Semiannual Technical Summary

1 April - 30 September 1995

Kjeller, November 1995

NORSAR Scientific Report No. 1-95/96

Semiannual Technical Summary

1 April - 30 September 1995

Kjeller, November 1995

Abstract

(cont.) The NORSAR Detection Processing system has been operated throughout the period April August 1995 with an average uptime of 99.1% as compared to 99.6% for the previous six-month period. During September 1995, the NORSAR array was out of continuous operation due to the final refurbishment effort. Backup during this period was provided by the NORESS array, colocated with NORSAR subarray 06C. NORESS continued to be in full operation during the refurbishment work. A total of 2027 seismic events have been reported in the NORSAR monthly seismic bulletin for April - August 1995. The performance of the continuous alarm system and the automatic bulletin transfer to AFTAC has been satisfactory. The system for direct retrieval of NORSAR waveform data through an X. 25 connection has been used successfully for acquiring such data by AFTAC. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

This Semiannual Report also presents statistics from operation of the Intelligent Monitoring System (IMS). The IMS has been operated in a limited capacity, with continuous automatic detection and location and with analyst review of selected events of interest for GSETT-3. Data sources for the IMS have comprised all the regional arrays processed at NORSAR.

Since 1 October 1991, an effort has been undertaken to carry out a complete technical refurbishment of the NORSAR array. This project is funded jointly by AFTAC, ARPA and NFR. During the reporting period, work continued on gradually installing new digitizers, communications modules, broad-band seismometers of the KS-54000 "posthole" type as well as new short-period seismometers of type Teledyne Geotech S-20171. As of November 1995, the refurbishment effort was completed.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two experimental small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, as well as the Hagfors array in Sweden, have also been recorded and processed. Monthly processing statistics for the arrays as well as results of the IMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved testing of the NORSAR communications systems, preparations for the NORSAR refurbishment and work in connection with the experimental small-aperture arrays in Spitsbergen and Russia.

Summaries of seven scientific contributions are presented in Chapter 7 of this report.
Section 7.1 is a paper entitled "Analysis of data recorded at the Spitsbergen array". This paper presents results from analysis of data recorded at the Spitsbergen array (SPITS) from events in the Svalbard region during the period July through December 1994. Through this period 1258 seismic events in the Svalbard region were manually checked and located using data from the SPITS array. The broad band capability of the new extended short-period Guralp sensors installed August 1994 is demonstrated through records of the Chinese nuclear test on 7 October 1994 and is further illustrated by SPITS recordings from two events on the Knipovitch Ridge and SE Spitsbergen. These latter two events occurred before and after the sensors were changed, and the difference in data quality is evident. The new Guralp extended short-period sensors provide resolution also of the lower frequencies, where the larger earthquakes are particularly rich in energy. The smaller nearby
earthquakes do not have sufficient low frequent energy to exceed the background noise, and hence must be filtered before the signal can be recognized.

Section 7.2 presents a comparison of the NORSAR array monthly bulletin with the Reviewed Event Bulletin (REB) of the GSETT-3 IDC. The paper lists 207 seismic events detected and located by NORSAR, but not reported in the REB during January-August 1995. Most of these events are clustered in four areas: the Balkans, Hindu Kush, Japan and the Kuriles, and the Fiji-Tonga-Kermadec area. Taking into account the uncertainty in the magnitude estimates, it is concluded that this investigation has qualitatively confirmed the theoretical detection thresholds of the GSETT-3 network in the four regions considered. Also, it shows that introduction of the NORSAR teleseismic array in the GSETT-3 primary network in the near future holds promise that more events from these four regions will enter the REB. In this connection, it is noted that the on-going implementation of an improved NORSAR detector algorithm might add further events from areas where the NORSAR array is especially sensitive.

Section 7.3 is a paper entitled "Development of improved NORSAR time delay corrections". The paper briefly reviews the development of the large NORSAR array, which initially comprised a configuration of 22 subarrays distributed over a diameter of 100 km . After six years of experimental operation, the array was modified on 1 October 1976 to a reduced configuration which was more suitable for an automated, operational system, and the 7 best subarrays (in the NE part of the original array) were selected for this purpose. This configuration is still in operation today, with each subarray comprising 6 SP and one 3 -component BB seismometer over an area 8 km in diameter. The total aperture of NORSAR is now 60 km . This array configuration enables excellent teleseismic detectability and location capability. A complete technical refurbishment of the NORSAR array is now being finalized.

In order to take full advantage of the NORSAR capabilities, it is desirable to update the beam deployment and revise the time delay anomalies taking into account the improved precision made possible from the increased sampling rate (40 Hz against previously 20 Hz) and the accumulated data base of reference events. This paper gives a progress report on the work carried out until now, and comprises an initial data base of 55 reference events. This data base will be further expanded in the future.

Section 7.4 is a paper entitled "Automatic onset time estimation based on autoregressive processing". This study has been undertaken in order to support the developments at the GSETT-3 IDC, and is based on the use of an autoregressive method for automatic onset time estimation, denoted AR-AIC. This method has for several years been operational in the processing of data from the Japanese national seismic network, and the software has been provided to us by scientists from the Japanese NDC.

In this paper we have adapted the Japanese method for application to GSETT-3 data, with emphasis on developing an automated procedure that includes new features such as multiple narrow-band filters, the concept of "usable bandwidth" and a quality measure of the estimated onset time. It is demonstrated that the AR-AIC method for onset time estimation can be adapted to work on a wide range of seismic signals. In particular, the quality measure makes it possible to distinguish between reliable and unreliable onsets. In this way we can avoid using erroneous data in the event location procedure and thus improve the location precision of the automatic processing system.

Section 7.5 is a paper entitled "Recommendation on Auxiliary Seismic Stations for the IMS Network". This contribution is a lightly edited version of a paper prepared by the GSETT-3 Working Group on Planning (WGP) in preparation for the 42nd GSE session in Geneva during 27 Novem-
ber - 1 December 1995. The main purpose of this GSE meeting was to make a specific recommendation for the auxiliary seismic network of the International Monitoring System (IMS), which will be installed to verify compliance with a Comprehensive Test Ban Treaty.

The paper provides the preliminary recommendation from the WGP and is intended as a basis for discussions during the 42nd GSE session. The network designs proposed herein will be reviewed and revised during the GSE session as additional information is received from GSE participants. Material on relevant experience from GSETT-3 will also be taken into account in the process of selecting a recommended IMS auxiliary network.

It is noted that further work and discussion are needed to establish the exact location capability of the networks and the operational status for the existing auxiliary stations proposed in this paper, and to check the progress of plans and proposals for the stations that are not yet operational. Further work is also needed to estimate the costs related to bringing stations and communications arrangements in line with the required IMS standards.

