 20 Monday 253 Jun 21 Tuesday 297 Jun 22 Wednesday 244 Jun 23 Thursday 333 Jun 24 Friday 203 Jun 25 Saturday
81 Jun 26 Sunday
528 Jun 27 Monday
459 Jun 28 Tuesday 482 Jun 29 Wednesday 556 Jun 30 Thursday 528 Jul 01 Friday 434 Jul 02 Saturday 86 Jul 03 Sunday 301 Jul 04 Monday 521 Jul 05 Tuesday 0 Jul 06 Wednesday 0 Jul 07 Thursday 0 Jul 08 Friday 0 Jul 09 Saturday 0 Jul 10 Sunday 57 Jul 11 Monday 310 Jul 12 Tuesday 203 Jul 13 Wednesday 251 Jul 14 Thursday 193 Jul 15 Friday 258 Jul 16 Saturday 119 Jul 17 Sunday 485 Jul 18 Monday 261 Jul 19 Tuesday 501 Jul 20 Wednesday 303 Jul 21 Thursday

Table 3.5.4 (Page 2 of 4)

203	12	5	6	12	6	4	10	25	24	15	35	12	15	15	10	20	10	7	
04	3	0	4	7	8	13	3	23	29	14	9	24	15	25	12	7	5	2	
205	7	0	0	0	0	3	2	3	4	11	5	3	1	2	13	7	2	2	
206	11	4	10	5	12	30	14	20	9	19	20	19	17	10	22	27	22	14	5
07	4	6	6	7	2	10	17	15	11	32	27	25	15	44	36	16	2	5	5
208	5	3	13	5	3	10	10	23	1	30	21	2	10	10	10	8	9	2	
209	3	16	1	1	7	10	11	16	16	32	13	20	16	13	9	14	8	2	
10	7	10	6	3	3	2	4	14	18	25	18	17	15	18	10	6	8	2	8
11	7	5	3	4	6	7	7	3	5	10	6	1	6	2	15	5	0	1	
12	2	1	1	7	4	11	1	4	4	6	3	2	8	2	1	7	2	3	
13	11	6	9	3	8	8	11	4	8	24	15	13	10	12	18	17	8	7	
14	93	58	8	5	9	46	21	11	19	20	21	19	9	9	26	27	5	3	4
215	5	8	5	15	2	7	12	20	21	16	22	21	12	18	16	28	21	19	11
216	4	5	11	5	5	3	8	13	16	26	26	16	14	18	22	21	5	11	13
17	0	6	10	5	15	4	1	1	29	31	19	22	16	17	7	10	8	6	5
218	2	5	7	4	2	8	9	16	13	9	6	9	4	5	4	4	3	3	
219	3	1	3	16	7	20	8	11	9	10	3	2	4	15	32	17	1	4	
220	7	6	5	7	1	7	7	3	10	20	20	5	7	8	19	10	8	5	
21	4	5	5	8	14	3	14	14	28	21	21	26	23	21	26	28	33	17	
222	1	6	11	0	4	13	1	10	24	10	15	16	10	6	12	11	4	12	
23	4	11	2	5	14	10	9	7	15	15	20	9	17	16	11	3	6	1	
24	4	7	9	11	16	2	16	6	0	0	11	27	10	5	18	19	6	5	5
225	2	1	1	9	2	0	4	1	7	12	11	3	3	5	7	22	7	6	
226	5	7	3	1	5	3	8	5	0	5	4	1	3	0	6	2	8	1	
227	3	1	3	0	3	4	7	5	22	17	18	19	5	6	16	3	6	2	
228	5	3	5	8	9	4	12	10	16	22	2	18	17	23	21	11	6	8	
29	4	8	5	4	3	4	11	6	19	17	26	16	15	24	3	5	6	5	
230	5	11	5	8	17	25	17	22	10	23	19	17	20	17	8	5	4	6	10
231	2	2	5	6	3	17	14	19	24	27	24	30	18	9	6	4	1	3	10
32	6	11.	3	6	9	2	16	8	27	25	28	29	27	24	6	6	3	3	
33	1	2	6	6	8	6	2	10	9	17	8	5	16	9	6	11	6	1	
234	4	6	10	13	7	16	12	14	11	21	18	16	20	16	12	49	74	56	21
235	3	7	4	0	4	1	9	17	25	28	32	21	10	12	19	24	7	4	
236	1	3	5	1	4	8	49	23	64	29	26	12	17	16	17	10	6	8	
37	2	8	8	5	2	5	14	9	34	1	26	8	13	3	34	16	11	8	
238	10	6	5	2	0	10	6	11	15	23	24	29	13	12	5	11	8	4	
239	0	3	2	9	0	11	4	3	1	18	10	9	11	9	2	5	7	3	
40	0	10	3	1	8	5	14	3	25	11	8	7	12	10	10	14	2	2	
241	19	18	14	9	3	6	14	9	12	2	17	26	14	10	13	12	9	7	
242	4	4	4	9	4	6	27	18	7	22	23	16	15	11	10	8	8	4	
243	1	8	5	5	7	4	1.9	24	56	34	48	34	22	30	10	19	5	2	
244	113	16	43	25	2	1.9	37	18	16	25	23	18	32	33	38	27	32	12	
245	5	3	5	3	6	8	22	28	30	22	29	29	15	21	15	19	18	44	2
246	1	4	1	7	2	3	28	22	29	29	37	44	21	21	36	51	22	15	
247	0		5	3	9	3	14	9	10	8	18	12	9	13	13	15	9	1	
248	10	2	12	11	7	17	16	17	9	28	13	1	12	16	13	25	3	7	
249	5	6	5	12	6	12	15	21	19	1.8	18	15	18	22	21	9	10	11	
250	11	5	2	11	11	6	5	7	12	26	21	26	20	19	29	21	10	8	
251	4	1	12	17	4	10	15	11	37	38	50	42	32	36	44	50	47	25	24
252	4	7		4		3	6	12	17	22	19	19	13	8	11	19	9	5	
253	4	7	9	5	9	12	10	3	18	16	7	22	6	14	5	11	8	5	
254	0	8	1	1	6	6	4	8	10	7	5	6	23	27	10	3	4	1	
255	7	5	6	3	3	3	8	9	6	17	14	23	28	13	55	41	7	5	
256	3	6	12	13	17	15	22	33	18	25	22	32	20	25	26	17	9	12	
257	1	1	11	10	8	16	9	20	23	33	28	19	20	24	19	15	4	4	
258	2	4	2	0	5	8	5	14	16	27	22	25	12	8	11	49	10	1	

Table 3.5.4 (Page 3 of 4)

259	3	1	6	4	7	7	18	7	17	24	21	19	21	5	10	16	6	7	7	1	3	1	1	0	5	211	Sep 16	Eriday
260	7	0	11	6	5	2	2	8	4	12	14	16	10	5	4		2	5	6	2	1	1	2	10	3	138	Sep 17	Saturday
261	0	7	0	0	0	1	2	14	10	10	10	9	12	13	8		6	4	3	4	0	1	4	4	2	124	Sep 18	Sunday
262	4	6	7	2	0	12	9	9	7	17	26	24	7	11	15		8	4	5	3	5	5	1	5	7	199	Sep 19	Monday
263	8	10	8	4	3	7	4	11	17	16	21	24	20	31	24	15	5	4	5	5	12	4	5	5	1	264	Sep 20	Tuesday
264	5	5	6	6	3	10	7	22	21	18	15	31	17	15	8	18	81	12	5	3	3	6	3	1	4	244	Sep 21	Wednesday
265	5	4	8	71	12	5	4	16	11	23	13	24	18	14	17	16	6	7	01	10	3	2	1	1	2	223	Sep 22	Thursday
266	3	9	7	3	3	1	9	16	18	17.	31	29	11	7	5		8	5	5	2	3	0	2	1	2	197	Sep 23	Friday
267	1	5	2	6	9	1	11	8	5	17	8	11	8	8	7		3	7	7	2	4	5	4	1	5	145	Sep 24	Saturday
268	3	2	0	6	1	2	2	10	2	5	13	8	8	13	6		91	18	4	0	2	1	8	5	4	132	Sep 25	Sunday
269	7	5	3	10	5	6	3	5	12	15	20	18	19	21	16		81	13	9	6	5	6	5	0	2	219	Sep 26	Monday
270	6	2	5	3	5	0	7	9	8	27	26	1.6	33	9	10	10	01	12	6	8	3	3	6	5	9	228	Sep 27	Tuesday
271	1	4	6	10	7	4	6	2	16	16	23	23	29	16	9		51	1.4	13	6	1	9	13	1	2	236	Sep 28	Wednesday
272	1	1	6	10	1	5	6	4	12	25	28	21	17	11	8	17	71	17	4	5	3	4	3	3	3	215	Sep 29	Thursday
273	6	8	3	9	8	2	11	15	18	24	27	21	19	10	12		62	20	3	6	7	3	1	9	4	252	Sep 30	Friday
GER	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	51	16	171	18	19	20	21	22	23			
Sum		928		954		536		06		558		317		403		42			43		905		759		95			
	966		986	107	75		888		955		349		614		25		178		103			885		801		1905	Total s	sum
178	5	5	6	5	6	9	11	13	17	20	19	19	15	14	14	14	41	10	6	6	5	5	4	5	4	235	Total a	average
123	6	6	- 7	6	6	10	12	15	20	24	22	22	17	15	17	1	61	12	8	7	6	6	4	5	4	271	Average	e workdays
55	3	4	3	5	5	6	6	8	10	12	12	12	9	9	9	.	8	5	4	4	3	3	4	4	5	151	Average	ge weekend

Table 3.5.4. Daily and hourly distribution of GERESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

Day

91	1	2	17	12	10	20	11	19	11	17	8	8	15	1	9	8	4	9	6	5	4	0	4	2				
92	0	8	1	2	4	9	13	12	21	34	61	39	22	50	61	23	21	21	10	17	15	8	5	3	460	Ap	02	Saturday
93	0	2	1	6	4	5	7	10	13	4	12	2	6	6	11	8	10	11	6	1	9	3	10	8	155	A	03	Sunday
94	2	10	20	13	20	34	18	35	33	33	28	41	35	27	19	22	28	20	18	1	3	1	4	10	75	Apr	04	Monday
95	8	10	35	27	58	67	64	48	53	45	30	42	50	47	53	24	20	19	12	12	7	1	6	2	740	A	05	Tuesday
96	7	7	17	31	20	95	65	63	49	46	36	65	46	44	47	43	15	26	32	23	45	30	23	19	904	Apr	06	Wednesday
97	18	21	46	48	621	102	79	64	69	47	50	64	47	58	49	43	32	26	13	11	16	2	7	9	983	Ap	07	Thursday
98	18	20	38	36	59	83	76	62	66	61	63	83	56	58	43	26	30	18	25	14	4	12	5	5	1	Apr	08	Friday
99	6	12	7	15	13	41	29	15	26	20	18	22	24	15	17	3	14	19	6	4	7	5	9	1	348	A	09	Saturday
100	1	8	18	8	16	17	17	19	12	11	15	21	22	17	19	15	15	22	31	6	5	3	5	13	336		10	Sunday
101	3	16	32	44	48	89	86	44	46	44	70	52	61	53	68	34	22	39	16	8	17	15	12	7	926	Apr	11	day
102	10	16	29	46	61	91	01	81	00	71	91	64	70	57	36	42	29	25	17	6	20	3	9	1	1076	Apr	12	Tuesday
103	7	17	48	44	46	83	75	63	88	76	63	56	76	56	52	39	43	31	23	7	12	10	16	2	1033		13	Wednesday
104	10	11	40	56	72	87	69	63	64	70	68	86	8	5	52	33	38	4	33	23	21	21	15	22	1129		14	Thursday
105	27	23	38	51	62	85	77	64	70	77	64	7	74	52	54	25	28	26	30	24	11	7	6	7	1055	Apr	15	Friday
106	8	16	15	23	25	26	44	6	18	29	36	44	30	28	20	21	25	17	12	12	10	4	7	19	495	Apr	16	Saturday
107	5	14	21	4	26	37	23	14	29	11	10	24	34	25	20	15	9	28	12	3	12	9	12	6	403	A	17	Sunday
108	7	6	38	72	4	61	44	26	35	1	3	37	56	43	52	38	28	27	12	10	5	13	5	17	723	A	18	Monday
109	48	13	28	46	74	101	69	47	5	4	73	5	7		12	9					221			4	1975		19	Tuesday
110	124	531					12	88	68	73	94	81	81	57	40	22	24	26	34	18	21	18	33	40	1683	Ap	20	Wednesday
11	28	41	40	40	75	62	47	58	38	34	44	46	48	51	37	47	44	48	19	13	22	21	23	16	942	Ap	21	Thursday
112	3	13	32	2	33	56	66	41	40	45	46	43	56	35	39	35	58	27	15	13	23	5	4	3	758	A	22	Friday
113	3	7	6	16	15	22	28	19	21	14	36	2	4	25	29	1	1	19	9	5	5	8	1	1	397	Apr	23	Saturday
114	8	16	14	17	13	15	18	17	12	8	15	15	12	25	19	10	13	10	39	5	2	5	7	30	345	Apr	24	Sunday
115	53	37	54	64	80	98	83	80	8	1061	105	90	97	85	3	31	18	26	5	15	18	1	4	0	1265	Ap	25	Monday
116	5	18	38	54	69	78	82	77	75	4	55	4	6	6	3	3	1	30	32	16	14	1	6	12	966	Apr	26	Tuesday
117	5	19	46	45	64	90	95	67	86	72	78	75	80	37	73	49	28	21	19	15	21	6	14	16	1121	Ap	27	Hednesday
118	16	17	47	64	65	1181	10	87	65	64	76	84	62	61	50	37	71	25	36	18	8	5	5	4	1195	AP	28	Thursday
119	27	19	27	72	57	82	83	96	69	81	65	86	63	59	3	28	4	22	15	10	20	15	5	6	1085	A	29	Friday
120	10	17	12	28	35	42	38	38	33	29	57	36	27	32	50	5	19	24	10	14	13	11	20	7	607	Ap	30	Saturday
121	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	11	6	11	20	5	26	36	19	146	May	01	Sunday
122	11	14	11	12	18	26	30	46	29	38	49	35	16	20	2	9	6	21	2	7	1	5	9	1	437	May	02	Monday
123	1	3	7	18	23	15	23	19	31	9	12	8	24	17	19	4	14	13	3	14	0	10	14	1	302	May	03	Tuesday
124	7	20	20	28	39	43	52	54	59	38	56	37	47	46	31	26	45	33	17	5	4	10	7	0	724	May	04	Wednesday
125	7	11	21	51	61	89	68	55	45	53	80	72	50	42	52	44	30	19	20	2	13	26	7	8	926	May	05	Thursday
126	5	17	36	48	63	58	69	77	48	68	54	44	49	36	62	49	30	33	15	14	12	1	2	2	892	May	06	Friday
127	8	6	9	32	14	22	30	10	27	27	37	25	27	37	38	9	16	20	11	11	5	5	12	2	440	May	07	Saturday
128	7	8	0	21	23	11	15	7	23	27	27	15	17	23	30	11	1	24	7	14	2	3	2	13	344	May	08	Sunday
129	8	13	14	13	27	20	22	22	21	16	13	20	26	23	21	2	13	15	4	7	23	6	4	15	387	May	09	Monday
130	9	17	44	49	59	66	89	70	65	49	46	60	42	56	33	25	14	30	15	14	9	8	4	4	877	May	10	Tuesday
131	15	31	56	50	79	84	98	81	85	38	75	56	56	42	49	39	92	78	38	72	88	83	74	93	1652	May	11	Wednesday
132	65	85	90	9	1	150	86	85	76	8		01	68	57	61	52	45	38	13	11	7	10	5	17	1549	May	12	Thursday
133	12	26	47	59	81	98	90	91	60	79	86	87	85	60	58	50	31	20	8	12	19	17	14	5	1195	May	13	Friday
134	7	8	6	31	29	23	16	21	19	43	30	24	41	25	29	16	22	14	4	7	23	15	13	12	478	May	14	Saturday
135	19	18	24	20	17	7	12	9	12	10	6	13	10	29	20	3	12	7	0	2	6	10	5	6	277	May	15	Sunday
136	17	17	25	58	78	98	70	83	69	60	71	51	75	75	5	16	24	21	14	3	5	1	6	6	999	May	16	Monday
137	13	16	42	52	931	1.01	921	111	64	721	100	75	64	56	61	28	32	29	19	23	10	11	4	2	1170	May	17	Tuesday
138	15	11	27	44	71	891	101	78	66	64	67	65	71	75	62	35	30	30	20	5	18	8	14	2	1068	May	18	wednesday
139	14	11	44	66	54	891	109	57	87	68	88	65	82	59	69	45	34	25	6	5	19	15	5	8	1124	May	19	Thursday
140	24	23	46	73	78	85		100	40	63	84	81	97	63	49	31	33	36	7	9	19	7	15	16	1158	May	20	Friday
141	13	13	13	17	24	24	22	16	16	19	18	20	39	32	22	13	24	19	6	5	6	5	0	11	397	May	21	Saturday
142	10	14	5	15	15	18	14	14	10	17	30	44	37	25	26	11	25	15	20	27	40	46	44	64	586	May	22	Sunday
143	87	71				651	1391					1061		100	92	69	64	54	54	61	37	32	29	48	2247	May	23	Monday
144	63	72	95	89	87		1211	8		104	77	1111	100	74	68	43	45	23	21	16	8	10	6.	7	1669	May	2.4	Tuesday
145	21	24	31	66	83	951	108	86	77	72	70	93	75	71	53	39	39	30	24	15	4	6	15	11	1208	May	25	Wednesday
146	16	20	27	89	71	971	108	811	100	67	72	99	96	76	66	47	33	41	15	27	25	13	5	5	1296	May	26	Thursday

Table 3.5.5 (Page 1 of 4)

Day

	21	18	36	76	83								64	43	36	33	25	21	46	26	166	May	27	Friday
48	34	35	24	54	465862	7435	4185	37	57	22	43	20	21	14	16	10	8	10	4	9	819	May	28	rday
149	6	7	4	35	72726	1313	441	182	27	23	25	1	11	12	13	2	17	1	5	1	309	May	29	
150	6	12	30	51	5510196	9688	85110	83	68	83	46	31	32	21	18	4	15	3	3	0	1137	-	30	Monday
151	3	15	51	53	64126881	108	929710	1017	78	76	60	543	37	27	24	21	13	5	3	19	1316	May	31	day
152	15	12	24	60	71109107	9858	7388	576	65	49	48	37	18	23	12	10	7	10	13	2	1066	Jun	01	Wednesd
53	6	18	33	81	6290108	5756	7357	71	82	89	72	49	46	37	25	20	21	9	13	12	1187	Jun	02	Thursday
154	9	13	48	49	649494	8878	6373	86	84	37	55	32	69	36	20	6	10	10	11	5	1134	un	03	Friday
155	10	30	17	21	121433	36-19	20	321	13	20	30	14	22	9	5	23	24	33	26	17	486	an	04	r
56	16	23	29	56	595962	6173	5043	50	69	42	30	19	38	49	41	34	27	17	12	9	968	un	05	ay
57	16	13	17	53	741138910	0367	9253	79	69	50	39	34	22	32	17	21	11	11	10	4	1089	un	06	ay
158	1	12	41	47	8510181	9876	6792	57	84	83	50	36	50	27	16	23	27	1	13	6	117	an	7	day
159	14	9	51	76	758888	8282	0095	918	85	89	65	44	50	35	34	52	38	40	32	32	1447	un	08	Wednesday
160	84	64	84	79	961	44138	8688	578	80	60	53	41	46	36	22	5	22	12	9	8	1558	un	09	day
61	17	18	39	55	578588	6769	7253	42	61	67		19		6		01	08	86	40	67	1781	un	10	y
62	50	44	39	62	$38 \quad 3133$	2740	3615	312	21	13	39	22	36	38	6	0	9		11	3	645	Jun	11	rday
63	4	11	13	9	222137	1921	10	7	9	35	14	27	17	12	26		1	1	2	4	337	Jun	12	day
164	5	5	0	16	351856	2313	1627	15	18	46	26	26	21	9	8	2	13	0	7		409	n	13	day
65	0	22	47	50	54105119	6487	7876	75	98	56	47	31	35	19	13	15	2	10	11	0	1114	Jun	14	day
66	3	18	43	54	1	97	1897	85	98	63	59	36	27	67	17	14	11	15	7	10	1327	an	15	Wednesday
67	18	27	48	64	78	1390	9267	76	69	81	61	412	26	28	16	13	10	15	9	28	126	Jun	16	Thursday
68	21	70		1.	03123	97118	9798		4311	10	72	83	39	38	26	11	31	16	21	31	1714	Jun	17	Friday
69	25	31	44	73	$55 \quad 5348$	3141	2944	16	36	16	29	18	19	17		16	31		14	3	69	Jun	18	urday
170	9	15	2	20	231918	15	1431	31	30	29	20	17	12	3		19	18	8	5	11	378	Jun	19	Sunday
71	14	4	20	51	77106114	7988	7874	51	51	61	45	36	28	14		17	10	23	13	1	1056	Jun	20	Monday
72	7	27	53	70	87118104	93106	8994	73	79	63	50	41	19	34	8	11	12	4	18	17	1277	Un	21	uesday
173	17	19	46	71	78117101	92106	81	868	83	635	50	23	38	23	20	20	10		3	0	122	Jun	22	day
174	3	20	65	85	6089	0667	9965	81	10	66	32	44	27	23	32	5	5	52	16	10	1253	un	23	Thursday
175	21	21	63	83	947984	95	96128111	119	93	63	44	34	66	49	29	26	19	7	10	34	1444	un	24	Friday
176	43	35	21	33	4235	32	2529	395	55	29	34	17	11	8			15	14		7	651	Jun	25	urday
177	15	7	6	19	2227	2921	4121	24	23	19	26	14	29	12	8	18	2	4	6	1	402	Jun	26	day
178	6	14	39	5	49109122	8874	57108		7710	08	33	291	19	19	18	22	11		8	30	133	Jun	27	Monday
179	38	87	53	56	8485		03	72	86	81	47	37	29	35	18	14	12		5	9	1843	Jun	28	Tuesday
180	17	21	40	71	70136120	91102	0162	0	01	58	54	29	68	26	14	7	14	6	5	2	129	Jun	29	Vednesday
181	20	18	42	59	66106107	6185	76105	77	69	73	50	25	39	24	4	11	29	15	16	4	1181	un	30	sday
182	17	49	49	52	7982106	6575	9399	99	46	57	51	43	56	25	20	40	24	26	35	27	131	ul	01	Friday
183	30	27	20	36	455351	2823	3239	34	29	25	15		20	12	14	8	15	17	15	8	600	ul	02	urday
184	0	15	12	26	212729	2415	1631	39	30	24	15	9	25	15	7		3	9	11	10	414	Jul	03	Sunday
185		9	17	58	61951	0173	90					0	0		0		0	0	0	5	542	1	04	Monday
18	8	29	45	33	000	00	00	0	0	0	0	0	0	0	0	6	28	5	22	16	192		5	Tuesda
187	3	25	49	67	83748910	0797	80127	9013		3113		2012	261	06	75	53	54	51	25	24	1926	ul	06	Nednesday
188	13	18	36	69	81109122	8186	84111	68	64	90	66	40	31	42	20	13	17	7	6	14	128	-1	07	Thursday
189	4	19	30	55	7893109	8688	9138	82	82	73	36	29	33	17	14	28	32	5	10	23	1155	ul	08	Friday
190		13	23	23	$23 \quad 3724$	2351	4915	24	32	23	27	25	28	34	8	27	14	8	8	15	560	ul	09	Saturday
191	0	12	4	21	221823	1326	17	62	28	22	16	14	11	13	3	1	7	2	8	3	299	ul	10	Sunday
192	4	17	26	63	62100102	79112	5993	O		50	49	10	37	10	9	12	2	12	7	4	1087	ul	11	Monday
193	8	24	39	77	86114106	6591	8387	76	86	76	37	23	26	27	24	16	17	2	7	12	1209	Jul	12	Tuesday
194	27	13	57	69	73098	8774	9365	718	83	67	39	28	29	29	15	19	5	7	10	5	1063	ul	13	Nednesday
195	7	11	30	63	64108	3272	6577	72	79	66	50	43	43	37	19	25	26	23	1	7	1224	ul	14	Thursday
196	11	18	50	48	749269	8490	6774	94	68	73	45	31	23	31	31	28	12	23	9	14	1159	ul		Friday
197	8	15	1	19	412433	2520	2815	44	50	30	27	22	22	28	4	7	15	12	6	3	499	Ul	16	Saturday
198	7	12	10	17	$18 \quad 415$	18	1321	22	39	12	18	11	12	22	22	28	41	49	38	49	500	ul		Sunday
199	37	38	74	78	86102129	6597	5779	79	70	65	61	41	67	22	28	20	24	19	16	20	1374	Jul	18	Monday
200	40	30	43	60	6010297	9379	7484	80	79	83	40	24	18	18	10	17	24	21	3	7	1186	ul	19	Tuesday
201	10	10	45	64	79101107	7990	7012610	03	90	73	54	37	40	25	4	15	8	13	17	10	1270	ul	20	Nednesday
202	4	20	52	78	73108918	8691	6677	96	66	85	55	40	42	23	29	24	23	5	6	1	1241	1	21	Thursday

Table 3.5.5 (Page 2 of 4)

Day
203

$\begin{array}{llllllllllllllllllllllllllllllllllll}14 & 13 & 7 & 11 & 14 & 18 & 24 & 24 & 20 & 26 & 21 & 28 & 21 & 21 & 18 & 33 & 26 & 16 & 19 & 17 & 19 & 22 & 17 & 27 & 476 \text { Aug } 08 \text { Monday }\end{array}$

0 Aug 13 Saturday
0 Aug 14 Sunday
0 Aug 15 Monday
0 Aug 16 Tuesday
0 Aug 17 Wednesday
O Aug 18 Thursday
0 Aug 19 Friday
0 Aug 20 Saturday
0 Aug 21 Sunday
0 Aug 22 Monday
0 Aug 23 Tuesday
0 Aug 24 Wednesday
0 Aug 25 Thursday
0 Aug 26 Friday
0 Aug 27 Saturday
0 Aug 28 Sunday
0 Aug 29 Monday
0 Aug 30 Tuesday
0 Aug 31 Wednesday
0 Sep 01 Thursday
0 Sep 02 Eriday
0 Sep 03 Saturday
0 Sep 04 Sunday
0 Sep 05 Monday
0 Sep 06 Tuesday
0 Sep 07 Wednesday
0 Sep 08 Thursday
0 Sep 09 Friday
0 Sep 10 Saturday
0 Sep 11 Sunday
0 Sep 12 Monday
0 Sep 13 Tuesday
0 Sep 14 Wednesday
0 Sep 15 Thursday

Table 3.5.5 (Page 3 of 4)

Table 3.5.5. Daily and hourly distribution of Apatity array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

	2	5	2	0	12	0	8	13	18	24	22	28	19	59	39	36	72	38	24	38	59	23	47	25	613	Apr 01	Friday
92	11	68	56	56	12	45	25	33	27	15	591	10	4310	05	13	23	13	15	5	13	12	13	13	8	693	Apr 02	rday
93	14	25	7	7	11	38	9	0	0	0	456	65	75		15	24	42	40	76	27	31	51	78	50	840	Apr 03	Sunday
94	61	29	93	15	4	7	0	0	7	13	141	19	83	32	50	24	23	19	31	23	36	48	30	51	637	Apr 04	Monday
95	21	31	17	13	11	9	21	0	13	27	6413	301	714	41	60	28	45	95		27	85	59		02	1408	Apr 05	Tuesday
96	101	56	28	24	12	7	9	20	15	16	241	17	181	17	9	22	20	20	15	17	26	27	17	13	550	Apr 06	Hednesday
97	6	6	15	7	7	6	7	19	13	4	8	6	51	16	5	0	5	9	3	27	43	21	8	16	262	Apr 07	Thursday
98	37	25	50	17	29	16	28	35	42	20	1312	20	22		29	38	29	29	35	25	20	29	8	37	925	Apr 08	Friday
99	30	5	27	16	11	18	16	20	21	20	611	12	18	23	29	35	17	57	57	79	43	25	19	30	689	Apr 09	day
100	20	31	90	77	60	57	65	51	85	33	301	19	29	35	29	32		15	35	35	29	30	18	30	1176	Apr 10	day
101	34	31	37	23	18	17	19	26	29	21	233	31	33	39	83	901	11	10	92	35	41	50	33	30	1187	Apr 11	day
102	32	21	18	10	2	5	2	4	15	2	1	11	5	1	1	28	5	15	14	7	14	16	4	1	234	Apr 12	uesday
103	15	4	20	18	40	27	21	12	16	22	101	16	332	22	17	18	19	19	19	14	2	5	14	1	404	Apr 13	Wednesday
104	4	12	1	4	1	3	2	11	1	4	1	10	8	3	15	33	2	5	28	32	56	68	33	48	386	Apr 14	Thursday
105	26	20	27	30	35	38	44	52	51	27	414	49	33	14	36	68	17	20	6	18	11	7	22	21	713	Apr 15	Friday
106	34	85	51	24	19	17	19	39	18	24	291	15	16	23	23	12	28	24	22	4	2	2	5	30	565	Apr 16	Saturday
107	54	2	6	1	3	0	9	4	16	29	7	5	61	11	6	5	50	35	31	12	10	13	23	9	347	Apr 17	Sunday
108	11	9	3	0	9	4	7	1	4	21	5	8	8	9	9	16	6	14	13	17	17	16	36	10	253	Apr 18	Monday
109	15	15	26	22	16	22	22	11	10	20	13	22	22	18	15	9	21	12	14	9	21	10	24	16	405	Apr 19	Tuesday
110	12	6	10	5	12	5	3	49	481	1441	3	30	8	9	9	9	9	7	13	15	12	4	4	10	776	Apr 20	Wednesclay
111	14	2	7	5	5	8	10	15	24	12	241	13	23	21	13	34	20	23	16	21	33	23	14	6	386	Apr 21	Thursday
12	14	8	3	4	5	4	4	4	14	13	161	15	12	7	0	5	1	5	2	10	8	1	0	1	156	Apr 22	Friday
113	3	9	16	29	24	17	36	31	16	6	231	17	18	29	6	16	9	12	7	13	10	6	12	11	376	Apr 23	Saturday
114	6	6	5	14	7	10	5	2	0	4	5	4	0	3	0	2	3	4	0	5	3	1	0	4	93	Apr 24	Sunday
115	13	3	2	13	18	7	10	12	12	11	18	20	81	17	16	16	10	19	4	11	13	11	13	12	289	Apr 25	Monday
116	12	14	9	11	11	15	23	14	21	10	112	24	16	14	4	17	6	16	9	20	19	24	6	18	344	Apr 26	Tuesday
117	4	13	16	16	14	24	22	21	13	18	151	11	14	13	17	15	11	17	19	16	14	20	10	13	366	Apr 27	Wednesday
118	9	6	6	12	17	21	16	14	12	8	101	12	10	12	13	20	9	13	17	18	11	9	8	10	293	Apr 28	Thursday
1	11	6	13	15	1	11	7	13	18	12	5	5	10	6	8	11	7	10	12	14	15	15	11	14	250	Apr 29	Friday
120	72	40	93	75	72	80	13	7	21	11	10	9	51	11	13	11	21	7	6	15	10	3	16	17	638	Apr 30	Saturday
121	5	15	14	11	4	7	14	9	3	13	12	6	18	24	11	17	15	24	17	21	26	25	10	25	356	May 01	Sunday
122	13	20	14	26	24	32	30	19	12	19	202	20	191	18	16	8	12	21	17	6	16	4	7	4	397	May 02	Monday
123	6	4	3	11	10	2	3	4	2	5	3	9	10	9	9	5	6	2	27	31	19	20	34	27	261	May 03	Tuesday
124	26	34	26	23	22	20	16	16	13	15	132	26	18	41	19	19	17	22	25	33	18	22	22	16	522	May 04	Wednesday
125	26	22	14	491	106	66	56	56	24	0	0	0	11	21	11	12	17	20	27	13	27	15	7	11	611	May 05	Thursday
126	4	12	1	11	15	28	4	9	24	18	71	10	81	13	4	4	3	4	11	5	2	9	5	3	214	May 06	Friday
12	1	5	6	7	4	13	5	3	17	5	7	7	41	10	5	3	6	10	12	5	6	3	1	6	151	May 07	Saturday
128	10	5	4	10	2	10	4	10	14	2	2	4	3	5	6	5	2	3	1	3	1	1	7	2	116	May 08	Sunday
12	10	0	2	1	0	3	1	1	9	1	5	7	5	2	14	0	1	5	8	3	9	1	2	0	90	May 09	Monday
130	2	3	1	9	10	2	8	7	1	1	1	4	6	0	4	3	2	1	1	1	1	0	0	0	68	May 10	ruesday
131	3	0	0	2	1	1	0	0	9	0	2	7	1	6	0	1	1	10	0	10	4	5	0	0	63	May 11	ednesday
132	1	0	3	0	3	0	0	4	4	4	1	3	3	6	4	0	0	4	1	1	3	4	2	1	52	May 12	Thursday
133	4	1	1	0	1	0	0	0	3	4	7	2	7	1	5	2	7	0	2	0	2	0	1	4	54	May 13	Friday
134	0	5	5	3	1	2	0	3	0	2	0	1	5	1	0	0	0	0	2	0	0	2	3	0	35	May 14	Saturday
135	11	0	2	0	1	1	0	2	2	7	2	1	01	12	0	5	2	0	1	1	3	7	1	0	61	May 15	Sunday
136	2	0	8	2	1	3	0	0	6	0	9	2	3	0	2	0	1	0	0	0	1	1	0	1	42	May 16	Monday
137	8	0	0	0	2	1	2	6	0	11	0	1	1	1	2	13	2	1	0	0	4	13	0	1	69	May 17	Tuesday
138	3	1	6	0	16	2	12	6	7	0	7	0	0	2	4	3	1	3	4	3	0	0	0	2	82	May 18	Wednesday
139	0	0	1	3	10	0	0	0	0	3	8	0	4	3	1	5	9	10	2	10	1	1	1	0	72	May 19	Thursday
140	0	0	0	0	4	0	1	0	0	1	1	1	1	0	0	0	0	2	2	6	2	2	11	1	35	May 20	Friday
141	0	0	3	1	0	2	2	8	0	2	5	1	1	0	0	1	1	0	0	2	5	3	1	2	40	May 21	Saturday
142	3	2	1	5	0	2	5	5	2	2	1	14	7	1	2	6	3	3	0	0	0	0	0	1	72	May 22	Sunday
143	0	5	0	9	0	4	11	0	1	7	2	3	0	3	7	8	4	1	8	3	9	5	2	5	97	May 23	Monday
144	4	1	1	6	11	1	1	1	0	1	0	6	2	0	2	13	5	1	0	1	1	5	1	0	64	May 24	Tuesday
145	4	0	0	2	6	0	0	6	6	10	4	0	2	1	1	10	2	2	11	5	2	2	7	6	89	May 25	Wednesday
146	7	1	0	7	0	0	2	11	8	2	6	3	2	7	38	5	13	3	12	6	1	2	6	4	146	May 26	Thursday