Section 7.6 contains a case study of magnitude estimation at the IDC. The paper contains a detailed analysis of a recent earthquake sequence in Greece during May-June 1995. This includes comparisons of IDC magnitudes in the Revised Event Bulletins to those of NORSAR and NEIC, with special view to network bias, recurrence statistics and detectability.

The paper demonstrates that the IDC m_{b} values are subject to the same "network bias" as the NEIC magnitudes for small events. This implies that the recurrence plots (magnitude/frequency) of IDC data have a too steep slope, which again might lead to a significant overestimation of the number of earthquakes expected to be processed at the IDC. The paper confirms the validity of the theoretical 90% detectability estimate of the GSETT-3 system presented in the IDC performance reports. This estimate is currently close to $\mathrm{m}_{\mathrm{b}}=4.2$ for the area analyzed.

Section 7.7 contains an assessment of the estimated mean mislocation vectors for small-aperture arrays. The objective of this study has been to test the applicability of the estimated mean mislocation vectors for small-aperture arrays for use with different event-location procedures. The mean mislocation vectors were calculated in the slowness space and are now available for automatically estimated fk-results over a large range of azimuth and ray-parameter values. Additionally, mean standard deviations for the mislocation vectors could be defined as a function of the measured slowness values. All this information can now be used to increase the stability and quality of both phase association and event location based on automatically estimated fk-results.

Location results before and after the application of slowness and azimuth corrections are presented for about 25,000 events located during 1994 by ARCESS, FINESS, GERESS and NORESS. Furthermore, single-array solutions during 1995 are compared to REB-reported events both before and after applying the slowness corrections. The study concludes that the corrected slowness vectors provide a clear improvement and should therefore be used in the data processing at the IDC.

AFTAC Project Authorization	$:$	T/9141/B/PKP
ARPA Order No.	$:$	4138 AMD \# 16
Program Code No.	$:$	0 F10
Name of Contractor	$:$	Royal Norwegian Council for Scientific and Industrial Research (NTNF)
Effective Date of Contract	$:$	1 Oct 1992
Contract Expiration Date	$:$	30 Sep 1995
Project Manager	$:$	Frode Ringdal (63) 817121
Title of Work	$:$	The Norwegian Seismic Array (NORSAR) Phase 3 Amount of Contract
Contract Period Covered by Report	$:$	$\mathbf{\$ 6 , 5 1 7 , 5 0 6}$
		1 April -30 September 95

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the Air Force Technical Applications Center or the U.S. Government.

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by AFTAC, Patrick AFB, FL32925, under contract no. F08650-93-C-0002.

Table of Contents

Page
1 Summary 1
2 NORSAR Operation 5
2.1 Detection Processor (DP) operation 5
2.2 Array Communications 9
2.3 NORSAR Event Detection operation 16
3 Operation of Regional Arrays 21
3.1 Recording of NORESS data at NDPC, Kjeller 21
3.2 Recording of ARCESS data at NDPC, Kjeller 25
3.3 Recording of FINESS data at NDPC, Kjeller. 29
3.4 Recording of Spitsbergen data at NDPC, Kjeller 32
3.5 Event detection operation 36
3.6 IMS operation 67
4 Improvements and Modifications 69
4.1 NORSAR 69
5 Maintenance Activities 73
6 Documentation Developed 78
7 Summary of Technical Reports / Papers Published 79
7.1 Analysis of data recorded at the Spitsbergen array 79
7.2 A comparison of the NORSAR array monthly bulletin with the Reviewed Event Bulletin (REB) of the GSETT-3 IDC 89
7.3 Development of improved NORSAR time delay corrections 101
7.4 Automatic onset time estimation based on autoregressive processing 113
7.5 Recommendation on Auxiliary Seismic Stations for the IMS Network 134
7.6 Magnitude estimation at the IDC - a case study 149
7.7 An assessment of the estimated mean mislocation vectors for small-aperture arrays 158

1 Summary

This Semiannual Technical Summary describes the operation, maintenance and research activities at the Norwegian Seismic Array (NORSAR), the Norwegian Regional Seismic Array (NORESS), the Arctic Regional Seismic Array (ARCESS) and the experimental Spitsbergen regional array for the period 1 April - 30 September 1995. Statistics are also presented for additional seismic stations, which through cooperative agreements with institutions in the host countries provide continuous data to the NORSAR Data Processing Center (NPDC). These stations comprise the Finnish Experimental Seismic Array (FINESS), the German Experimental Seismic Array (GERESS), the Hagfors array in Sweden and an experimental regional seismic array in Apatity, Russia.

The NORSAR Detection Processing system has been operated throughout the period April August 1995 with an average uptime of 99.1% as compared to 99.6% for the previous sixmonth period. During September 1995, the NORSAR array was out of continuous operation due to the final refurbishment effort. Backup during this period was provided by the NORESS array, co-located with NORSAR subarray 06C. NORESS continued to be in full operation during the refurbishment work. A total of 2027 seismic events have been reported in the NORSAR monthly seismic bulletin for April - August 1995. The performance of the continuous alarm system and the automatic bulletin transfer to AFTAC has been satisfactory. The system for direct retrieval of NORSAR waveform data through an X. 25 connection has been used successfully for acquiring such data by AFTAC. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

This Semiannual Report also presents statistics from operation of the Intelligent Monitoring System (IMS). The IMS has been operated in a limited capacity, with continuous automatic detection and location and with analyst review of selected events of interest for GSETT-3. Data sources for the IMS have comprised all the regional arrays processed at NORSAR.

Since 1 October 1991, an effort has been undertaken to carry out a complete technical refurbishment of the NORSAR array. This project is funded jointly by AFTAC, ARPA and NFR. During the reporting period, work continued on gradually installing new digitizers, communications modules, broad-band seismometers of the KS-54000 "posthole" type as well as new short-period seismometers of type Teledyne Geotech S-20171. As of November 1995, the refurbishment effort was completed.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two experimental small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, as well as the Hagfors array in Sweden, have also been recorded and processed. Monthly processing statistics for the arrays as well as results of the IMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved testing of the NORSAR communications systems, preparations for the NORSAR
refurbishment and work in connection with the experimental small-aperture arrays in Spitsbergen and Russia.

Summaries of seven scientific contributions are presented in Chapter 7 of this report.
Section 7.1 is a paper entitled "Analysis of data recorded at the Spitsbergen array". This paper presents results from analysis of data recorded at the Spitsbergen array (SPITS) from events in the Svalbard region during the period July through December 1994. Through this period 1258 seismic events in the Svalbard region were manually checked and located using data from the SPITS array. The broad band capability of the new extended short-period Guralp sensors installed August 1994 is demonstrated through records of the Chinese nuclear test on 7 October 1994 and is further illustrated by SPITS recordings from two events on the Knipovitch Ridge and SE Spitsbergen. These latter two events occurred before and after the sensors were changed, and the difference in data quality is evident. The new Guralp extended short-period sensors provide resolution also of the lower frequencies, where the larger earthquakes are particularly rich in energy. The smaller nearby earthquakes do not have sufficient low frequent energy to exceed the background noise, and hence must be filtered before the signal can be recognized.