Table 3.5.6 (Page 1 of 4)

Day

147	0	7	0	4	3	1	0	1	1	4	0	6	9	10	0	6	2	0	3	0	3	5	0	2
148	6	2	1	0	0	2	2	0	4	1	3	1	6	2	1	1	1	0	2	2	3	2	7	1
149	0	0	4	0	0	1	7	2	4	2	7	0	4	4	7	2	7	0	1	2	0	1	3	0
150	0	0	4	0	0	0	1	3	0	2	0	0	3	0	1	2	1	0	1	6	0	2	11	2
151	0	0	0	3	0	3	0	9	0	4	1	4	4	0	1	0	1	10	3	1	3	3	4	2
152	3	1	5	6	3	1	3	10	2	3	1	7	2	3	1	3	2	1	8	1	1	0	1	0
153	0	6	0	8	7	0	1	5	9	0	0	9	3	5	2	3	5	4	4	0	2	0	1	4
154	2	3	1	6	0	3	0	7	0	1	1	4	10	5	13	9	2	1	4	2	4	11	4	4
155	0	7	0	7	5	0	3	3	3	5	7	5	5	2	1	4	5	4	5	6	2	1	2	0
156	0	9	2	10	3	5	13	9	2	9	2	10	3	3	4	1	2	6	6	2	1	3	2	2
157	2	2	2	0	8	4	6	12	0	8	1	1	2	2	3	0	3	2	0	8	1	9	5	3
158	0	1	0	1	1	1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
159	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
161	0	0	0	0	0	0	0	0	0	2	4	4	1	7	3	3	7	4	3	3	2	7	1	1
162	1	2	2	5	6	1	4	3	3	3	2	6	4	3	8	8	5	3	5	4	12	2	4	7
163	4	5	2	1	2	10	4	6	25	14	16	9	26	36	28	18	20	4	5	7	19	9	10	24
164	19	5	2	2	3	1	3	4	0	4	2	2	2	3	0	6	1	1	1	2	1	4	4	0
165	6	1	0	5	2	0	5	1	0	1	1	0	2	2	2	1	1	0	1	8	1	4	1	1
166	0	2	0	1	0	2	0	1	0	4	12	4	2	3	2	2	7	15	27	12	10	6	0	7
167	5	3	8	7	8	4	6	8	1	6	6	2	4	3	0	8	4	8	2	2	4	0	6	6
168	2	0	1	0	2	9	1	13	5	5	7	9	8	16	8	11	3	3	5	5	7	2	3	18
169	3	3	3	15	6	3	2	1	7	6	3	9	3	2	1	0	0	0	1	3	1	1	0	11
170	39	84	5	43	31.	38	90	53	39	33	71	56	23	34	35	58	44	7	35	22	12	63	65	15
171	7	5	13	31	9	3	29	83	87	14	9	48	59	43	24	3	4	8	6	0	1	1	0	10
172	4	4	5	0	2	2	6	8	10	3	8	3	4	6	17	6	5	8	4	11	2	3	5	2
173	4	3	0	1	2	4	7	19	3	1	2	7	9	5	1	1	6	3	7	1	0	1	0	1
174	2	2	1	0	9	1	3	2	3	2	4	9	8	3	1	1	1	1	0	0	0	2	0	2
175	1	1	5	6	5	3	15	4	15	3	3	5	7	6	9	10	1	2	0	0	2	21	17	7
176	4	3	6	5	2	2	1	1	15	2	2	5	7	10	1	0	5	4	1	2	6	12	2	1
177	9	2	3	20	13	2	2	6	10	0	1	2	5	1	0	1	1	6	1	2	1	1	4	1
178	7	0	4	2	3	3	2	13	3	3	7	1	6	0	2	16	8	4	2	1	0	3	2	3
179	3	7	1	3	2	10	10	5	10	3	2	2	2	4	11	4	2	1	3	2	4	6	0	2
180	4	1	2	2	1	4	2	5	9	2	8	15	7	38	20	8	3	10	8	7	9	8	6	20
181	16	0	7	2	11	3	1	5	4	9	27	7	7	7	2	9	3	10	11	9	9	9	11	9
182	11	10	10	14	6	15	2	7	15	14	11	3	2	2	1	1	1	13	5	7	6	9	4	1
183	2	1	4	6	4	1	7	4	4	10	8	7	8	2	2	2	6	3	3	3	1	3	1	8
184	9	9	5	1	0	4	3	4	4	0	3	5	2	3	6	6	2	11	7	6	9	7	7	12
185	5	8	9	12	25	9	12	24	17	4	72	23	10	23	1	7	9	0	0	0	0	0	0	0
186	0	0	0	0	0	0	0	0	17	1	4	20	20	8	18	8	9	3	1	3	6	4	14	0
187	7	3	6	6	7	4	11	11	3	6	2	29	22	29	77	54	55	89			89	81	48	78
188	9	11	16	78	27	6	5	3	3	2	4	2	0	1	8	6	1	4	0	1.	0	4	4	2
189	3	2	3	6	0	3	3	3	2	1	2	0	0	0	2	0	1	0	0	0	13	2	1	2
190	1	3	0	6	2	5	3	0	6	3	3	4	1	3	2	1	1	1	3	4	3	4	1	3
191	8	2	5	3	4	2	1	2	2	4	3	2	5	4	1	4	3	4	2	3	5	6	3	4
192	8	6	10	10	10	8	5	7	5	2	7	15	7	8	59	23	3	34	46	72	22	17	12	12
193	5	8	10	14	10	8	8	9	4	2	1	4	3	2	7	2	0	0	0	2	3	6	1	9
194	13	15	12	10	6	2	8	3	1	3	3	5	2	17	5	7	3	2	6	6	7	1	3	3
195	12	7	10	6	6	4	6	15	9	6	8	4	7	5	7	16	22	18	29	15	5	7	15	9
196	2	13	10	5	7	3	4	4	6	4	4	10	3	6	16	30	31	52	41	11	14	14	12	12
197	14	20	19	21	14	8	9	14	12	9	22	9	13	15	5	8	20	16	37	18	38	29	10	17
198	12	26	25	11	25	13	16	28	22	12	8	15	10	9	7	8	6	2	13	2	9	8	7	9
199	4	6	8	14	12	5	7	7	14	9	4	8	7	10	11	6	8	6	4	11	14	9	8	2
200	11	13	13	21	12	18	17	28	14	25	15	20	25	25	21	22	13	6	12	4	13	4	2	19
201	9	4	4	5	3	7	6	12	9	7	10	8	6	18	23	4	6	3	0	0	0	0	0	0
202	0	0	0	0	0	0	0	0	0	0	0	5	5	12	15	3	17	1	21	18	4	3	3	1

Table 3.5.6 (Page 2 of 4)

Day
203 204
205 206 207 208 209 210
211 212 213 215 216 217 219 220 221 222 222
223
224 224 225 226 228 228
229
230 230 231 232 233 234
235 236 237 238 239 240 241 242

9	3	3	5	1	3	2	15	7	12	6	12	11	12	11	19	8	12	7	12	6	6	7	17	206	122	Friday
7	16	3	33	11	15	16	291	18	22	16	16	7	7	9	6	29	16	9	7	14	12	18	11	353	Jul 23	urday
6	7	9	7	6	3	12	9	2	4	2	5	4	3	11	8	7	-	23	10	2	12	20	7	183	Jul 24	Sunday
12	13	7	9	16	29	19	375	50	28	16	24	21	9	21	23	24	301	18	20	29	27	40	29	551	Jul 25	Monday
21	25	183	37	32	34	20	29	19	28	9	9	11	5	3	8	5	9	7	10	13	16	15	34	417	Jul 26	Tuesday
24	36	362	29	35	14	14	15	12	7	15	1	9	13	20	31	53	51	16	15	22	18	14	10	510	Jul 27	Wednesday
4	12	17	40	45	48	57	81	36	50	43	53	67	57	77	75	31	33	27	37	24	40	39	31	1024	ul 28	Thursday
37	29	312	25	23	40	24	20	24	27	18	17	24	28	42	33	44	62	63	44	41	37	36	23	792	Jul 29	Friday
25	35	352	20	29	12	17	12	17	18	8	12	8	10	5	2	5	4	4	1	1	0	9	2	291	ul 30	Saturday
2	5	6	8	10	15	8	5	2	3	2	1	4	6	3	3	5	6	7	1	5	3	12	11	133	Jul 31	Sunday
6	12	81	13	39	53	28	40	27	6	16	17	15	34	25	23	20	16	11	15	11	16	28	15	494	Aug 01	Monday
12	21	1	15	12	6	12	13	14	5	12	16	11	17	7	0	0	0	0	0	0	0	0	0	181	Aug 02	Tuesday
0	0	0	0	0	0	0	10	4	18	5	3	14	2	1	15	12	1	8	0	8	5	4	5	115	Aug 03	Wednesday
5	1	7	3	8	6	9	6	4	6	5	9	8	8	5	6	6	7	4	4	5	3	2	5	132	Aug 04	Thursday
11	9	111	11	15	4	11	41	1.5	10	11	11	7	6	17	441	101	36	22	17	8	3	5	3	392	Aug 05	Friday
1	6	5	9	3	3	1	6	6	10	12	18	13	9	17	8	9	5	9	6	8	8	5	7	184	Aug 06	Saturday
6	6	6	5	9	12	13	5	8	1	0	2	2	2	8	3	2	1	7	2	12	6	5	4	127	Aug 07	Sunday
4	6	3	8	9	6	11	11	11	4	5	6	6	14	6	8	4	17	3	2	1	7	7	13	172	Aug 08	Monday
7	7	3	2	1	3	13	7	3	5	6	4	7	3	1	1	20	7	7	6	5	5	3	9	135	Aug 09	Tuesday
1	5	1	5	3	3	4	3	7	2	6	10	14	3	81	16	22	51	16	5	5	9	9	12	174	Aug 10	Wednesday
5	4	12	5	2	6	6	11	3		2	4	4	5	5	2	9	5	7	5	4	4	5	2	122	Aug 11	Thursday
14	5	13	8	10	5	5	210	10	12	7	5	4	3	14	8	9	6	5	1	0	2	0	4	152	Aug 12	Friday
4	0	4	5	12	1	6	6	4	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	49	Aug 13	Saturday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	7	Aug 14	Sunday
0	0	0	0	0	0	0	0	0	5	4	3	3	13	11	5	1	14	3	8	4	5	2	4	85	Aug 15	Monday
13	3	8	2	15	8	1	0	10	3	10	8	8		2	2	25	17	17	9	2	4	12	10	191	Aug 16	Tuesday
6	0	2	5	9	2	4	5	2	7	1	3	3	6	5	5	4	3	2	10	6	1	25	12	129	Aug 17	Wednesday
3	7	4	9	19	5	1	1	1	2	1	7	1	1	7	0	3	3	1	2	9	2	3	5	97	Aug 18	Thursday
0	8	2	9	8	7	8	5	22	20	16	6	4	2	8	1	12	1	8	3	11	18	11	12	202	Aug 19	Friday
12	9	11	17	5	1	3	5	1	2	2	2		10	2	1	4	1	1	16	14	13	9	4	15	Aug 20	Saturday
4	1	8	8	5	3	5	4	7	6	11	4	3	2	3	11	9	9	5	10	11	5	7	7	148	Aug 21	Sunday
6	10	01	10	7	0	11	2	2	4	5		19	4	0	,	0	0	0	0	0	0	0	0	81	Aug 22	Monday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Aug 23	Tuesday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Aug 24	Wednesday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Aug 25	Thursday
0	0	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	3	7	6	6	6	4	0	32	Aug 26	Friday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Aug 27	Saturday
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		02		77	287	Aug 28	Sunday
28	67	9310	06	94	55	48	7218	182	20	0	0	0	0	0	0	0	0	2	0	7	1	0	1	876	Aug 29	Monday
0	1	0	0	0	0	37	22	20	9	17	34	861	1191	86	18	18	3413	1.34	64	50	54	36	33	972	Aug 30	Tuesday
32	30	22	41	38	21	31	7821	216	12	43	23	35	24	22	21	26	0	0	0		0	43	46	804	Aug 31	Wednesday
46	47	46	28	44	23	20	5	21	0	52	30	31	40	35	57	41	35	14	31	38	48	18	21	771	Sep 01	Thursday
34	13	24	45	36	32	20	16	20	19	15	18	19	18	35	36	21	35	36	21	29	29	29	19	619	Sep 02	Friday
26	20	21	46	29	18	24	27	12	18	25	10	19	18	18	42	15	31	32	25	27	19	32	20	574	Sep 03	Saturday
29	16	353	32	8	15	39	26	22	25	28	16	35	11	33	50	35	24	29	29	69	73	31	24	734	Sep 04	Sunday
54	25	34	22	17	38	13	20	18	50	19	60	35	23	10	24	23	33	14	32	32	40	40	29	705	Sep 05	Monday
18	34	36	24	32	29	36	18	33	21.	23	30	19	24	20	21	41	26	33	41	23	14	14	25	635	Sep 06	Tuesday
22	33	27	24	41	30	28	32	21	18	30	32	37	23	35	21	15	36	32	36	30	51	54	72	780	Sep 07	Wednesday
91	60	49	40	43	45	25	58	56	61	73	32	35	43	55	24	13	33	43	68	73	54	31	29	1134	Sep 08	Thursday
27	35	42	25	51	21	46	62	44	25	38	35	24	28		33	36	281	1641	102	41	25	42	19	1176	Sep 09	Friday
	118		34	41	461	191	24	17	27	29	38	65	53	17	25	60	7021	2141	136	16	16	29	99	1657	Sep 10	Saturday
71	33	33	27	30	33	15	17	18	20	20	94	13		160		207	9513	139	312	192	2211	105	20	1761	Sep 11	Sunday
13	25	30	231	1923	3681	1312	20528	286	81	56	31	59	15	13	14	19	13	17	19	12	13	13	22	1670	Sep 12	Monday
12	22	16	18	25	16	40	31	18	21	16	33	27	25	19	21	25	37	27	24	19	15	25	26	558	Sep 13	Tuesday
10	35	26	21	22	37	34	22	25	17	16	23	20	29	29	28	20	16	20	26	18	35	19	19	567	Sep 14	Wednesclay
14	0	0	0	14	12	33	26	39	22	20	17	30	28	15	23	9	32	24	31	27	19	36	31	502	Sep 15	Thursday

Table 3.5.6 (Page 3 of 4)

Table 3.5.6. Daily and hourly distribution of Spitsbergen array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day

3.6 IMS operation

The Intelligent Monitoring System (IMS) was installed at NORSAR in December 1989 and was operated at NORSAR from 1 January 1990 for automatic processing of data from ARCESS and NORESS. A second version of IMS that accepts data from an arbitrary number of arrays and single 3-component stations was installed at NORSAR in October 1991, and regular operation of the system comprising analysis of data from the 4 arrays ARCESS, NORESS, FINESS and GERESS started on 15 October 1991. As opposed to the first version of IMS, the one in current operation also locates events at teleseismic distance.

Data from the Apatity array were included on 14 December 1992, and from the Spitsbergen array on 12 January 1994. Due to missing calibration information for the new Guralp SP sensors installed in the Spitsbergen array in late August, detections from the Spitsbergen array were not used in the automatic phase association after 1 September 1994, but the detections were available to the analysts and could be added manually during analysis.

The operational stability of IMS has been very good during the reporting period. In fact the IMS event processor (pipeline) has had no downtime of its own; i.e., all data available to IMS have been processed by IMS.

Phase and event statistics

Table 3.6.1 gives a summary of phase detections and events declared by IMS. From top to bottom the table gives the total number of detections by the IMS, the number of detections that are associated with events automatically declared by the IMS, the number of detections that are not associated with any events, the number of events automatically declared by the IMS, the total number of events defined by the analyst, and finally the number of events accepted by the analyst without any changes (i.e., from the set of events automatically declared by the IMS)

Due to reductions in the FY94 funding for IMS activities (relative to previous years), new criteria for event analysis, effective from January 1, 1994 were introduced. Since that date, only regional events in areas of special interest (e.g, Spitsbergen, since it is necessary to acquire new knowledge in this region) or other significant events (e.g, felt earthquakes and large industrial explosions) have been thoroughly analyzed. Teleseismic events are analyzed as before.

	Apr 94	May 94	Jun 94	Jul 94	Aug 94	Sep 94	Total
Phase detections	67287	61976	70465	72409	47220	44911	364268
- Associated phases	8139	8394	8661	7677	9229	7262	49362
- Unassociated phases	59148	53582	61804	64732	37991	37649	314906
Events automatically declared by IMS	2354	2406	2549	2227	2846	2336	14718
No. of events defined by the analyst	384	455	410	386	556	359	2550
No. of events accepted without modifications	1	0	46	11	6	3	67

Table 3.6.1. IMS phase detections and event summary.
U. Baadshaug
B. Ferstad
B.Kr. Hokland
L.B. Loughran
B. Paulsen

4 Improvements and Modifications

4.1 NORSAR

NORSAR data acquisition

The current NORSAR data acquisition system was described in NORSAR Sci. Rep. No. 2-93/94, and is functioning as a backup system until the refurbishment of NORSAR array is finished. The system has been running satisfactorily during the whole reporting period.

NORSAR detection processing

The NORSAR detection processor has been running satisfactorily. To maintain consistent detection capability, the NORSAR beam tables have not been changed.

Detection statistics for the NORSAR array are given in section 2.

NORSAR event processing

The routine processing of NORSAR events was described in NORSAR Sci. Rep No 2-93/ 94. The process continues to use a data base with time delay corrections and slowness corrections for location calibration that was established in 1974 (Berteussen, 1974). This data base still gives valuable corrections for the NORSAR array, but the data base itself is technically based on old IBM architecture disk files. The correction subroutines and disk file access routines have been converted to give identical results on SUN and the old IBM system. However, this data base is in today's technology outdated, and an effort to create a new data base is given high priority.

NORSAR refurbishment

All the new Science Horizons data acquisition hardware and software have been acquired and delivered. See NORSAR Sci. rep. No. 2-93/94 for a system description. The data acquisition software XAVE and communication interface module CIM II were installed on October 5, 1994 at NDPC. At subarray 06C, a CIM II was installed in the Central Terminal Vault - CTV, and an AIM24-1 has been installed in one remote SP vault (SPV) for testing purposes. The data acquisition is running satisfactorily.

Between every SPV and CTV, the data will be transmitted using ADCCP protocol and asynchronous modems. These modems require DC power, and together with one AIM241 and one GPS clock, this equipment consumes almost all the power we can deliver at the remote sites. To give DC power out to the remote sites and to get data back, we now need to use additional pairs from the buried cables as compared to the old analog data transmission. This means that cable pairs that used to be spares, will now be used as power cables, and cable problems earlier not detected will now be exposed. The consequence is that many more cable repairs than initially predicted will be needed.

Boreholes in the seven LPVs for the KS5400P seismometers have been drilled. Contractual arrangements for the delivery of "posthole" KS54000 seismometers have been completed.

Although several technical problems have delayed the refurbishment, we are still planning to send NORSAR data to IDC during the GSETT-3 experiment.

4.2 Regional Arrays

DP - Detection processing

The routine detection processing of the arrays is running satisfactorily on each of the arrays' SUN-3/280 or Sparcstation 1 acquisition systems. The same program is used for NORSAR, NORESS, ARCESS, FINESA, GERESS, Apatity and Spitsbergen, but with different "recipes". The beam table for NORESS and ARCESS is found in NORSAR Sci. Rep. No. 1-89/90. The beam table for FINESA and GERESS is found in NORSAR Sci. Rep. No. 1-90/91. The beam table for Apatity is found in NORSAR Sci. Rep. No. 1-92/93, and that for Spitsbergen is found in NORSAR Sci.Rep. No. 2-92/93.

Detection statistics are summarized in section 3 .

EP_SigPro - Signal processing. Phase estimation

This process performs $\mathrm{f}-\mathrm{k}$ and polarization analysis for each detection to determine phase velocity, azimuth and type of phase, and the results are stored in the ORACLE detection and arrival tables for use by the IMS.

Some modifications have been done as a result of IDC testing.
EP_Ronapp - Event Processing. Plot and epicenter determination
A description of single-array event processing is found in NORSAR Sci. Rep. No. 2-88/ 89, and NORSAR Sci. Rep. No. 2-89/90.

J. Fyen

Reference:

Berteussen, K.A. (1974): NORSAR Location calibrations and time delay corrections, NORSAR Scientific Report No. 2-73/74, Kjeller, Norway.

5 Maintenance Activities

Activities in the field and at the Maintenance Center

This section summarizes the activities at the Maintenance Center (NMC) Hamar, and includes activities related to monitoring and control of the NORSAR teleseismic array, as well as the NORESS, ARCESS, FINESS, GERESS, Apatity and Spitsbergen small-aperture arrays.

Activities involve preventive and corrective maintenance, planning and activities related to the refurbishment of the NORSAR teleseismic array.

NORSAR

Visits to subarrays in connection with:

- Adjusted gain and offset, SP/LP channels
- Demounted equipment in the 06C CTV
- Power failures at 01A and 02B
- Construction of concrete floor and painting work at 06C CTV

NMC

- Continued the NORSAR refurbishment preparations
- Prepared for the Spitsbergen expedition

NORESS

- Repaired damage caused by lightning

ARCESS

- Replaced fiber optical transmitters and adjusted optical link

Spitsbergen

- Replaced decoder in Longyearbyen
- Buried all cables between the HUB and remote sites (approx. 5 km of cables)
- Installed wellhead vaults at all remote sites
- Replaced old battery bank with new NiCa batteries
- Replaced Teledyne S-500 seismometers with Guralp CMG-3V instruments
- Installed a 3-component broadband instrument in borehole at site B4
- Expanded the station "hut" with two "storerooms"
- Replaced a defective windmill

Additional details for the reporting period are provided in Table 5.1.

Subarray/ area	Task	Date
NORSAR		April
02C	Adjusted DC offset and gain on SP channels Adjusted SP and LP channels	12 Apr
NMC	NORSAR refurbishment work continued.	April
		May
ARCESS	B4, C2, C4, D2 and D3: Replaced fiber opitcal transmitters Adjusted optical link, all channels	2-5 May
Sptisbergen	Replaced decoder, Longyearbyen	6 May
NMC	Continued NORSAR refurbishment work Began preparations for expedition to Spitsbergen	May
NORSAR		June
06C	Demounted the equipment in the CTV Began preparations for making new concrete floor	27-28 Jun
NMC	Continued NORSAR refurbishment work Continued preparations for the expedition to Spitsbergen	June
NORSAR		July
01A	Subarray visited due to power failure	19 Jul
02B	Subarray visited due to failure on the 1000 V AC powerline.	19 Jul
02B	Bad insulators found at two different places.	21 Jul
02B	Replaced RD6 due to failure on the power supply card, damaged by lightning.	25 Jul
06C	Made new concrete floor in CTV.	1 Jul
06C	Replaced RD6 due to failure on power supply card. Replaced modem, which had been damaged by lightning Adjusted gain on all SP channels. Checked MP and FP, LP-Z.	12 Jul

Subarray/ area	Task	Date
NORESS	Replaced Hub 10 processor card because of spike problems after thunderstorm	4 Jul
	Repaired Hub power system, damaged by lightning Repaired Hub 14 digital interface card, damaged by lightning Restarted the UPS system NMC	Continued NORSAR refurbishment work Continued preparations for the expedition to Spitsbergen
NORSAR	27 Jul	
06C	Painted the floor and walls of the CTV Spitsbergen	All cables between the Hub and the remote sites were buried (approx. 5 km), as required by local authorities. Wellhead vaults were installed at all remote sites. The old battery bank was replaced with new NiCa batteries. The Teledyne S-500 seismometers were replaced with Guralp CMGG-3V instruments. A 3-component broadband instrument (Guralp CMG-3T) was installed on top of the SP-vertical instrument in borehole 4. The station hut was expanded with two "storerooms".
NMC	Continued NORSAR refurbishment work.	22 Aug - Sep
NORSAR	Preparations were made for installation of Science Horizons equipment in the subarray vaults. Experimental testing of VSAT-transmission from one subar- ray was carried out. Continued the NORSAR refurbishment work.	September

Table 5.1. Activities in the field and the NORSAR Maintenance Center, including NDPC activities related to monitoring and control of the NORSAR array, as well as the NORESS, ARCESS, FINESS, GERESS, Apatity and Spitsbergen small-aperture arrays during 1 April- 30 September 1994.

P.W. Larsen

K.A. Løken

6 Documentation Developed

Fyen, J. and B. Paulsen (1994): Combining NORSAR and NORESS processing, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 1-94/95, Kjeller, Norway.

Kværna, T. (1994): Automatic processing of data from small-aperture arrays and seismograph networks in the context of seismic verification, Doctoral thesis, University of Oslo, Norway.

Kværna, T. and F. Ringdal (1994): A system for continuous seismic threshold monitoring, final report, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 1-94/ 95, Kjeller, Norway.

Mykkeltveit, S., U. Baadshaug, J. Fyen and B.Kr. Hokland (1994): The Lop Nor nuclear explosions of 10 June and 7 October 1994, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 1-94/95, Kjeller, Norway.

Ringdal, F. and T. Kværna (1994): On the reliability of event location estimates from automatic and interactive processing, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 1-94/95, Kjeller, Norway.

Schweitzer, J. (1994): Mislocation vectors for small aperture arrays -- a first step towards calibrating GSETT-3 stations, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 1-94/95, Kjeller, Norway.

Semiannual Tech. Summary, 1 Oct 93-31 Mar 94, NORSAR Sci. Rep. 2-93/94, NORSAR, Kjeller, Norway.

Skorve, J. (1994): Epicenter location and cratering at the Novaya Zemlya underground nuclear test site, in Semiann. Tech. Summ. 1 Apr - 30 Sep 94, NORSAR Sci. Rep. 194/95, Kjeller, Norway.

7 Summary of Technical Reports / Papers Published

7.1 A system for continuous seismic threshold monitoring, final report

Introduction

In the previous NORSAR Semiannual Technical Summary, we outlined the general approach and the implementation considerations of the continuous seismic threshold monitoring (CSTM) system (Kværna et al, 1994a). We have now completed the development, and we will in this report describe the automatic processing flow, outline the key functions of the interactive analysis, discuss the output produced by this system, and finally outline possible future modifications and extensions.

Processing flow

The CSTM system is logically divided into two parts; the continuous processing modules and the interactive analysis modules. A flowchart of the processing modules is given in Fig. 7.1.1, and comments on the different steps are given in the following.

The basis for all calculations are the diskloops with continuous seismic data from the network stations. Following the recording onto the diskloops, the seismic data for each station is subjected to beamforming (arrays only), bandpass filtering and short-term-average (STA) calculations. The continuous STA data are then stored onto new diskloops with a typical sampling rate of 1 Hz .

The STA data for each station is subsequently used for calculation of the network upper magnitude thresholds. In our previous report (Kværna et al, 1994a), we showed that the term $\log (\mathrm{A} / \mathrm{T})$ in the magnitude relation can be well approximated by $\log (\mathrm{STA})$ multiplied by a constant that is specific for each instrument and bandpass filter. These constants are found from analysis of representative event segments, and for standard short-period instruments, these constants are often very close to the displacement response value at 1 Hz .

The calculation of network magnitude thresholds from a large number of stations (~ 50) is a computer intensive task. Using a sampling interval of 10 s and a global grid of 2562 targets, it took about 50 minutes to process 60 minutes of data on a Sparcstation 20 (60 MHz). In comparison, the computational load of the STA calculations for each station is rather low. The continuous network magnitudes for each of the nodes of the global grid system is written onto a new diskloop. These data are stored in demultiplexed form to facilitate fast read access for plotting of time series.

The final step in the processing flow is to interpolate and reformat the magnitude thresholds to multiplexed form. This makes reading of the threshold data for a given time very fast, and enables us to rapidly update displays of magnitude thresholds onto different types
of map sections. The computational load of this module is modest compared to the calculation of the actual magnitude thresholds.

Interactive analysis

A detailed description of and examples from the different interactive analysis options are given in the Continuous Seismic Threshold Monitoring User's Guide (Kværna et al, 1994b), that is available from NORSAR upon request. A schematic overview of the functionality of and the interaction between the different interactive analysis modules is shown in Fig. 7.1.2.

- The TM trace displayer: The main function of this module is to display time-series of magnitude thresholds for given target regions. The selection of targets can be done from the trace displayer itself, or alternatively, from interactive selection of targets using the TM map overlay module. The traces can be plotted normalized or on a fixed scale, such that time intervals with high thresholds stand out clearly.

Events from various bulletins can also be shown. The main purpose of this option is to associate increased thresholds with signals from actual events.

For a quantitative assessment of the magnitude thresholds, displays of both peak statistics and cumulative distributions are available.

- The TM map overlay module: In order to show how the magnitude thresholds vary as a function of geographical position, we have the possibility to display colored snapshots of the magnitude thresholds onto various map sections. A large selection of predefined map sections are already available, and new sections can easily be generated.