Section 7.2 presents a comparison of the NORSAR array monthly bulletin with the Reviewed Event Bulletin (REB) of the GSETT-3 IDC. The paper lists 207 seismic events detected and located by NORSAR, but not reported in the REB during January-August 1995. Most of these events are clustered in four areas: the Balkans, Hindu Kush, Japan and the Kuriles, and the Fiji-Tonga-Kermadec area. Taking into account the uncertainty in the magnitude estimates, it is concluded that this investigation has qualitatively confirmed the theoretical detection thresholds of the GSETT-3 network in the four regions considered. Also, it shows that introduction of the NORSAR teleseismic array in the GSETT-3 primary network in the near future holds promise that more events from these four regions will enter the REB. In this connection, it is noted that the on-going implementation of an improved NORSAR detector algorithm might add further events from areas where the NORSAR array is especially sensitive.

Section 7.3 is a paper entitled "Development of improved NORSAR time delay corrections". The paper briefly reviews the development of the large NORSAR array, which initially comprised a configuration of 22 subarrays distributed over a diameter of 100 km . After six years of experimental operation, the array was modified on 1 October 1976 to a reduced configuration which was more suitable for an automated, operational system, and the 7 best subarrays (in the NE part of the original array) were selected for this purpose. This configuration is still in operation today, with each subarray comprising 6 SP and one 3 -component BB seismometer over an area 8 km in diameter. The total aperture of NORSAR is now 60 km . This array configuration enables excellent teleseismic detectability and location capability. A complete technical refurbishment of the NORSAR array is now being finalized.

In order to take full advantage of the NORSAR capabilities, it is desirable to update the beam deployment and revise the time delay anomalies taking into account the improved precision made possible from the increased sampling rate (40 Hz against previously 20 Hz) and the accumulated data base of reference events. This paper gives a progress report on the work
carried out until now, and comprises an initial data base of 55 reference events. This data base will be further expanded in the future.

Section 7.4 is a paper entitled "Automatic onset time estimation based on autoregressive processing". This study has been undertaken in order to support the developments at the GSETT-3 IDC, and is based on the use of an autoregressive method for automatic onset time estimation, denoted AR-AIC. This method has for several years been operational in the processing of data from the Japanese national seismic network, and the software has been provided to us by scientists from the Japanese NDC.

In this paper we have adapted the Japanese method for application to GSETT-3 data, with emphasis on developing an automated procedure that includes new features such as multiple narrow-band filters, the concept of "usable bandwidth" and a quality measure of the estimated onset time. It is demonstrated that the AR-AIC method for onset time estimation can be adapted to work on a wide range of seismic signals. In particular, the quality measure makes it possible to distinguish between reliable and unreliable onsets. In this way we can avoid using erroneous data in the event location procedure and thus improve the location precision of the automatic processing system.

Section 7.5 is a paper entitled "Recommendation on Auxiliary Seismic Stations for the IMS Network". This contribution is a lightly edited version of a paper prepared by the GSETT-3 Working Group on Planning (WGP) in preparation for the 42nd GSE session in Geneva during 27 November - 1 December 1995. The main purpose of this GSE meeting was to make a specific recommendation for the auxiliary seismic network of the International Monitoring System (IMS), which will be installed to verify compliance with a Comprehensive Test Ban Treaty.

The paper provides the preliminary recommendation from the WGP and is intended as a basis for discussions during the 42nd GSE session. The network designs proposed herein will be reviewed and revised during the GSE session as additional information is received from GSE participants. Material on relevant experience from GSETT-3 will also be taken into account in the process of selecting a recommended IMS auxiliary network.

It is noted that further work and discussion are needed to establish the exact location capability of the networks and the operational status for the existing auxiliary stations proposed in this paper, and to check the progress of plans and proposals for the stations that are not yet operational. Further work is also needed to estimate the costs related to bringing stations and communications arrangements in line with the required IMS standards.

Section 7.6 contains a case study of magnitude estimation at the IDC. The paper contains a detailed analysis of a recent earthquake sequence in Greece during May-June 1995. This includes comparisons of IDC magnitudes in the Revised Event Bulletins to those of NORSAR and NEIC, with special view to network bias, recurrence statistics and detectability.

The paper demonstrates that the IDC m_{b} values are subject to the same "network bias" as the NEIC magnitudes for small events. This implies that the recurrence plots (magnitude/ frequency) of IDC data have a too steep slope, which again might lead to a significant overestimation of the number of earthquakes expected to be processed at the IDC. The paper
confirms the validity of the theoretical 90% detectability estimate of the GSETT-3 system presented in the IDC performance reports. This estimate is currently close to $\mathrm{m}_{\mathrm{b}}=4.2$ for the area analyzed.

Section 7.7 contains an assessment of the estimated mean mislocation vectors for smallaperture arrays. The objective of this study has been to test the applicability of the estimated mean mislocation vectors for small-aperture arrays for use with different eventlocation procedures. The mean mislocation vectors were calculated in the slowness space and are now available for automatically estimated fk-results over a large range of azimuth and ray-parameter values. Additionally, mean standard deviations for the mislocation vectors could be defined as a function of the measured slowness values. All this information can now be used to increase the stability and quality of both phase association and event location based on automatically estimated fk-results.

Location results before and after the application of slowness and azimuth corrections are presented for about 25,000 events located during 1994 by ARCESS, FINESS, GERESS and NORESS. Furthermore, single-array solutions during 1995 are compared to REBreported events both before and after applying the slowness corrections. The study concludes that the corrected slowness vectors provide a clear improvement and should therefore be used in the data processing at the IDC.

2 NORSAR Operation

2.1 Detection Processor (DP) operation

There have been 2 breaks in the otherwise continuous operation of the NORSAR online system within the 5-month interval April through August 1995. The uptime percentage for this period is 99.1 as compared to 99.6 for the previous six-month interval.

During September 1995, the NORSAR array was out of continuous operation due to the final refurbishment effort. Backup during this period was provided by the NORESS array, co-located with NORSAR subarray 06C. NORESS continued to be in full operation during the refurbishment work.

Fig. 2.1.1 and the accompanying Table 2.1.1 both show the daily DP downtime for the days between 1 April and 30 September 1995. The monthly recording times and percentages are given in Table 2.1.2.

The breaks can be grouped as follows:

a)	Hardware failure	0
b)	Stops related to program work or error	0
c)	Hardware maintenance stops	0
d)	Power jumps and breaks	2
e)	TOD error correction	0
f)	Communication lines	0

The total downtime for the period April-August was 35 hours and 23 minutes. The mean-time-between-failures (MTBF) was 51.0 days.

J. Torstveit

Fig. 2.1.1. Detection Processor uptime for April (top), May (middle) and June (bottom) 1995.