The time of the snapshot can be set from the TM map overlay module itself, or alternatively, from interactive cursor control using the TM trace displayer. This interaction allows us to investigate the time-space variation of the magnitude thresholds, and is therefore a valuable tool for identifying time intervals and regions with increased thresholds. To further investigate the cause of the increased thresholds, located events can be plotted onto the maps for a predefined time interval around the origin time of the events.

An example of global magnitude threshold variations during the occurrence of a major earthquake is given in Fig. 7.1.3.

After interactively selecting a time interval on the trace displayer, we also have the possibility to sequentially update the colored magnitude thresholds within the selected time interval. This kind of animation can be very instructive to understand how increased noise levels and seismic events influence the global magnitude thresholds.

Another option of the TM map overlay module is to update the colored thresholds at regular intervals, with a given lag behind real-time (e.g., one hour). This lag is necessary to accommodate the arrival of phases with the largest travel-times, as well as
the time needed to process the data. With a modification to the algorithm for threshold calculations, this function can be used for a continuous assessment of the detection capability of the network.

- The World Map: One purpose with this module is to show the station distribution of the network used in the calculation of the magnitude thresholds. Another application is to display the location of events in the available bulletins. On the TM trace displayer we may interactively select events and by using inter-process communication we may plot the events onto the world map.

Interpretation of derived magnitude thresholds

We have noticed that there have been some misunderstandings on the interpretation of the magnitude thresholds computed by the CSTM system. It is important not to consider the values as a 90 per cent network detection threshold, since we have not taken into account a signal-to-noise ratio which would be required in order to detect an event.

However, if we exclude the time intervals where our network actually detected and located an event in the target region, we may use the following interpretation:
"We are confident (at the 90 per cent level) that no events larger than the calculated thresholds occurred in the area".

Practical monitoring of a given target region (e.g., of a 24 hour time interval) should be done in the following way:

- Check to see if the network bulletin has reported any events located in the target region. If so, identify the threshold peaks associated with the located events.
- Attempt to associate the largest peaks in the threshold trace to events located outside the target area. In theory, it may have been possible that an explosion in the target area could have been hidden in the coda of the interfering event, but this requires that the origin time of the explosion coincided with the time of the threshold peak. However, due to the short time periods with significant threshold peaks, the probability of such a coincidence is very small. For further discussion on this topic, see Kværna (1992).
- Use the threshold trace to determine a magnitude reference level for which all exceedances are caused by signals from known events. We may then conclude: We are confident (at the 90 per cent level) that no events larger than the magnitude reference level occurred in the target region during this time period.

In this way, the analyst can rapidly get an assessment of the possible seismic activity in the target region during the given time interval. This will also enable him to focus his analysis on the short time intervals when "real" evasion opportunities exist.

Uncertainty considerations

Generic global attenuation and travel-time curves form the basis for the network magnitude calculations (see Figs. 7.1.4a and 7.1.4b). As is well known, the attenuation curves are accompanied with significant uncertainties. E.g., the studies made on P-wave amplitude variability (Veith and Clawson, 1972; Lilwall, 1986; Ringdal and Fyen, 1979) indicate a standard deviation of 0.35-0.40 magnitude units. If reliable regional corrections are available, the uncertainty can be reduced somewhat. In the calculation of the network magnitude thresholds, these uncertainties are taken into account.

There are also other factors in the calculation of magnitude thresholds that are associated with uncertainties. These are:

- The use of $\log (\mathrm{STA})$ as a representation of $\log (\mathrm{A} / \mathrm{T})$
- The effect of beamforming, filtering and different instrument responses on the seismic amplitude
- Instrument calibration
- The effect of each target point representing a finite geographical area.

We have during our development of the CSTM system used the strategy of being conservative with respect to the estimation of upper magnitude thresholds. Missing information on the exact values of the different parameters are therefore compensated for by assuming conservative values or by increasing the uncertainty. With this in mind, it is obvious that the quality of the output from the CSTM system can be significantly improved. By conducting additional studies, more precise estimates of the parameters and their associated uncertainties can be obtained, and we can thereby lower the derived magnitude thresholds and/or increase the degree of confidence.

Future improvements

The by far largest uncertainties involved in the magnitude threshold calculations are associated with the use of generic global attenuation relations. Ideally, one would for each network station like to derive regionalized attenuation curves for the entire globe, but this is an extremely complex undertaking that is unlikely to be done in the near future. There are, however, some improvements that can be made without such extensive efforts.

First of all, known station biases should be taken into account. We are especially worried about stations with large negative biases, because this may give rise to unrealistically low magnitude thresholds. Along the same lines, we would for each station like to identify and introduce corrections to regions with very extreme amplitude anomalies. Also in this case, the large negative biases cause the largest problems.

It should be emphasized that the calculation of network magnitude thresholds is not an averaging process, but is very sensitive to outliers in the population of individual station magnitude estimates. For a large network of more than 50 stations it may often happen
that some of the stations are not operating properly, e.g., due to low gain. For such a large network it may be necessary to introduce an additional outlier rejection algorithm before calculating the actual magnitude thresholds.

On the other hand, this sensitivity to outliers can be used as a quality control of the stations in the network, and this application should be explored further.

The program module calculating the STA data for each station is a modified version of the detector program (DP) program developed at NORSAR. When intervals with bad data occur (spikes, gaps, clipped data, calibration signals), we have already procedures in place that take actions that are sufficient for operating a detector. However, for computing of threshold magnitudes, we should not allow any bad data to be included at all. It is therefore necessary to implement additional routines that identify all time intervals with bad data for any given station, such that all these intervals can be discarded from further processing for that station.

Both the relation between $\log (\mathrm{STA})$ and $\log (\mathrm{A} / \mathrm{T})$ and the signal loss due to beamforming and filtering have turned out to vary among the different seismic stations. In order to obtain precise estimates of the relations, we have to analyze a representative number of events for each station in the network. In the current version of the CSTM system, we have only used conservative generic relations, and even a limited effort of analyzing only 3-5 events per station would significantly improve the precision of the magnitude threshold estimates.

As explained earlier in this report, the derived magnitude thresholds should not be interpreted as a 90 per cent network detection threshold. But by modifying the algorithm to take into account a predefined signal-to-noise ratio (SNR) as well as the number of stations required to detect an event, the maps generated by the CSTM system can be made very similar to the standard capability maps produced by programs like SNAP/D or Networth.

Conclusions

The main focus during the development of the CSTM system has been to develop an environment that facilitates both real-time operation as well as testing of new ideas in the context of continuous seismic threshold monitoring. The current operational system is not fully optimized with respect to processing parameters, but the framework for a stepwise improvement exists. We can as of today demonstrate the potentials of using continuous seismic threshold monitoring as a part of a global seismic verification system, but some caution has to be taken during the interpretation of the derived magnitude thresholds. Further improvements will rely heavily on the possibility of conducting extensive event analysis and associated calibration efforts.
T. Kværna
F. Ringdal
H. Iversen
N.H.K. Larsen

References

Kværna, T. 1992: Continuous seismic threshold monitoring of the northern Novaya Zemlya test site: Long-term operational characteristics, Sci. Rep. No. 12, PL-TR-92-2118, Phillips Lab., Mass., USA.

Kværna, T., F. Ringdal, H. Iversen and N.H.K. Larsen (1994a): A system for continuous global seismic threshold monitoring, Semiannual Tech. Summary, 1 Oct 93-31 Mar 94, NORSAR Sci. Rep. No. 2-93/94, Kjeller, Norway.

Kværna, T., H. Iversen and N.H.L. Larsen (1994b): Continuous Seismic Threshold Monitoring User's Guide, NORSAR, Kjeller, Norway.

Lilwall (1986): Empirical amplitude-distance / depth curves for short-period P waves in the distance range 20 to 180°, AWRE Report No. O 30/86.

Ringdal, F. and J. Fyen (1979): Analysis of Global P-wave Attenuation Characteristics using ISC data files, Semiannual Tech. Summary, 1 Apr - 30 Sep 1979, NORSAR Sci. Rep. No. 1-79/80, Kjeller, Norway.

Veith, K.F. and G.E. Clawson (1972): Magnitude from short-period P-wave data, Bull. Seism. Soc. Am., 62, 435-453

Fig. 7.1.1: Flowchart showing the structure of the continuous processing flow of the CSTM system

Interactive Analysis

Fig. 7.1.2: Flowchart describing the functions of and interaction between the interactive modules of the CSTM system.

Noise

Coda
\exists

Event

Fig. 7.1.3: Example of global magnitude threshold variations before, during and in the coda of the large Kurile Island event (Oct. 4, 1994, m_{b} 7.5). Data from the five stations plotted onto the upper left map section have been used to calculate the thresholds. During noise conditions (upper left map section) the thresholds vary from below 3.0 in the vicinity of the stations, to 4.5 in South America.

At the origin time of the event (the event location is shown in the upper right map section), the magnitude thresholds strongly exceed 5.0 in large parts of the world.

During the coda of the event (lower left map section), the thresholds start to fall back to normal (e.g., in Northern Europe).

Fig. 7.1.4
a) Global m_{b} attenuation relations used to calculate the magnitude thresholds.

Notice that relations for three different phases (P, PP and PKP) have been used to span the 0-180 degrees distance range.
b) Travel-times of the phases used for magnitude threshold calculations.

7.2 The Lop Nor nuclear explosions of 10 June and 7 October 1994

Introduction

This contribution describes observations made at our institution for the two Lop Nor nuclear explosions on 10 June and 7 October this year. Some comparisons are also made with the Lop Nor explosions conducted on 21 May 1992 and 5 October 1993.

The Lop Nor nuclear explosion of 10 June 1994

The explosion took place on 10 June 1994, with origin time 0626 GMT. Table 7.2 .1 lists the basic parameters of the event as provided by various sources. The m_{b} magnitudes range from 5.68 to 5.84 . The most accurate location is provided by the PDE bulletin, which uses a world-wide network for location purposes. The solutions by the Intelligent Monitoring System (IMS) (Bache et al, 1993), both automatic (IMS) and after analyst processing (ARS), are also listed. The NORSAR automatic and reprocessed solutions are included in the table. The NORSAR automatic detection/event processor output is shown in Fig. 7.2.1, whereas the plot associated with the reprocessed solution is shown in Fig. 7.2.2.

Figs. 7.2.3 and 7.2.4 show plots of the interactive IMS processing results. The trace plots of Fig. 7.2.4 are based on array beams for the four arrays FINESS, ARCESS, NORESS and GERESS, and a single channel (Z9, broad-band channel) for Apatity. The Spitsbergen array had a communication line problem at the time of this explosion.

Table 7.2.2 summarizes the automatic processing results for the six arrays. The NORESS, ARCESS and NORSAR arrays show outstanding SNR. The velocity/azimuth estimates are within the expected uncertainty for all arrays.

The Lop Nor nuclear explosion of 7 October 1994

The explosion took place on 7 October 1994, with origin time 0326 GMT. Table 7.2 .3 lists the basic parameters of the event as provided by various sources. The m_{b} magnitudes range from 5.67 to 5.90 . The most accurate location is again provided by the PDE bulletin, but the NORSAR Rerun solution is very close to the PDE solution. The solutions by the Intelligent Monitoring System, both automatic (IMS) and after analyst processing (ARS), are also listed. The NORSAR reprocessed solution is included in the table. The automatic NORSAR solution was wrong for this event. Although the EP-SigPro-estimated onset time and slowness for this event are precise, the event processing tried to associate coda detections, and in this case a bad coda detection was used for event definition.

Figs. 7.2.5 and 7.2.6 show plots of the interactive IMS processing results. The trace plots of Fig. 7.2.6 are based on array beams for the five arrays Apatity, ARCESS, NORESS, FINESS and GERESS, and a single channel (A0) for Spitsbergen.

Table 7.2 .4 summarizes the automatic processing results for the six arrays. The NORESS array has the best signal-to-noise ratio (1231.1) for this event, and by extrapolation, this array would be expected to have a detectable signal for an event about 2.5 magnitude units lower.

Comparison with previous events

In the following we make a brief comparison between the two 1994 Lop Nor explosions dealt with above and the tests conducted at Lop Nor on 21 May 1992 and 5 October 1993.

Table 7.2.5 summarizes the PDE parameters for these four events. The 21 May 1992 explosion was significantly larger than the other three. The 1993 and 1994 explosions have very similar magnitudes, especially when estimated by IMS and the NORSAR array data. This similarity is illustrated in Fig. 7.2.7, which shows the NORESS P-wave recordings (AOZ seismometer) for the four events.

As seen in Tables 7.2.2 and 7.2.4, the NORESS STA/LTA values are, on the other hand, different by a factor of more than 2 for the two 1994 events, with the October event having the highest value. Since the signal amplitudes are very similar, this means that the NORESS noise level varied between the two 1994 events. The ARCESS STA/LTA values for the two 1994 events also differ by a factor of more than 2, but with the June event having the largest STA/LTA value. This finding is consistent with previous investigations about diurnal and seasonal noise variations at NORESS and ARCESS. These investigations have shown that NORESS is more exposed to cultural noise sources and also has an increased noise level during May-June due to snow melting. The June explosion occurred during working hours in Norway, while the October event occurred at 0426 a.m. local time in Norway. The STA/LTA variations for the other arrays are smaller.
S. Mykkeltveit
U. Baadshaug
J. Fyen
B. Kr. Hokland

Reference

Bache, T.C., S.R. Bratt, H.J. Swanger, G.W. Beall and F.K. Dashiell (1993): Knowledgebased interpretation of seismic data in the Intelligent Monitoring System, Bull. Seism. Soc. Am., 83, 1507-1526.

Ref.	Origin time	Lat	Lon	m_{b}
IMS (automatic)	06.26 .13 .2	42.242	87.940	5.68
ARS	06.25 .55 .1	41.220	89.928	5.68
NORSAR (automatic)	06.25 .47 .3	40.540	91.870	5.84
NORSAR Rerun	06.25 .59 .7	41.600	88.600	5.82
PDE	06.25 .58 .0	41.570	88.702	5.70

Table 7.2.1. Location estimates by various systems of the 10 Jun 1994 Lop Nor nuclear explosion. Two of the estimates were made automatically (indicated in the table).

Array	Onset time	Res	STA/LTA	Vel	Res	Azi	Res
NORESS	$161: 06.34 .46 .7$	0.6	538.2	18.0	3.5	80.4	4.2
ARCESS	$161: 06.33 .56 .4$	0.1	893.6	13.8	0.1	91.2	-6.0
GERESS	$161: 06.35 .06 .4$	-0.3	95.9	15.3	2.0	66.4	-1.7
Apatity	$161: 06.33 .31 .0$	0.4	57.2	11.1	-2.2	85.6	-16.9
FINESS	$161: 06.33 .50 .5$	0.6	160.0	13.7	-0.1	90.5	1.8
NORSAR	$161: 06.34 .47 .0$	0.6	333.3	14.7	0.2	77.1	0.9

Table 7.2.2. Automatic detection list for the Lop Nor nuclear explosion 10 June 1994. The columns show array name, automatic EP-SigPro onset time, onset residual relative to PDE origin time, maximum signal-to-noise ratio (STA/LTA), apparent velocity ($\mathrm{km} / \mathrm{sec}$), residual in $\mathrm{km} / \mathrm{sec}$, back-azimuth in degrees, back-azimuth residual. All residuals are relative to predictions using IASPEI91 tables and PDE origin time and location.

Ref.	Origin time	Lat	Lon	$\mathbf{m}_{\mathbf{b}}$
IMS (automatic)	03.26 .10 .2	42.070	88.336	5.67
ARS	03.25 .55 .3	41.018	89.500	5.67
NORSAR Rerun	03.25 .59 .3	41.600	88.600	5.79
PDE	03.25 .57 .8	41.574	88.680	5.90

Table 7.2.3. Location estimates by various systems of the 7 October 1994 Lop Nor nuclear explosion. Two of the estimates were made automatically (indicated in the table).

Array	Onset time	Res	STA/LTA	Vel	Res	Azi	Res
NORESS	$280: 03.34 .46 .1$	1.1	1231.1	16.1	1.6	77.8	1.6
ARCESS	$280: 03.33 .56 .0$	0.4	418.1	15.0	1.3	78.9	18.3
GERESS	$280: 03.35 .06 .1$	-0.1	122.8	16.1	1.3	67.3	0.8
FINESS	$280: 03.33 .50 .2$	0.8	218.4	14.0	0.4	80.2	8.5
Apatity	$280: 03.33 .30 .3$	1.0	194.9	13.5	0.3	95.7	-6.8
Spitsbergen	$280: 03.34 .25 .3$	0.1	97.4	7.8	-6.3	95.0	-1.9
NORSAR	$280: 03.34 .46 .7$	1.1	277.5	14.7	0.2	75.9	-0.3

Table 7.2.4. Automatic detection list for the Lop Nor nuclear explosion 7 October 1994.
The columns show array name, automatic EP-SigPro onset time, onset residual relative to PDE origin time, maximum signal-to-noise ratio (STA/LTA), apparent velocity ($\mathrm{km} / \mathrm{sec}$), residual in $\mathrm{km} / \mathrm{sec}$, back-azimuth in degrees, back-azimuth residual.
All residuals are relative to predictions using IASPEI91 tables and PDE origin time and location.

Event	PDE parameters				IMS $\mathbf{m}_{\mathbf{b}}$	NORSAR Rerun $\mathbf{m}_{\mathbf{b}}$
	Origin time	Lat	$\mathbf{L o n}^{\mathbf{m}_{\mathbf{b}}}$			
Lop Nor 92	21 May 92 04.59.57.5	41.604	88.813	6.5		
Lop Nor 93	05 Oct 93 01.59.56.5	41.647	88.681	5.9	5.65	5.83
Lop Nor 94a	10 Jun 94 06.25.58.0	41.570	88.702	5.7	5.68	5.82
Lop Nor 94b	07 Oct 94 03.25.57.8	41.574	88.680	5.9	5.67	5.79

Table 7.2.5. PDE parameters for four events discussed in the text.

Fig. 7.2.1. Plot of the automatic NORSAR detection/event processor output for the Lop Nor nuclear explosion of 10 June 1994.

Fig. 7.2.2. Plot of the NORSAR reprocessed solution for the Lop Nor explosion of 10 June 1994.

Fig. 7.2.3. Map showing the IMS solution (after analyst review) of the 10 June 1994 Lop Nor explosion. The great circle paths for the detecting arrays (based on P and PcP estimated azimuths) are also shown.

Fig. 7.2.4. P-phase waveforms of the 5 array traces (single sensor for Apatity, otherwise array beams) for the 10 June 1994 Lop Nor explosion.

Fig. 7.2.5. Map showing the IMS solution (after analyst review) of the 7 October 1994 Lop Nor explosion. The great circle paths for the detecting arrays (based on P and PcP estimated azimuths) are also shown

Fig. 7.2.6. P-phase waveforms of the six array traces (single sensor for Spitsbergen, otherwise array beams) for the 7 October 1994 Lop Nor explosion.

Fig. 7.2.7. NORESS P-waves (AOZ seismometer) for the four events discussed in the text. Note that the three lower traces are in the same scale, whereas the LopNor92 trace has a scaling factor that is different from the others. See Table 7.2.5 for magnitude estimates.

7.3 Combining NORSAR and NORESS processing

Introduction

The large aperture NORSAR array started operations in 1970 with 22 subarrays distributed over a diameter of 100 km . On October 1,1976, the array was reduced to 7 subarrays with aperture about 60 km . Each subarray has 6 short period seismometers and the subarray aperture is about 8 km . During the years 1980-1981, experiments were performed with different subarray geometries to design a smaller array with good detection and location capabilities for local and regional events. As a consequence of this research, the NORESS array was constructed, and it became operational in 1984. The NORESS array has a diameter of 3 km and it is colocated with NORSAR subarray 06C. Figure 7.3.1 shows the geometry of the co-located arrays.

Throughout many years the NORSAR array has shown excellent detection and location capability. The analyst reviewed bulletin for the NORSAR array has been a significant contribution to the seismic community. The NORESS array has also shown very good detection capability for teleseismic events, as well as excellent detection and location capabilty for local and regional events. Moreover, automatic methods work very well for producing a bulletin of local and regional events. (Mykkeltveit and Bungum, 1984).
In this report we will demonstrate how to combine the two different processing techniques used for NORSAR and NORESS to improve the quality of an automatic teleseismic bulletin.

The method for detection of signals is identical for the two arrays. For slowness observations, f / k analysis can be used for the smaller array, due to the high correlation of the signals. For a large aparture array f / k analysis without time corrections does not work, and a beamforming (beampacking) method is used for slowness observation. (See NORSAR Sci. Rep. No 2-93/94).
In automatic detection procedures, many uninteresting signals are usually detected. For the NORESS array, it turns out that the f/k method normally gives apparent velocity values that are lower than Rg phase velocities for such detections, and these detections can therefor be classified as "noise detections", and do not represent real seismic phases from local, regional or teleseismic events. For the NORSAR array, the automatic method is based on a teleseimic beam deployment, and consequently always gives a resulting teleseismic slowness both for non-seismic disturbances and for local events.

An automatically produced bulletin of teleseismic events by this method is therefore less reliable than a corresponding local/regional automatic procedure using NORESS.

In the report mentioned earlier we discussed additional methods based on the NORSAR array alone to identify local events. In this report we will consider methods where NORESS automatic results are used to try to automatically identify false events in the automatic NORSAR bulletin.

NORESS automatic bulletin

An automatic NORESS bulletin with local and regional events is produced using the "EP_Ronapp" process (Fyen, 1987, 1989). For each event in the NORESS bulletin, we can predict arrivals in the NORSAR array. A simple rule is for each event to pick the first P-phase and the last S-phase arrival time and then define this as a time window. We then extend each end of the window with 20 seconds. For each such time window, we inspect the NORSAR detection list, and mark each phase arrival within the list as a potential local/regional phase.
In addition to definition of local/regional events, the NORESS automatic bulletin identifies teleseismic phase arrivals. A related issue is therefore to investigate the potential for using a NORESS defined teleseismic phase as basis for beamforming of the NORSAR and NORESS array. Another interesting aspect is to try to enhance a NORSAR defined teleseismic location by including NORESS in the process.

Data analysis

For selected data days during the period 4 August - 18 September 1994, we carefully inspected the automatic and reviewed bulletin for the NORSAR array together with the automatic bulletin for the NORESS array.
NORSAR events that the analyst do not include in the reviewed bulletin are routinely classified into the three classes 1) probable local event, 2) clear spike or non-seismic noise on one or more subarrays, and 3) ambigous event with low SNR or secondary teleseismic phase.
By comparing the automatic NORESS bulletin with the automatic NORSAR bulletin, we "masked" all probable local/regional phases, using the simple time window rule defined above. Then we calculated statistics on:

1a) How many NORSAR defined events are correctly masked as probable local?
1b) How many NORSAR defined events are in-correctly masked as probable local?
1c) How many NORSAR defined events that are probably local are not masked?
In addition we looked at NORESS defined teleseismic phases and counted:
2a) How many are connected with NORSAR-defined teleseismic events?
2b) How many are not connected with NORSAR-defined teleseismic events?
2c) How many NORSAR teleseismic events are not connected with NORESS teleseismic phases?

Results

Table 7.3.1 shows the results of the bulletin analysis. We see that 36% of the automatically defined events are accepted as teleseismic events by the analyst. The remaining 64% of the events are either due to triggering from local disturbances within one subarray, or due to bad data conditions (spikes), or due to real local/regional events (but falsely detected as teleseismic by the automatic process).
64% of the local events are correctly identified by this simple masking rule, using the NORESS automatic bulletin. In this analysis we have not counted events where the Lg phase alone has been detected by NORESS. Only events that have been formed by association of a $\mathrm{Pn} / \mathrm{Pg}$ phase and an $\mathrm{Sn} / \mathrm{Lg}$ phase at NORESS have been used.

By combining the identified local events and the confirmed teleseismic events, we find that 42% of the NORSAR automatic detetcions are correctly classified. The remaining detections are mostly of low SNR or "spike" detections.

The analysis shows that 64% of the local events falsely reported as teleseismic events by the NORSAR automatic processor, can by masked automatically by inspecting the NORESS automatic bulletin.

Two real teleseismic events are masked out by this method. Both were in the coda of regional events.
75% of the real teleseismic events reported by NORSAR are also confirmed as such by the NORESS array. Thus, by combining NORESS and NORSAR defined teleseismic events, 75% of the NORSAR events can be confirmed automatically.

In addition, NORESS reports a significant number of teleseismic phases that are not detected with the current NORSAR beam deployment. This indicates a significant potential for improvement both by adjusting the NORSAR time delay corrections and by joint NORSAR/NORESS processing.

Conclusions

This study has shown that a clear improvement in the automatic NORSAR processing can be achieved by combining NORSAR and NORESS. By a simple masking algorithm, most of the NORSAR detected local and regional events can be identified as such using NORESS data. Furthermore, NORESS complements NORSAR by giving an "independent" confirmation of the majority of teleseismic phases. Even further improvements might be possible by joint beamforming techniques, although this has not been attempted in this study.

J. Fyen
 B. Paulsen

References:

Mykketveit, S. and H. Bungum (1984): Processing of regional events using data from small-aperture arrays, Bull. Seism. Soc. Am., 74, 2313-2333.

Fyen, J. (1987): Improvements and modifications, NORSAR Semiannual Tecnical Summary, 1 Oct 1986-31 Mar 1987, NORSAR Sci. rep. No. 2-86/87, Kjeller, Norway.

Fyen, J. (1989): Event processor program package, NORSAR Semiannual Tecnical Summary, 1 Oct 1988-31 Mar 1989, NORSAR Sci. rep. No. 2-88/89, Kjeller, Norway.

$\begin{array}{\|l\|} \hline \text { Day \# } \\ 1994 \\ \hline \end{array}$	1A Local Masked	1B Local Error	1C Local NRS miss	2A NRS Tele OK	2B NRS Tele -	2C NB2 Tele	3A NB2 Accepted	3B NB2 Low SNR	3C NB2 False	Number EPX
209										
216	9	1	3	10	2	3	14	7	2	35
219	0	0	0	8	4	2	10	1	1	12
225	0	0	0	9	4	2	11	10	2	23
228	9	0	5	14	3	5	19	1.	9	43
234	7	0	5	15	3	1	16	3	8	39
237	0	0	15	6	2	3	9	2	9	35
243	16	0	2	7	3	2	9	1	14	42
253	1	0	0	4	4	3	7	1	8	17
255	9	0	4	11	0	3	14	4	3	34
256	9	0	0	11	3	1	12	5	5	31
257	9	0	3	5	1	0	5	7	10	34
258	0	0	1	5	4	3	8	8	6	23
259	3	0	0	3	2	2	5	14	3	25
260	4	0	0	7	0	3	10	10	3	27
261	1	0	0	8	2	2	10	3	4	18
264	4	0	3	4	6	6	9	4	6	26
265	1	1	5	5	2	3	8	3	13	30
267	2	0	1	5	8	0	5	8	6	22
269	5	0	2	2	3	2	4	7	5	23

Sum	89	2	49	139	56	46	185	99	117	539

1A NORSAR defined events correctly marked as local
$1 B$ NORSAR accepted events that are in-correctly marked as probable local
1C NORSAR defined events that are probable local, but not marked as such
2A NORESS teleseismic phases connected with NORSAR accepted events
2B NORESS teleseismic phases that are not connected with NORSAR accepted events
2C NORSAR accepted events not connected with NORESS teleseismic phases
3A Total number of NORSAR accepted events
3B Number of NORSAR defined events not reported due to low SNR or secondary phases 3C Number of false NORSAR defined events due to nolsy subarray(s) or spikes Percentage of events that are correctly classified by combining NORESS and NORSAR
64.5\% of local events
1.1% of accepted events 35.5\% of local events 75.1\% of accepted events 30.3% of accepted events 24.9\% of accepted events 34.3% of all NORSAR events 18.4% of all NORSAR events 21.7\% of all NORSAR events 42.3\% of all NORSAR events

Table 7.3.1. Results of the bulletin analysis.

Fig. 7.3.1 The NORSAR and NORESS arrays.

7.4 Epicenter location and cratering at the Novaya Zemlya underground nuclear test site

In 1989 the Norwegian Institute of International Affairs (NUPI) started a satellite study of the northern underground nuclear test area on Novaya Zemlya. Results from this study were published in Skorve and Skogan (1992). Early in this work, using Landsat TM images, one craterlike feature was found close to the southwestern mountain slopes of the Matochkin Shar Strait. SPOT panchromatic 10 m resolution images were purchased, and these revealed three features, most probably craters that were created by underground nuclear explosions. This was unexpectedly confirmed when German aerial photographs of the Matochkin Shar from the summer of 1942 became available. The craters did not show up on these and thus proved that they were formed sometime after 1942. Fig. 7.4.1 is a spot photo from 1989 of the test area, showing the three craters. The aerial photo taken in 1942 is shown in Fig. 7.4.2.

The craters are lined up in a row approximately parallel to the Matochkin Shar coast. The northernmost crater (" N " in Fig. 7.4.1) is very well defined, being nearly circular and about 100 m in diameter. The middle one ("M" in Fig. 7.4.1) is by far the largest and appears roughly elliptical, measuring about $220 \times 270 \mathrm{~m}$. The reason for its irregular shape is probably that the epicenter is very close to the crest of the steep mountain slope down toward the Matochkin Shar coast. Following the underground explosion, parts of the mountain above the detonation center, big blocks of rock and boulders, slid down the slope. The crater to the south (" S " in Fig. 7.4.1) is about 75 m in diameter and is situated on a quite level mountain slope, not steep, facing the Shumilikha river. The obvious question was which underground explosions created these three craters. To check this, we plotted the locations of underground nuclear explosions on a map of the area. For underground tests made before the TTBT-agreement became effective in 1976, the epicenter locations were taken from Lilwall and Marshall (1986), while for the later ones, NORSAR provided the data. However, the uncertainty involved proved to be too large to make it possible to connect the craters to specific underground nuclear explosions in that area.

The Joint Epicenter Determination (JED) method, described in Lilwall and Marshall (1986) paper, that was used to improve location of epicenters, attracted our attention. The JED-method requires that at least one of the epicenters in the test area be restrained to predetermined values. The difficulty on Novaya Zemlya is that there is no information on true locations. The explosion on 29 September 1976 (event 14 in Lilwall and Marshall (1986)) was chosen as the constrained epicenter for the northern test site. It is well recorded and centrally placed with respect to the distribution of epicenters. Since the true location of event 14, "the origo point", is also uncertain, we thought the location of the craters found close to the Matochkin Shar could be used as new constrained epicenters for the northern test site to obtain more accurate location of the underground nuclear explosions on Novaya Zemlya. Two requirements have then to be met: determination of the exact coordinates of the crater centers and identification of which explosions caused the formation of the three craters. As mentioned earlier, the seismic location is too inaccurate to relate specific epicenters to the three craters. However, some time after the NUPI study (Skorve and Skogan, 1992) was published in 1992, collateral information emerged with information on which specific nuclear explosions caused the formation of the three craters. Additional
information is found in Matzko (1993), as it contains data on scaled depth of burial (SDOB) for the underground nuclear explosions on Novaya Zemlya. For all the three explosions that caused the formation of craters, SDOB was 90 m according to Matzko (1993).

The approximate depth of explosion can be calculated from the formula: $\mathrm{D}=\mathrm{mY} \mathrm{Y}^{1 / 3}$, where $D=$ approximate depth of explosion in meters, $m=$ the scale depth in meters ($=90 \mathrm{~m}$) and $\mathrm{Y}=$ yield in kilotons (TNT equivalent). Measurements and calculated data on the Novaya Zemlya craters and their associated explosions are collected in Table 7.4.1. The yields given in this table are from Matzko (1993).

The location of the crater centers on SPOT satellite images can be measured with an accuracy of 2-3 pixels (20-30 meters). Unfortunately, it is presently not possible to transform this to the same degree of cartographical accuracy. This is due to the total lack of good topographical maps of the Matochkin Shar area. The best available map is at the scale of $1: 500,000$, which is clearly inadequate.