Fig. 2.1.1. Detection Processor uptime for July (top) and August (bottom) 1995.

Date	Time	Cause
15 Jul	$0237-$	Power failure
16 Jul	-1200	
21 Aug	$1330-1500$	Power Failure 01 Sep -
3 Sep		No recording due to NORSAR refurbishment

Table 2.1.1. The major downtimes in the period 1 April-30 September 1995.

Month	DP Uptime Hours	DP Uptime \%	No. of DP Breaks	No. of Days with Breaks	DP MTBF* (days)
Apr 95	720.00	100.00	0	0	30.0
May 95	744.00	100.00	0	0	31.0
Jun 95	720.00	100.00	0	0	30.0
Jul 95	710.62	95.51	1	2	15.5
Aug 95	742.00	99.73	1	1	15.5
Sep 95	0.00	00.00			

*Mean-time-between-failures = total uptime/no. of up intervals.
Table 2.1.2. Online system performance, 1 April-30 September 1995.

2.2 Array Communications

As described in the previous Semiannual Report, the Modcomp/SLEM-based communication system experienced serious problems toward the end of 1993.

As an intermediate solution, it was decided on 1 January 1994 to implement a backup version of the NORSAR recording system, thus eliminating the Modcomp/SLEM-based recording. This change succeeded in improving both the timing reliability and the individual subarray uptimes.

In October 1994, the installation of a new data acquisition system began, in connection with the NORSAR Refurbishment. Details on this installation are given in Section 4.1 of this report.

During the reporting period, the communication lines to all subarrays except 06C were mostly in normal operation, but each of the subarrays was inoperative during parts of the reporting period in connection with testing and preparation for the NORSAR refurbishment. The reason for the extended downtime of subarray 06 C was that this subarray was chosen as the main site for pre-installation testing of digitizers, CIMs and seismometers.

A simplified daily summary of the communications performance for the seven individual subarray lines is summarized, on a month-by-month basis, in Table 2.2.1.

F. Ringdal

Table 2.2.1 (Page 1 of 6) NORSAR Communication Status Report

Month: April 1995

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	A
02	X	X	X	X	X	X	A
03	X	X	X	X	X	X	A
04	X	X	X	X	X	X	A
05	X	X	X	X	X	X	A
06	X	X	X	X	X	X	A
07	X	X	X	X	X	X	A
08	X	X	X	X	X	A	A
09	X	X	$\because \mathbf{X}$	X	X	X	A
10	X	X	\because	X	X	X	A
11	X	X	X	X	X	X	A
12	X	X	X	X	X	X	A
13	X	X	X	X	X	X	A
14	X	X	X	X	X	X	A
15	X	X	X	X	X	X	A
16	X	X	X	X	X	X	A
17	X	X	X	$\dot{\text { x }}$	X	X	A
18	X	X	X	X	X	X	A
19	X	X :	X	X	X	X	A
20	X	X	X	X	X	X	A
21	X	X	X	X	X	X	A
22	X	X	X	X	X	X	A
23	X	X	X	X	X	X	A
24	X	$\therefore \mathrm{X}$	X	X	X	X	A
25	X	$\because X$	X	X	X	X	A
26	X	$\dot{\mathbf{X}}$	X	X	X	X	A
27	X	X	X	X	X	X	X
28	X	$\overline{\mathrm{X}}$	\underline{X}	X	X	X	X
29	X	X:	. X	X	X	X	X
30	X	X	X	X	X	X	X
31	--	--	--	--	--	--	--
Total hours normal operation	720	720	720	720	720	720	96
\% normal operation	100	100	100	100	100	100	13

Legend:

X : Normal operations
A : All channels masked for more than 12 hours that day
B : All SP channels masked for more than 12 hours that day
C : All LP channels masked for more than 12 hours that day
I : Communication outage for more than 12 hours

Table 2.2.1 (Page 2 of 6)
NORSAR Communication Status Report
Month: May 1995

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	A	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	A	X	X	X	X	X	X
14	A	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	A	X	X	X	X
17	X	X	A	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	A	X	X	X	X
Total hours normal operation	700	744	683	744	740	726	744
\% normal operation	94	100	92	100	99	98	100

Legend:

[^0]Table 2.2.1 (Page 3 of 6)
NORSAR Communication Status Report Month: June 1995

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	A	X	X	X	X	X
03	A	A	X	X	X	X	X
04	A	A	X	X	X	X	X
05	A	A	X	X	X	X	X
06	A	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	A	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	A	X
12	X	X	X	X	X	A	X
13	A	X	X	X	X	A	X
14	A	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	A	X	X	X	X
17	X	X	A	X	X	X	X
18	X	X	X	X	X	X	A
19	X	X	X	X	X	X	A
20	X	X	X	X	X	X	A
21	X	X	X	X	X	X	A
22	X	X	X	X	X	X	A
23	X	X	X	X	X	X	A
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	A	X	X	X	X
29	X	X	X	X	X	X	A
30	X	X	X	X	X	X	X
31	X	X	A	X	X	X	X
Total hours normal operation	607	606	679	720	720	626	537
\% normal operation	84	84	94	100	100	87	75

Legend:

[^1]Table 2.2.1 (Pae 4 of 6)
NORSAR Communication Status Report Month: July 1995

Day	Subarray						
	01A	018	02B	02C	03 C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	A	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	A	X
12	X	X	X	X	X	A	X
13	X	X	X	X	X	A	X
14	X	X	X	X	X	X	X
15	I	I	A	I	I	I	A
16	X	X	A	X	X	X	A
17	X	X	A	X	X	X	A
18	X	X	A	X	X	X	A
19	X	X	X	A	X	X	A
20	X	X	X	A	X	X	A
21	X	X	X	A	X	X	A
22	X	X	A	A	X	X	A
23	X	X	A	A	X	X	A
24	X	X	A	A	X	X	A
25	X	X	X	A	X	X	A
26	X	X	X	A	X	X	A
27	X	X	X	A	X	X	A
28	X	X	X	A	X	X	A
29	X	X	X	A	X	X	A
30	X	X	X	A	X	X	A
31	X	X	A	A	X	X	A
Total hours normal operation	711	711	542	406	711	711	348
\% normal operation	96	96	73	55	96	96	47

Legend:

[^2]Table 2.2.1 (Page 5 of 6)
NORSAR Communication Status Report Month: August 1995