One alternative way to improve the geographical location of the craters is now being tried. The method uses the pixel and line coordinates measured on SPOT satellite images combined with ancillary data that is available on the leaderfile on SPOT digital data tapes. These are measurements made during the imaging process and include satellite position, satellite velocity, satellite attitude velocity, look angle of the imaging instrument and observation time.

Three digital SPOT scenes of the Novaya Zemlya northern underground nuclear test site were purchased. The pixel and line coordinates of the crater centers were measured for each of the SPOT scenes. The three separate sets of measurements were combined with their associated ancillary SPOT data. This procedure is illustrated for two of the SPOT scenes in Figs. 7.4.3 and 7.4.4. The preliminary results of geographical coordinate determination using this method are presented in Table 7.4.2.

The pixel//line measurements were made by Masahiro Etaya of TRIC, Tokyo, and Johnny Skorve, NUPI, while calculation of the crater center coordinates was made by Pal Bjerke, researcher at the Norwegian Defence Establishment (NDRE). The crater center coordinates can be derived by calculating the middle values of the three data sets.

The average inaccuracy of SPOT in this context is about 500 m and relates to uncertainties in satellite position and the look angle of the imaging instrument. Additional inaccuracy is added to this by the perspective effect when doing off-nadir imaging. The size of the effect is determined by the off-nadir look angle and the attitude above the sea level of the area or spot of interest.

J. Skorve, Norwegian Institute of International Affairs

References

Lilwall, R.C. and P.D. Marshall (1986): Body Wave Magnitudes and Locations of Soviet Underground Explosions at the Novaya Zemlya Test Site. Atomic Weapons Research Establishment Rep. No. O 17/86, HM Stationary Office, London, England.

Matzko, J.R. (1993): Physical environment of the underground nuclear test site on Novaya Zemlya, Russia. USGS Open-File Rep. 93-501, Reston, VA, USA.

Skorve, J. and J.K. Skogan (1992): The NUPI Satellite Study of the Northern Underground Nuclear Test Area on Novaya Zemlya. NUPI Research Rep. No. 165, Oslo, Norway.

Crater	Approximate Dimension	Date of Detonation	Approximate Yield of Explosion	Approximate Depth of Explosion
Northern	Circular Diam. $=100 \mathrm{~m}$	28 Aug 1972	330 kt	620 m
Middle	Irregular $220 \times 270 \mathrm{~m}$	21 Oct 1967	95 kt	410 m
Southern	Nearly Circular Diam. $=70 \mathrm{~m}$	27 Oct 1966	420 kt	680 m

Table 7.4.1. Measurements and calculated data for the explosions associated with three craters described in the text. The approximate depth of explosion is calculated from the scaled depth of burial and yields given in Matzko (1993).

Crater	Pixel No.	Line No.	Crater Center Location	
SPOTI Image 24 August 1989				
Northern	2263	1363	$\begin{aligned} & 54: 50: 56 \\ & 408146334 \end{aligned}$	$\begin{array}{r} 73: 23: 58 \\ 431423 \end{array}$
Middle	2257	1425	$\begin{aligned} & 54: 50: 08 \\ & 408145892 \end{aligned}$	$\begin{array}{r} 73: 23: 45 \\ 450982 \end{array}$
Southern	2230	1518	$\begin{aligned} & 54: 48: 40 \\ & 408245343 \end{aligned}$	$\begin{array}{r} 73: 23: 26 \\ 430176 \end{array}$
SPOT Inage 29 Iuly 1990				
Northern	5031	4794	$\begin{aligned} & 54: 50: 26 \\ & 408146433 \end{aligned}$	$\begin{array}{r} 73: 24: 82 \\ 431157 \end{array}$
Middle	5024	4854	$\begin{aligned} & 54: 49: 42 \\ & 408145978 \end{aligned}$	$\begin{array}{r} 73: 23: 47 \\ 430757 \end{array}$
Southern	4989	4945	$\begin{aligned} & 54: 48: 15 \\ & 408145425 \end{aligned}$	$\begin{array}{r} 73: 23: 28 \\ 429948 \end{array}$
Spot mage 1 In August 1992				
Northern	1861	3247	$\begin{aligned} & 54: 52: 21 \\ & 408145085 \end{aligned}$	$\begin{array}{r} 73: 23: 20 \\ 432127 \end{array}$
Middle	1860	3309	$\begin{aligned} & 54: 51: 36 \\ & 408144624 \end{aligned}$	$\begin{array}{r} 73: 23: 05 \\ 431712 \end{array}$
Southern	1831	3401	$\begin{aligned} & 54: 50: 03 \\ & 408144127 \end{aligned}$	$\begin{array}{r} 73: 22: 48 \\ 430874 \end{array}$

Table 7.4.2. Crater center locations for the three craters described in the text. The coordinates are estimated from three SPOT scenes, from 1989, 1990 and 1992, respectively. The crater locations are given in geographical coordinates (degrees: minutes : seconds) and in the Universal Transverse Mercator (UTM) grid.

Fig. 7.4.1. This enlargement of a SPOT photo taken in August of 1989 covers the Matochkin Shar strait of Novaya Zemlya from the Shumlikha delta and about 8 km northeastward. The Severny Base is seen in the middle of the lower part of the picture. The craters found on this picture (denoted " N " for northern, " M " for middle, and " S " for southern) are seen as white or partly white spots because of snow left inside their boundaries. (PHOTO: SPOT IMAGE; IMAGE PRODUCTION: TRIC:
TOKYO)

Fig. 7.4.2. The area shown on this mosaic of two Luftwaffe aerial photos from 1942 is the same as that of Fig. 7.4.1. There is no trace of the three craters seen on Fig. 7.4.1. (PHOTOS: GERMAN LUFTWAFFE)

SPOT IMAGE, AUGUST 241989

Fig. 7.4.3. Crater center locations based on the SPOT scene from 24 August 1989. The position of the coordinate grid is based on ancillary data available on the SPOT digital data tape, as explained in the text. The epicenters of the associated explosions are from Lilwall and Marshall (1986). Note that the southernmost epicenter location (1966) does not correspond to the southernmost crater.

SPOT IMAGE, JULY 261990

Fig. 7.4.4. Same as Fig. 7.4.3, but here based on the SPOT scene from 26 July 1990.

7.5 Mislocation vectors for small aperture arrays - a first step towards calibrating GSETT-3 stations

Introduction

At NORSAR small aperture arrays have been used for many years to locate seismic events either with onsets at single arrays or with a common interpretation of detections from all available arrays. In this context automatically calculated ray parameter and azimuth values play an important role. It is well known that some observed data show systematic deviations from theoretically expected values, and it is also well known that single data from known source regions show a large scatter. Whatever the reason is for these deviations, they influence the quality of all event locations based on automatically estimated parameters. In this study the phrase "slowness" is always used for the total length of the slowness vector derived from ray parameter and azimuth. Estimation of systematic slowness deviations and statistical information about the scatter of individually measured slowness values are part of the generally needed calibration of all seismic stations of the GSETT-3 network to correct the input to the location procedures. Therefore the data base of all detected phases from all six small aperture arrays for which data are recorded and processed at NORSAR, was investigated to search for systematic patterns in slowness deviations.

Data bases used

At NORSAR the earliest automatically estimated fk-results are available since Jan 1, 1989. To obtain deviations from theoretically expected values a list of reference events is needed. Therefore such a list was compiled for the time period Jan 1, 1989 to June 30, 1994, which was chosen as the end time of this study. Main sources for this list were the bulletins of ISC and PDE. But because these bulletins are not complete for all observable smaller events in Europe, the following local and regional catalogues from Europe were added: for Scandinavia the bulletins of the Seismological Institutes in Helsinki and Bergen, a list of confirmed quarry blasts from the Kola peninsula, for Central Europe a local Bulletin of the Vogtland / Western Bohemian region of earthquake swarms, a list of precisely located events from the Polish mining areas, and a list of confirmed quarry blasts in Bavaria / Germany and in the Czech Republic (for details see Table 7.5.1). All these event lists were merged together, and double entries were carefully eliminated. Table 7.5.1 also gives information about the amount of contributions from each source to the final list of 157825 reference events.

For all these events, their theoretical onset times as well as predicted slowness values were calculated and compared with automatically estimated values from detections at the arrays investigated. The availability of the fk-results is not the same for all arrays and reflects mostly the successive extension of the European array network (Table 7.5.2).

Association of observed onsets with theoretically estimated onsets

To get reliable mislocation vectors the association criteria must be carefully defined. In this study the following procedure was chosen:
a) For each event in the list of reference events azimuth and distance were calculated with respect to the observing arrays.
b) To get an optimum coverage of the slowness space it is of interest to compare all theoretical arrivals with detected onsets. Using distance, depth, and event origin time, the absolute onset times of all seismic phases as included in the IASP91 tables (Kennett and Engdah1, 1991) were calculated for all arrays considered. To reduce the number of erroneous associations some restrictions related to epicentral distance and event magnitude were introduced, some secondary onsets were only associated if an earlier phase of the same event was also associable, and additionally, all theoretical phases to be considered for comparison with observed ones must be separated in time by at least 3 seconds. The list of used phases with the restrictions that apply is given in Table 7.5.3.
c) These list of onsets for every event was then compared with detections and SigProresults for each array. For GERESS, the SigPro-results from the processing in Bochum since November 9, 1990 were used instead of the results at NORSAR because of completeness and data quality. To define a theoretically expected phase as observed the residual between detected and theoretically estimated onset time must be less than 10 seconds and the absolute slowness residual must be less than $10 \mathrm{~s} / \mathrm{deg}$. In the case of more than one detection in this time interval of $+/-10 \mathrm{sec}-$ onds around the theoretical onset, the onset with the smallest travel time residual and an acceptable slowness residual was associated. Sometimes, onsets of two or more events have approximately the same arrival time at a seismic station and the list of associations had to be checked for such situations. In such cases all associations were discarded from further use.
d) In a final step, the quality of associations was increased by applying even more restrictive criteria. For P-type onsets no association was used with a larger travel time residual than 4 seconds or a slowness residual of more than $4 \mathrm{~s} / \mathrm{deg}$. For the investigated crustal S-type onsets these values were increased to 8 seconds and 8 s/deg respectively, because of larger uncertainty of onset time estimates and larger scatter of observed slowness values for S-type onsets. High frequent noise is often interpreted by the automatic fk -analysis as a teleseismic P-phase. To eliminate these errors high frequency ($>4 \mathrm{~Hz}$) onsets with a ray parameter less than $10 \mathrm{~s} / \mathrm{deg}$ were not used.

Especially the arrays with a smaller aperture (Apatity, FINESS, and Spitsbergen) had a remarkable number of onsets with large slowness residuals due to lower slowness resolution and less redundancy in the data. In contrast, the array with the largest aperture (GERESS) had the smallest loss of associations due to this point. The influence of high frequency noise was relatively equal for all Scandinavian arrays but neglectable for GERESS due to differences in the detector/SigPro recipes at NORSAR and in Bochum. The restriction to smaller travel time residuals reduced the data for all arrays only slightly.

In summary, these restrictions led to a smaller but more stable set of observed mislocation vectors (compare first and second column in Table 7.5.4). Figure 7.5.1 shows for NORESS all 26083 used slowness values and gives an impression of the coverage of the slowness space and the scatter of the data. On the top all observed slowness values are seen and at the bottom all corresponding theoretical values are plotted. The circular pattern for large slowness values for the theoretical case (bottom part of figure) is associated with the crustal layering in the IASP91 model.

Mean mislocation vectors

Because of the scatter in single observations it became necessary to calculate mean mislocation vectors. For that the slowness space was divided into 1849 bins and all mislocation vectors were averaged per bin. To divide the slowness space into approximately equally sized areas, the size of the bins varied for different ray parameters between $1 \mathrm{~s} / \mathrm{deg}$ times 30 deg and $2 \mathrm{~s} / \mathrm{deg}$ times 5 deg . In this study only mislocation vectors are shown which are based on at least 3 observations in one bin (compare Figs. 7.5.1 and Fig. 7.5.6 which show single observations and mean mislocation vectors for NORESS, respectively). Besides the mean mislocation vectors also corresponding standard deviations were calculated for the observed azimuth and ray parameter values. These standard deviations can be used to weight single observations in further studies. Table 7.5 .4 gives for all arrays the mean values of the single mislocation vectors and the mean scatter of the ray parameter and azimuth values before and after applying the slowness corrections. This slowness correction amounts to subtracting the mean mislocation vectors from the observed slowness values within each bin. In comparing columns 3 and 6 of Table 7.5 . 4 one can see the significant reduction of between 25% and 40% for the mean values of the single mislocation vectors after slowness corrections have been applied.

No explicit relation can be given between observation and theory. So two different types of mislocation vectors can be calculated depending on which slowness value was used as reference for defining the corresponding bin. The first type of vector points from the observations (e.g. as in Fig. 7.5.1 on the top) to the most likely "true" value (the theoretical slowness values shown e.g. in Fig 7.5.1 at the bottom) and the second type points from the theoretical slowness (as in Fig. 7.5.1 at the bottom) to the most likely observed value (i.e. the expected slowness value at the array; see, e.g., Fig 7.5.1 on the top). The latter can predict systematic mislocation errors but not the scatter which is caused by too low slowness resolution or noise. The two types of mislocation vectors are useful for different applications. Figs. 7.5.2-7.5.7 show the mislocation vectors for each array. For each figure, the top part shows the observed mislocations (first type) and the bottom part the predicted (second type) mislocations. The symbol size corresponds to the number of single mislocation vectors which were observed per bin and the vectors plotted have to be added to the reference value to get the corrected azimuth and ray parameter.
The figures clearly show that for a sufficient coverage of the slowness space with mislocation vectors a long observing period is needed. This is not only because the seismicity distribution of the Earth is changing by time but also gaps due to station problems must be filled. For the two arrays at Apatity and Spitsbergen which have suffered from problems with data quality and data acquisition, an operation period of about 2.5 years is not long
enough. Unfortunately, these two arrays also have the largest problems with low slowness resolution due to their very small aperture. So the estimation of a sufficient set of mislocation vectors will need several more years of data for these arrays. However, the results for the Apatity array can be used as a first approximation and the results for the Spitsbergen array are shown here for completeness.
Finally, the following question was investigated: How relevant are mislocation vectors that are based on automatically estimated slowness values? At the Institute of Geophysics at Bochum many results of the automatic fk-analysis are reviewed by seismologists, and the values are recomputed following inspection of the data. Such reviewed results are available since April 1991 mostly for P-type onsets with a ray parameter less than $10 \mathrm{~s} / \mathrm{deg}$ (see Table 7.5.2). For this set of data mislocation vectors can also be estimated and compared with the results for the automatic computations. Fig. 7.5.8 shows these mislocation vectors at the bottom for the reviewed data and on top for the corresponding subset of the automatically estimated data from Fig. 7.5.5. The scatter in the reviewed data is about 8% less (see Table 7.5.4 last two rows). But the main features are very similar in the two plots and the differences between the two mislocation sets are mostly for bins with a small number of observations (smaller symbols). This confirms the use of automatically estimated slowness values in location procedures and shows that the mislocation vectors demonstrated in this paper for small aperture arrays are not the result of some arbitrary processes.

Conclusion

Although a large scatter was observed for single mislocations, mean mislocation vectors could be defined and estimated with their standard deviations for all arrays. These mislocation vectors can now be used regularly to correct automatically estimated slowness and azimuth values. A reduction of the scatter for single observations and a correction for mean mislocation errors is especially needed for single array location routines and for IMS like location algorithms. The predicted mislocation vectors are helpful for estimating better values for the GBF-method. These vectors can also be used to investigate systematic deviations between the used velocity model IASP91 and the velocity structure under the arrays.

J. Schweitzer

References

Kennett, B. L. N. and E. R. Engdahl (1991): Travel times for global earthquake location and phase identification, Geophys. Journ. Int., 105, 429-466.

Mykkeltveit, S (1992): Mining explosions in the Khibiny Massif (Kola peninsula of Russia) recorded at the Apatity three-component station, Report PL-TR-92-2253, Phillips Laboratory, Hanscom AFB, Ma, USA.

Bulletin	Time period	Number of events	Remarks
ISC	Jan 1, 1989 - Jul 31, 1992	120716	
PDE monthly	Mar 1, 1990 - Dec 31, 1993	26484	
PDE weekly	Jan 1, 1994 - Jun 30, 1994	4905	
Helsinki	Jan 1, 1989 - Jun 30, 1994	3429	
Bergen	Jan 1, 1989 - Mar 31, 1994	1319	
Polish mines	Jun 27, 1990 - Jun 12, 1992	418	P. Wiejacz and J. Niewiadomski (both Polish Academy of Sciences, Warsaw) several pers. communica- tions in 1991 and 1992
Bavarian \& Czech quarries	Jan 9, 1991 - Oct 14, 1992	285	Compiled at the Institute of Geo- physics at Ruhr-University Bochum, supported by several pers. communications with J. Zednik (Czech Academy of Sciences, Praha) in 1992
Kola quarries	Jun 15, 1991 - Oct 23, 1992	195	Mykkeltveit (1992)
Vogtland	Jan 31, 1991 - Nov 16, 1992	74	Bulletin of the Vogtland / Western Bohemian earthquakes, ed. by H. Neunhoefer, University of Jena
Sum	Jan 1, 1989 - Jun 30, 1994	$\mathbf{1 5 7 8 2 5}$	

Table 7.5.1: Contributions of the different bulletins to the list of reference events.

Array	Analyzed time period
Apatity	May 31, 1992 - Jun 30, 1994
ARCESS	Jan 1, 1989 - Jun 30, 1994
FINESS	Nov 23, 1989 - Jun 30, 1994
GERESS	Oct 17, 1990 - Jun 30, 1994
GERESSr	Apr 22, 1991 - Jun 30, 1994
NORESS	Jan 28, 1989 - Jun 30, 1994
Spitsbergen	Nov 23, 1992 - Jun 30, 1994

Table 7.5.2: Time periods of investigated fk-results for the various small aperture arrays. Additionally, for GERESS a data set of analyst-reviewed fk results could be investigated (GERESSr).

Phase	Restrictions
Pg, Sg	del < 10 deg
PgPg, SgSg	$4 \mathrm{deg} \leq \mathrm{del}<10 \mathrm{deg}$; *
Pb, Sb	del < 15 deg
$\mathrm{PbPb}, \mathrm{SbSb}$	$4 \mathrm{deg} \leq \mathrm{del}<15 \mathrm{deg}$;
Pn, Sn	---
PnPn, SnSn	4 deg s del < $18 \mathrm{deg} ;(\mathrm{SnSn} *)$
P, pP, sP	---
PcP, ScP	10 deg s del; mag; *
Pdiff	$110 \mathrm{deg} \leq \mathrm{del}$
pPdiff, sPdiff	$110 \mathrm{deg} \leq$ del; if magnitude <4.0 then *
PKiKP	del $\geq 80 \mathrm{deg}$
pPKiKP, sPKiKP	del $\geq 80 \mathrm{deg}$; if magnitude <4.0 then *
PKP, pPKP, sPKP, SKP	---
PKKP	del $\geq 30 \mathrm{deg}$; mag; * P'P' mag; *

Table 7.5.3: Phases for which ray parameter and azimuth values were used in this study to estimate the mislocation vectors. For core phases all branches were used (i.e., ab, bc, and df). mag = phase was used only if event magnitude was not lower than $4.0 ; *=$ phase was used only if another earlier onset from the same event was observed. del $=$ distance .

Array	No. of detections		Mean scatter			Mean scatter after slowness corrections		
	Asso- ciated	Used	Slow- ness	Ray para- meters	Azim.	Slow- ness	Ray para- meter	Azim.
			[s/deg]	[s/deg]	[deg]	[s/deg]	[s/deg]	[deg]
Apatity	3654	1882	2.77	2.24	19.44	1.66	1.51	14.45
ARCESS	42521	29738	1.87	1.65	21.83	1.32	1.11	18.99
FINESS	22798	15482	2.20	1.79	23.99	1.59	1.28	21.74
GERESS	23499	17852	2.00	1.77	23.97	1.47	1.29	20.64
NORESS	34987	26083	2.09	1.85	17.01	1.56	1.36	15.58
Spitsbergen	1267	253	1.89	1.96	27.46	1.25	0.94	22.73
GERESSr		8000	1.54	1.28	26.97	1.29	1.08	22.91
GERESSa		10579	1.66	1.40	30.75	1.42	1.16	26.33

Table 7.5.4: Some numerical results of the mislocation study. GERESSr gives the results for analyst-reviewed P-type onsets (ray parameter $<=10 \mathrm{~s} / \mathrm{deg}$) and GERESSa is the corresponding subset of the automatically estimated data from GERESS (see text and Fig. 7.5.8).

OBSERVED RAY PARAMETER AND AZIMUTH VALUES
NRA0 1989, $28-1994,181$
N

THEORETICAL RAY PARAMETER AND AZIMUTH VALUES

Fig. 7.5.1: The upper plot shows all 26083 NORESS slowness observations used in this study and at the bottom all corresponding theoretical slowness values are seen.

S
CORRECTION VECTORS FOR
APAO 1992, 152-1994,181

Fig. 7.5.2: The upper plot shows 222 Apatity slowness mislocation vectors relative to the observed values. At the bottom the 134 corresponding mislocation vectors relative to the theoretical values (predicted mislocations) are seen. The symbol size corresponds to the number of single observations per bin. The maximum number of observations per mislocation vector is 25 (top) and 84 (bottom).

Fig. 7.5.3: As Fig. 7.5.2 but for ARCESS. The number of mislocation vectors is 796 (relative to observation) and 435 (relative to the theory). The maximum number of observations per mislocation vector is 631 (top) and 2419 (bottom).

| CORRECTION VECTORS FOR | S |
| :--- | :--- | :--- |
| FIA0 $1989,327-1994,181$ | N |

Fig. 7.5.4: As Fig. 7.5.2 but for FINESS. The number of mislocation vectors is 806 (relative to observation) and 446 (relative to the theory). The maximum number of observations per mislocation vector is 298 (top) and 996 (bottom).

CORRECTION VECTORS FOR
GEC2 1990, 290-1994, 181

CORRECTION VECTORS FOR
S
GEC2 1990, 290-1994, 181
N

Fig. 7.5.5: As Fig. 7.5 .2 but for GERESS. The number of mislocation vectors is 760 (relative to observation) and 469 (relative to the theory). The maximum number of observations per mislocation vector is 325 (top) and 619 (bottom).

Fig. 7.5.6: As Fig. 7.5.2 but for NORESS. The number of mislocation vectors is 934 (relative to observation) and 497 (relative to the theory). The maximum number of observations per mislocation vector is 614 (top) and 1282 (bottom).

CORRECTION VECTORS FOR
SPA0 1992, 328 - 1994, 181

CORRECTION VECTORS FOR
SPA0 1992, 328 -1994, 181
S

Fig. 7.5.7: As Fig. 7.5.2 but for Spitsbergen. The number of mislocation vectors is 20 (relative to observation) and 22 (relative to the theory). The maximum number of observations per mislocation vector is 6 (top) and 26 (bottom).

Fig. 7.5.8: Mislocation vectors for GERESS P-type onsets. On the top a subset is shown of the data from Fig. 7.5 .5 (top), and at the bottom the mislocation vectors for a collection of GERESS analyst-reviewed slowness values are shown.

7.6 On the reliability of event location estimates from automatic and interactive processing

Introduction

The technique of automatic post-processing of seismic events (Kvarna and Ringdal, 1994) has been shown to give a substantial improvement in location accuracy when applied to seismic events in the Khibiny Massif, Kola Peninsula. As shown in that paper (see also Ringdal et al, 1993), the improvement is significant not only relative to automatic processing by the Intelligent Monitoring System (IMS), but also compared to interactive analyst-reviewed solutions.

The improvements are particularly noteworthy since the IMS already shows an excellent location capability in this area (median location error 10.6 km for the automatic solutions and 3.3 km for the analyst-reviewed solutions). By the automatic post-processing method, the median error is reduced to 1.9 km , even when no calibration is carried out. The improvements are even larger when considering the 90% quantile in the location errors; the corresponding numbers being $48.4 \mathrm{~km}, 9.7 \mathrm{~km}$ and 3.6 km for the three cases.

In order to take full advantage of the improved accuracy, it is essential to provide realistic confidence ellipses for the location estimates. In this contribution we discuss the confidence ellipses associated with the various processing methods, and make some observations regarding their reliability as an uncertainty measure. The data base established in the studies described above has been used.

The Khibiny Massif events

Six apatite mines are located within an area of about $10 \mathrm{~km}^{2}$ in the Khibiny Massif on the Kola Peninsula of Russia (see Fig. 7.6.1). A detailed description of these mines and the mining activity is found in Mykkeltveit (1992). Although we have no explicit information on the exact sizes of these mines, interpretation of various maps suggests that the typical size is about $1 \mathrm{~km}^{2}$. The Kola Regional Seismological Centre has since the beginning of 1991 provided NORSAR with information on mining blasts in the six Khibiny Massif mines. Detailed information on the events used in this study is given in Kværna (1993).

Data analysis

As reported by Kværna (1993), available data for this study have comprised 4 arrays (NORESS, ARCESS, FINESS, Apatity) as well as the 3-comp Apatity station APZ9. We have considered the location results using four different analysis methods:

1. Automatic IMS analysis, based on available array data (4 arrays)
2. Interactive analyst results using the Analyst Review Station (ARS) (4 arrays + APZ9)
3. Automatic post-processing without calibration (2 arrays: ARCESS and Apatity)
4. Automatic post-processing with calibration (2 arrays + APZ9)

For each event in the data base, we computed the associated 90% confidence ellipse for each of the four methods. For methods 1 and 2 , we used the error estimates of time and azimuth provided by the IMS processing system for calculating the error ellipses. As explained by Bache et al (1990), these error estimates take into account both a priori model uncertainties and uncertainties resulting from actual signal-to-noise ratios. For methods 3 and 4, we used error estimates of time and azimuth computed by Kværna (1993). These latter estimates were set to the same value regardless of actual signal-tonoise ratio. An example comparing the uncertainties used for each method is shown for one typical event in Table 7.6.1, using phases from the ARCESS and Apatity arrays.

We then plotted the solutions and the confidence ellipses for all events, as shown in Figs. 7.6.2-7.6.4. For clarity, different colors have been used for each of the six mines, and each figure shows the solutions in two different scales.

Our general observations, also discussed in Ringdal et al (1993), are:

- The interactive IMS solutions (Fig. 7.6.3) are significantly more accurate and consistent than the automatic IMS solutions (Fig. 7.6.2).
- The automatic post-processing solutions are still better than the interactive IMS solutions, even without calibration (Fig. 7.6.4). This is in spite of the fact that postprocessing makes use of only 2 arrays.
- With calibration, the results are even more accurate. Fig. 7.6 .5 shows the "optimum" results achieved by post-processing with calibrated data, where also the Apatity 3comp station has been used.

Information on the percentage of events for which the 90% confidence ellipse includes the actual location is given in Table 7.6.2. The following observations are made:

IMS automatic processing:
Only 54% of the error ellipses cover the actual epicenter. This means that these ellipses do not represent the accuracy of the solutions properly.

IMS interactive processing:
93.9% of the error ellipses cover the actual epicenter. Thus the error ellipses are quite representative of the actual accuracy in this case.

Automatic post-processing (uncalibrated):
98.0% of the error ellipses cover the actual epicenter. Thus, the error ellipses are probably too conservative in this case.

Automatic post-processing (calibrated):
90.0% of the error ellipses cover the actual epicenter. Thus the error ellipses represent very well the actual uncertainty for this method.

Conclusions

For the automatic IMS, the error ellipses are currently too small. The main reason is probably that they do not take into account effects of occasional erroneous phase identification by the automatic system. It is noted here that the formal calculation of error ellipses assumes that the phases are correctly identified.

For the interactive IMS solution, the error ellipses are quite representative. This indicates that the a priori uncertainties in the phases used by the location program have been well estimated. Consequently, the interactive IMS solutions have an accuracy that is well represented by their error ellipses, at least for the region processed here.

For the post-processing method using uncalibrated data, it seems necessary to reduce the a priori uncertainties, thus producing smaller error ellipses. With calibrated data, the ellipses are representative for this particular data set. However, it is important that other regions be studied as well before making any firm conclusions.

F. Ringdal
 T. Kværna

References

Bache, T.C., S.R. Bratt, J. Wang, R.M. Fung, C. Kobryn and J. Given (1990): The Intelligent Monitoring System, Bull. Seism. Soc. Am., 80 (Special Issue), 1818-1832.

Kværna, T. (1993): Accurate determination of phase arrival times using autoregressive likelihood estimation, NORSAR Semiannual Tech. Summ. 1 Oct 1992-31 Mar 1993, Scientific Rep. No. 2-92/93, Kjeller, Norway.

Kværna, T. and F. Ringdal (1994): Intelligent post-processing of seismic events, Ann. Geofyisca, Vol XXXVII, No 3, 309-322.

Mykkeltveit, S. (1992): Mining explosions in the Khibiny Massif (Kola Peninsula of Russia) recorded at the Apatity three-component station. Report PL-TR-92-2253, Phillips Laboratory, Hanscom AFB, MA, USA.

Ringdal, F., T. Kværna and B.Kr. Hokland (1993): Onset time estimation and location of events in the Khibiny Massif, Kola Peninsula, using the Analyst Review Station, NORSAR Semiannual Tech. Summary 1 Apr - 30 Sep 93, Scientific Rep. No. 193/94, Kjeller, Norway.

Phase	Method 1 (IMS)		Method 2 (ARS)		Method 3\& 4 (Post-proc.)	
	Time	Az	Time	Az	Time	Az
Apatity Pg	1.0	5.4	1.0	5.4	0.1	-
Apatity Lg	3.0	6.5	3.0	-	0.25	-
Apatity Rg	-	-	3.1	3.2	-	4.0
ARCESS Pn	1.0	6.0	1.0	6.0	0.1	4.0
ARCESS Pg	2.1	5.5	2.1	5.5	-	-
ARCESS Sn	2.1	6.6	2.1	6.6	-	-
ARCESS Lg	3.0	5.5	3.0	5.5	-	-

Table 7.6.1. Example of uncertainties used for calculating error ellipses. Note that the estimates for Methods 1 and 2 are identical. whenever the same phase has been used.

Method	Mine						Total	$\%$
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$		
IMS automatic	$9 / 11$	$0 / 2$	$7 / 11$	$7 / 12$	$3 / 10$	$1 / 4$	$27 / 50$	54.0
IMS interactive	$10 / 11$	$2 / 2$	$10 / 11$	$12 / 12$	$8 / 9$	$4 / 4$	$46 / 49$	93.9
Post--processing (uncalibrated)	$12 / 12$	$2 / 2$	$11 / 11$	$12 / 12$	$9 / 10$	$4 / 4$	$50 / 51$	98.0
Post-processing (calibrated)	$10 / 11$	$2 / 2$	$11 / 11$	$12 / 12$	$7 / 10$	$3 / 4$	$45 / 50$	90.0

Table 7.6.2. Number and percentage of events for which the 90% location confidence ellipse includes the actual epicenter. Numbers are given for each of the 6 mines individually and combined.

Fig. 7.6.1. In the upper part, a large reference area is shown. The location of the ARCESS array is given by a filled circle, and the location of the Khibiny Massif region is shown. The lower part shows a detailed picture of the Khibiny Massif region. The locations of the six mining sites are given by large numbers 1-6. The Apatity array (APA0) is shown as a filled circle, and the three-component station (APZ9) in the town of Apatity is shown as a large triangle.

Fig. 7.6.2. Location error ellipses for automatic IMS processed events. The large numbers are actual mining sites, and the small numbers are corresponding location estimates.

Fig. 7.6.3. Same as Fig. 7.6.2, but corresponding to the IMS analyst-reviewed location estimates.

Fig. 7.6.4. Same as Fig. 7.6.2, but corresponding to the automatic post-processing location estimates, using ARCESS and Apatity array data with no calibration.

Fig. 7.6.5. Same as Fig. 7.6.2, but corresponding to the automatic post-processing location estimates, using calibrated data from ARCESS, the Apatity array and the Apatity 3comp station.