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06 C
01	X	A	A	X	X	A	A
02	X	A	X	X	X	A	A
03	X	A	X	X	X	A	A
04	X	X	X	X	X	X	A
05	X	X	X	X	X	X	A
06	X	X	X	X	X	X	A
07	X	X	X	X	X	X	A
08	X	X	X	X	X	X	A
09	X	X	X	X	X	X	A
10	X	X	X	X	X	X	A
11	X	X	A	X	X	X	A
12	X	X	A	X	X	X	A
13	X	X	A	X	X	X	A
14	X	X	A	X	X	X	A
15	X	X	A	X	X	X	A
16	X	X	A	X	X	X	A
17	X	A	A	X	X	X	A
18	X	A	X	X	X	X	A
19	X	A	X	X	X	X	A
20	X	A	X	X	X	X	A
21	X	A	X	X	X	X	A
22	X	A	X	X	X	X	A
23	X	A	X	A	X	X	A
24	X	A	X	A	X	X	A
25	X	A	X	A	X	X	A
26	X	A	X	A	X	X	A
27	X	A	X	A	X	X	A
28	X	A	A	A	X	X	A
29	X	A	A	A	A	X	A
30	X	A	A	A	A	X	A
31	X	A	A	A	A	X	A
Total hours normal operation $\%$	742	330	440	508	680	685	0
\% normal operation	99.7	44.4	59.1	68.3	91.4	92.1	0

Legend:

X : Normal operations
A: All channels masked for more than 12 hours that day
B : All SP channels masked for more than 12 hours that day
C : All LP channels masked for more than 12 hours that day
I : Communication outage for more than 12 hours

Table 2.2.1 (Page 6 of 6)
NORSAR Communication Status Report
Month: September 1995

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	A	A	A	A	X	A
02	X	A	A	A	A	X	A
03	X	A	A	A	A	X	A
04	X	A	A	A	A	X	A
05	X	A	A	A	A	A	A
06	X	A	A	A	A	A	A
07	X	A	A	A	A	A	A
08	A	A	A	A	A	A	A
09	A	A	A	A	A	A	A
10	A	A	A	A	A	A	A
11	A	A	A	A	A	A	A
12	A	A	A	A	A	A	A
13	A	A	A	A	A	A	A
14	A	A	A	A	A	A	A
15	A	A	A	A	A	A	A
16	A	A	A	A	A	A	A
17	A	A	A	A	A	A	A
18	A	A	A	A	A	A	A
19	A	A	A	A	A	A	A
20	X	A	A	A	A	A	A
21	A	A	A	A	A	A	A
22	A	A	A	A	A	A	A
23	A	A	A	A	A	A	A
24	A	A	A	A	A	A	A
25	A	A	A	A	A	A	A
26	A	A	A	A	A	A	A
27	A	A	A	A	A	A	A
28	A	A	A	A	A	A	A
29	A	A	A	A	A	A	A
30	A	A	A	A	A	A	A
31	A	A	A	A	A	A	A
Total hours normal operation	174	0	0	0	0	104	0
\% normal operation	24.2	0	0	0	0	14.4	0

Legend:

[^3]
2.3 NORSAR Event Detection operation

In Table 2.3 .1 some monthly statistics of the Detection and Event Processor operation are given. The table lists the total number of detections (DPX) triggered by the on-line detector, the total number of detections processed by the automatic event processor (EPX) and the total number of events accepted after analyst review (teleseismic phases, core phases and total).

	Total DPX	Total EPX	Accepted events		Sum	Daily
			P-phases	Core Phases		
Apr 95	10950	897	355	59	414	13.8
May 95	7737	1138	596	85	681	22.0
Jun 95	4231	644	230	51	281	9.4
Jui 95	8128	987	273	76	349	11.3
Aug 95	9620	998	234	68	302	9.7
Sep 95	0	0	0	0	0	
			1688	339	2027	13.2

Table 2.3.1. Detection and Event Processor statistics, 1 April-30 September 1995.

NORSAR Detections

The number of detections (phases) reported by the NORSAR detector during day 091, 1995, through day 273,1995 , was 47,110 , giving an average of 293 detections per processed day (161 days processed). Table 2.3.2 shows daily and hourly distribution of detections for NORSAR.

B. Paulsen

NB2 . DPX Hourly distribution of detections

91	14	36	36	48	31	19	21	23	20	15	1	13	23	20	19	20	13	14	23	20	20	24	17	17	2	Apr 01	day
92	10	21.	23	28	20	13.	13	25	9	13	14	6	10	11	8	10	7	8	13	14	16	20	10	21	343	Apr 02	Sunday
93	24	26	17	22	18	8	10	16	9	18	13	13	18	16	13	9	21	13	12	9	24	7	24	13	373	Apr 03	Monday
94	29	18	20	28	18	15	13	14	4	13	15	29	16	14	13	20	17	31	10	20	13	18	15	19	422	Apr 04	Tuesday
95	21	16	18	13	19	7	3	14	12	19	12	12	11	58	10	18	12	12	8	7	15	16	8	8	349	Apr 05	Wednesday
96	11	14	15	14		15	3	1	11	3	3	8	3	12	20	5	8	9	7	13	12	10	9	14	225	Apr 06	Thursday
97	22	23	23	20	20	9	9	4	9	9	16	28	7	7	13	13	11	12	21	17	19	16	32	26	386	Apr 07	Friday
98	14	30	31	27	30	16	19	15	1.2	16	16	13	15	19	19	12	18	28	17	26	18	17	23	18	469	Apr 08	Saturday
99	23	33	22	34	27	27	18	21	19	9	19	13	19	10	11	13	11	10	13	8	6	8	8	13	395	pr 09	Sunday
100	11	13	6	16	10	7	6	4	3	3	13	20	7	22	5	6	6	2	7	17	12	11	10	13	230	Apr 10	Monday
101	15	14	11	10	5	8	4	5	4	20	7	20	40	20	13	13	14	16	17	20	29	27	16	18	366	Apr 11	Tuesday
102	18	21	20	17	21	16	20	11	4	17	9	32	21	16	16	22	22	11	27	20	17	19	23	27	447	Apr 12	Wednesday
103	27	18	32	29	28	28	23	20	17	21	22	31	18	21	19	36	12	33	21	12	26	16	20	21	551	Apr 13	Thursday
104	22	19	30	13	19	23	13	19	22	21	19	35	30	27	29	24	17	14	17	20	23	10	13	20	499	Apr 14	Friday
105	7	14	13	9	12	13	11	16	12	13	20	18	18	23	17	24	25	20	19	16	18	19	19	21	397	pr 15	Saturday
106	16	17	14	13	14	13	23	18	18	14	15	10	7	24	14	15	12	19	21	12	19	17	8	15	368	pr 16	Sunday
107	9	18	6	16	10	11	8	20	11	10	9	16	14	26	9	16	4	22	21	12	15	14	13	21	331	Apr 17	Monday
108	17	19	30	12	25	16	14	11	7	11	9	14	10	3	3	12	3	10	10	17	16	12	13	24	318	Apr 18	Tuesday
109	23	11	17	10	20	6	8	6	7	18	3	6	7	12	16	7	8	13	8	14	8	12	20	18	278	Apr 19	Wednesday
110	5	18	18	12	10	7	8	4	17	18	4	20	5	12	17	9	6	7	9	9	11	13	18	8	265	Apr 20	Thursday
111	36	43	40	18	10	26	9	9	15	13	8	16	8	13	10	12	8	12	14	14	28	6	7	12	387	Apr 21	Friday
12	19	10	15	19	27	17	16	14	11	12	9	18	10	13	22	19	14	17	14	14	6	26	19	10	371	Apr 22	Saturday
113	13	15	16	29	19	39	35	14	26	17	16	13	14	9	22	10	17	7	15	13	17	13	15	17	421	Apx 23	Sunday
114	22	22	24	15	14	5	12	3	4	5	11	4	0	14	8	15	11	17	14	10	10	16	16	17	289	Apr 24	Monday
15	15	15	23	20	17	10	16	5	20	17	20	9	23	27	22	12	24	19	11	18	18	7	27	18	413	Apr 25	Tuesday
116	24	28	24	15	15	6	4	12	8	12	17	12	11	20	15	16	19	15	13	22	19	11	15	16	369	Apr 26	Wednesday
117	19	24	22	20	14	10	12	13	8	13	7	11	13	14	10	10	14	12	11	8	10	7	16	14	312	Apr 27	Thursday
118	20	17	9	13	6	5	6	10	3	9	13	3	18	5	6	14	16	33	15	7	23	16	4	12	283	Apr 28	Friday
119	14	15	15	5	17	15	10	6	7	13	21	7	13	14	19	10	8	17	15	8	16	18	15	19	317	Apr 29	Saturday
120	17	24	20	15	24	15	15	13	6	6	7	14	10	1	9	6	13	3	1	3	3	21	5	10	261	Apx 30	Sunday
121	20	9	15	18	20	14	13	15	19	18	14	13	17	20	16	19	27	16	30	24	21	25	25	48	476	May 01	Monday
122	33	32	17	23	14	17	25	12	19	6	6	17	7	4	10	11	8	10	13	16	14	12	12	27	365	May 02	Tuesday
123	22	19	25	10	6	7	1	4	9	7	17	14	6	16	25	421	08	52	76	35	0	11	7	5	524	May 03	Wednesday
1.24	14	7	15	13	8	2	1	8	0	8	4	14	8	11	4	10	14	2	7	6	8	7	4	2	177	May 04	Thursday
125	11	5	3	6	27	7	7	0	. 4	11	4	5	6	13	6	6	2	22	10	4	5	8	10	17	199	May 05	Friday
126	12	13	20	11	5	8	7	10	5	0	4	13	6	4	8	7	21	6	4	3	5	6	8	5	191	May 06	Saturday
127	6	6	2	6	5	6	3	10	3	3	5	56	12	1	4	0	2	2	6	2	5	1	8	8	112	May 07	Sunday
128	4	4	6	21	6	10	1	3	3	2	3	1	3	8	11	7	3	12	30	11	12	14	10	13	198	May 08	Monday
129	3	22	19	14	20	5	2	3	4	11	12	13	13	2	17	7	7	2	12	5	12	6	11	6	228	May 09	Truesday
130	10	14	7	6	7	3	1	5	2	9	7	2	8	4	2	7	7	5	9	3	9	13	16	27	183	May 10	Wednesday
131	4	13	11	10	5	5	4	8	1	4	1	16	7	2	20	19	5	13	6	4	10	5	12	10	195	May 11	Thursday
132	6	13	10	14	8	9	0	0	3	19	4	15	10	2	9	6	4	3	9	9	9	11	7	24	204	May 12	Friday
133	12	9	10	13	17	13	20	20	16	65	38	37	10	25	20	22	11	18	40	24	11	31	22	31	535	May 13	Saturday
134	21	26	23	18	27	18	35	15	11	13	17	26	13	11	16	7	12	18	12	6	7	14	20	14	400	May 14	Sunday
135	30	18	17	17	17	13	9	6	31	21	8	16	7	24	35	17	9	15	14	17	31	15	29	22	438	May 15	Monday
136	28	29	22	37	29	12	11	15	18	6	10	12	17	13	15	8	10	10	16	10	26	38	22	20	434	May 16	Tuesday
137	17	15	21	25	26	16	18	20	11	13	17	38	23	11	14	24	11	21	7	16	17	8	7	22	418	May 17	Wednesday
138	21	9	6	13	7	2	5	5	8	7	2	5	8	5	10	18	3	8	18	6	10	7	2	7	192	May 18	Thursday
139	7	17	2	14	4	2	6	15	5	1	1	11	8	8	7	10	10	16	10	10	9	14	10	14	211	May 19	Friday
140	9	19	20	18	19	14	15	10	7	4	15	7	9	10	10	8	15	14	10	19	35	25	30	14	356	May 20	Saturday
141	16	16	11	16	17		9	11	8	8	5	8	8	10	3	4	6	12	5	11	7	14.	7	4	225	May 21	Sunday
142	12	5	5	6	25	2	0	4	1	8	10	18	14	7	13	8	9	8	0	8	13	16	10	13	215	May 22	Monday
143	6	8	6	12	9	7	7	19	18	4	7	7	5	2	0	8	7	2	1	0	13	18	9	5	180	May 23	Tuesday
144	1	9	2	3	5	8	13	15	22	5	43	29	11	20	15	14	11	4	0	1	11	12	4	1	259	May 24	Wednesday
145	6	15	1	3	9	10	0	1	8	20	12	1	6	6	5	1.	3	0	8	2	2	7	4	4	134	May 25	thursclay
146	1	0	7	35	1	6	5	1	0	15	5	14	0	3	6	6	12	1	0	0	6	4	0	10	138	May 26	Friday

Table 2.3.2 (Page 1 of 4)

NE2 ．DPX Hourly distribution of detections

Day

147		9					2	10	8	8	1	0		25	21				14	7	12	21	10		168	May		Saturday
148		1	9	4	5	3	12	2	10	1	8	2	1	3	6	1	5	1	2	3	9	11	2	0	101	May	28	Sunday
49	2	8	2	1	0	7	10	9	1	2	6	3	1	1	6	0	1	4	6	0	3	0	0	0	73	ay	29	Monday
50	0	1	12	4	17	3	8	0	2	0	0	11	15	10	14	1	7	8	0	0	2	2	1	0	118	May	30	da
51	12	2	0	1	2	1	5	2	9	1	8	3	12	28	8	7	1	0	0	0	8	0	4	1	115	May	31	sd
152	1	1	0	0	0	0	0	1	0	0	6	1	8	0	5	6	4	3	1	1	0	0	0		42	un	01	sday
53		3	1	3	2	1	1	6		2	4	1	1	2	0	3	5	0	3	5	3	0	0	3	56	un	02	day
54		0	0	0	1	1	1	0	1	9	4	2	7	1	4	3	1	0	1	0	0	6	9	1	52	n	03	rd
55	0	4	7	0	2	0	0	1	1	3	0	2	0	0	1	4	2	0	1.	0	2	2	1	1	34	un	4	day
56	0	1	0	1	1	5			3	0	0	1	0	0	0	0	4	1	2	3	6	0	1	4	39	Јน	05	ay
157		2	3	9	13	4				9	0	0	3	16	0	7	3	6	5	7	0	4	0	6	105	un	06	day
58	1	9	1	1	5	1	0	3	4	10	1	6	6	8	2	5	2	0	0	0	6	1	2	15	89	Jun	07	sda
9	2	0	2	1	1	1	7	6	2	3	5	13	18	10	11	7	5		5	3	4	6	5	11	132	Jun	08	Y
160	11	4		0		2	7	1	24	8	2	11	10	3	6	6	0		2	0	2	2	10	3	127	n	9	day
61	2	0	7	8	4	4	1	5	1	6	3	0	3	3	2	3	2	3	1	6	0	2	2	1	69	Jun	10	urday
62	2	2	0	0	7	0	3	1	0	10	5	0	1	1	2	2	3	9	8	6	7	1	15	5	90	un	11	y
63	2	5	4	7	3	2		4		4	5	8	12	9	8	0	7	17	7	3	18	8	14．	15	167	n	12	ay
164	10	6	8	3	0	5	5	5	5	4	9	5	0	11	11	4	17	1	4	8	8	9	7	3	148	an	13	＇uesday
165	5	8	6	3	4	11	3	3	5	12	8	10	9	7	4	3	13	2	7	7	3	4	6	3	146	只	14	esda
66	18	19	7	4	8	6	3	9	2	3	12	16	1	4	6	9	10	0	4	9	3	3	5	16	177	nn	15	y
167	4	3	5	2	1	0	3	8	10	11	7	4	4	7	13	12	4	4	4	2	2	4	1	2	117	Jun	16	Friday
168		4	11	0	6	1	16	3			8	6	δ	1	11	5	5	12	2	2	5		2	2	126		17	urday
169	2	10	3	3	10	2	2	7		8	2	4	12	12	11	11	19	11	16	3	6	14	13	21	208	n	18	Sunday
0	9	13	10	12	12	6	4	6	4	5	2	7	2	5	7	12	2	6	6	4	9	3	8	4	158	un	19	Monday
171	5	21	6	5	2	9	11	26	11		11	12	6	9	2	7	14	16	1	3	1	14	6	6	213	n	0	day
172	2	9	5	5	1	4	5	0	1	7	5	6	8	19	9	8	9	3	11	10	12	15	10	22	186	un	21	＋
73	10	21	13	14	10	3		3	7	2	4	7	10	3	7	16	7	5	19	6	12	3	10	4	202	n	2	sday
174	13	7	6	8	6	1	4	2	4	5	7	18	1	3	6	13	11	7	15	5	8	10	4		173	日	23	day
175		8	15	13		11	7	1.9	10	7	6	9	4		8	4	8	17	8	4	7	8	8	8	211		4	urday
176	2	10	11	6	8	28	8	11	10	10	4	3	6		4	3	1	9	9	11	8	3	11.	11	191	Jun	25	Sunday
177	13	9	6		8	3	3	8	2	0	12	7	2	5	8	2	2	8	5	4	5	8	7	16	148	哯	26	
178		7		5	7	2	4	3	0	0	12	18	8	3	13	8	5	22	9	6	2	9	4	1	159	In	7	day
179	8	8	9	18	7	15	1	5	16	0	9	31	19	14	21	0	2	5	4	3	17	14	8	13	247	n	28	aday
0	6	8	11	9	8			8	2	3	2	8	35	5	12	15	9	2	8	10	5	4	12	13	205	ת	29	Thursday
181	3	7	10	5	3	3	4	10	1	17		22	14	7	7	2	18	8	9	16	14	12	19	17	231	n	30	Friday
182	19	13	13	17	16	7	4	8	12	12	7	10	8	10	12	12	13	10	5	9	22	19	19	17	294	11	01	urday
183	17	17	14	11	12	14	24	13	9	15	19	11	10	12	11	12	11.	13	16	5	6	12	10	5	299	11	02	day
184	26	28	8	7	9			2	0		12		13	11	9	6	4	3	7	6	22	13	28	21	240		03	day
18	12	14	23	23	15	2	2	5	4	3	8	3	18	8	12	8	9	20	19	12	20	14	23	19	296		04	diny
18	27	24	21	25	17	17	6	5	4	8	5	6	21	20	9	10	17	17	15	16	23	8	11	16	348	1	05	sclay
187	13	14	16	13	19	3	4	6	8	6	9	15	9	9	10	2	12	14	7	7	13	11	12	9	241		06	ursday
188	14	18	12	21	14	2	6	7	9	10	5	11	12	19	19	13	17	8	11	11	15	15	8	13	290		07	day
18	15	18	18	18	17	17	28	8	6	12	10	19	8	13	17	13	11	20	10	22	11	11	18	12	352	1	08	rday
19	22	8	15	12	12	10	11	9	6	12	4	9	9	7	5	4	6	12	15	7	11	10	9	11	236	1	09	Sunday
191	16	12	20	12	9			1	2	1	4	9	3	14		3	7	12	7	12	2	7	15	6	179		10	lay
192		7	11		3	4	2	0	5	6	4	25	5	17	4	5	5	10	2	9	3	12	14	16	182		11	Tuesday
193	9	21	9	9	8	1	3	1	4	11	5	13	6	7	6	5	25	9	11	8	6	4	10	10	201		12	ednesda
194	11	9	9	8	2	2	1	9	4	0	3	8	18	7	9	10	4	26	10	15	3	8	14	19	199		13	Thursday
195	9	15	16	18	7	8	1	4	4	12	12	34	10	9	5	6	9	1.5	8	15	10	11	21	48	307	1	14	iday
96	40	18	28	2	0	0	0	0	0			0	0	0	0	0	0	0	0	0		0			88	1	15	Saturday
197	0	0	0	0	0	0	0	0	0	0	0	0	7	0	5	2	2	2	1	14	0	1	0	4	38	1	16	Sunday
198	7	3	2	3	0	6	1	0	4	1	16	7	10	8	7	3	5	3	3	5	14	7	5	8	128	1	17	Monday
199	9	7	9	10	6	11	2	8	4	3	2	13	9	20	32	22	23	10	21	13	15	10	16	19	294	11	18	Iuesday
200	17	12	12	7	5	4	5	3	5	4	14	39	38	17	5	7	15	1	13	6	12	9	4	12	266	1	19	sday
01	15	13	12	6	15	8	3	4	6	7	2	15	20	3	4	13	5	2	7	3	8	7	6					rsday

Sum Date
1．68 May 27 Saturday
101 May 28 Sunday
73 May 29 Monday 115 May 31 Wednesday 42 Jun 01 Thursday 52 Jun 03 Saturday 34 Jun 04 Sunday 105 Jun 06 Tuesda 32 Jun 08 Thursday 127 Jun 09 Friday 69 Jun 10 Saturday 167 Jun 12 Monday 146 Jun 14 Wednesday 117 Jun 16 Eriday 126 Jun 17 Saturday 208 Jun 18 Sunday 213 Jun 20 Tuescay 202 Jun 22 Thursday 173 Jun 23 Friday 211 Jun 24 Saturday
191 Jun 25 Sunday 148 Jun 26 Monday 247 Jun 28 Wedneada 205 Jun 29 Thursday 294 Jul 01 Saturday 299 Jul 02 Sunday Jul 03 Monday 348 Jul 04 Wuesday 241 Jul 06 Thurad
290 Jul 07 Friday 352 Jul 08 Saturday 230 Jul 09 sunday 179 Jul 10 Monday 182 Jul 11 Tuesday
201 Jul 12 Wednesda 199 Jul 13 Thursday 307 Tul 14 Eriday 38 Jul 16 Sunday 128 Jul 17 Monday
294 Jul 18 Tuesday 266 Jul 19 Fednesday 195 Jul 21 Friday

Table 2．3．2．（Page 2 of 4）

NB2 .DPX Hourly distribution of detections

Table 2.3.2. (Page 3 of 4)

Table 2.3.2. Daily and hourly distribution of NORSAR detections. For each day is shown number of detections within each hour of the day and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day. (Page 4 of 4)

3 Operation of Regional Arrays

3.1 Recording of NORESS data at NDPC, Kjeller

Table 3.1.1 lists the main outage times and reasons.
The average recording time was 97.79% as compared to 99.17% during the previous reporting period.

Date	Time		Cause
04Apr	2031	-	Software failure
05 Apr		- -0548	
20 Apr	0728	- 0747	Power failure
03 May	0931	- 1010	Software failure
05 Jun	0149	- 0821	Hardware failure
13 Jun	0332	- 0558	Software failure
08 Jul	0002	- 0836	Software failure
15 Jul	0327	-	Power failure at NDPC due to thunderstorm
16 Jul		- 1210	
19 Jul	1821	-	Hardware failure Hub
20 Jul		- 1311	
26 Jul	0117	- 0635	Software failure
05 Aug	0855	- 2053	Software failure
07 Aug	1336	-	Hardware failure Hub
08 Aug		- 0715	
19 Aug	0824	- 0941	Software failure
21 Aug	0617	- 0630	Software failure
21 Aug	1329	- 1430	Power failure
16 Sep	1347	- 1439	Software failure
24 Sep	0100	- 0200	Software failure
27 Sep	0720	- 0744	Software failure
28 Sep	0441	- 0533	Transmission line failure

Table 3.1.1. Interruptions in recording of NORESS data at NDPC, 1April - 30 September 1995.

Monthly uptimes for the NORESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

April 95	$:$	98.66
May	$:$	99.91
June	$:$	98.75
July	$:$	91.21
August	$:$	98.67
September	$:$	99.55

Fig. 3.1.1 shows the uptime for the data recording task, or equivalently, the availability of NORESS data in our tape archive, on a day-by-day basis, for the reporting period.
J. Torstveit

Fig. 3.1.1. NORESS data recording uptime for April (top), May (middle) and June (bottom) 1995.

Fig. 3.1.1. (cont.) NORESS data recording uptime for July (top), August (middle) and September (bottom) 1995.

3.2 Recording of ARCESS data at NDPC, Kjeller

Table 3.2.1 lists the main outage times and reasons.
The average recording time was 92.56% as compared to 99.37% for the previous reporting period.

Date	Time		Cause
03 Jun	2158	-	Satellite link failure
04 Jun		- 0039	
13 Jun	0805	2237	Power break and hardware prob lem
13 Jun	2302	-	Hardware problems after power break
14 Jun		- 1542	
15 Jun	0000	-	Hardware problems after power break
16 Jun		- 0823	
01 Jul	0838	- 1022	Timing problems
14 Jul	0642	0754	Software failure
15 Jul	0327	-	Power failure at NDPC due to thunderstorm
16 Jul		- 1240	
18 Jul	0708	- 1653	Power failure Hub due to thunderstorm
27 Jul	2109	- 2328	Satellite link failure
28 Jul	0032	-	Power failure Hub
29 Jul		- 1048	
02 Aug	1821	- 1834	Hardware failure Hub
02 Aug	2318	- 2329	Hardware failure Hub
03 Aug	0054	- 1604	Hardware failure Hub
14 Aug	0913	- 0943	Power failure Hub
21 Aug	1329	- 1440	Power failure DPC
25 Aug	0701	- 0928	Power failure Hub
07 Sep	0416	-	Hardware failure satellite link
13 Sep		- 1031	
26 Sep	1020	- 1244	Power failure Hub

Table 3.2.1. The main interruptions in recording of ARCESS data at NDPC, 1 April-30 September 1995.

Monthly uptimes for the ARCESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

April 95	$:$	99.98%
May	$:$	99.98%
June	$:$	90.71%
July	$:$	88.83%
August	$:$	97.09%
September	$:$	78.75%

Fig. 3.2.1. shows the uptime for the data recording task, or equivalently, the availability of ARCESS data in our tape archive, on a day-by-day basis, for the reporting period.

J. Torstveit

Fig. 3.2.1. ARCESS data recording uptime for April (top), May (middle) and June (bottom) 1995.

Fig. 3.2.1. ARCESS data recording uptime for July (top), August (middle) and September (bottom) 1995.

3.3 Recording of FINESS data at NDPC, Kjeller

The average recording time was 98.55% as compared to 97.8% for the previous reporting period.

Date	Time		Cause
18 Apr	0542	- 0757	Software failure Helsinki
10 Jun	1119	-	Hardware failure Helsinki
11 Jun		- 1220	
14 Jun	1351	- 1427	Transmission line failure
15 Jul	0324	-	Power failure at NDPC due to thunderstorm
16 Jul		- 0342	
31 Aug	0658	- 1059	Hardware failure Helsinki
11 Sep	0531	- 1144 .	Hardware being moved in Helsinki
11 Sep	1200	- 1233	Hardware being moved in Helsinki

Table 3.3.1. The main interruptions in recording of FINESS data at NDPC, 1 April-30 September 1995.

Monthly uptimes for the FINESS on-line data recording task, taking into account all factors (field installations, transmission lines, data center operation) affecting this task were as follows:

April 95	$:$	99.68%
May	$:$	100.00%
June	\vdots	96.43%
July	\vdots	96.70%
August	$:$	99.46%
September	$:$	99.05%

Fig. 3.3.1 shows the uptime for the data recording task, or equivalently, the availability of FINESS data in our tape archive, on a day-by-day basis, for the reporting period.
J. Torstveit

Fig. 3.3.1. FINESS data recording uptime for April (top), May (middle) and June (bottom) 1995.

Fig. 3.3.1. FINESS data recording uptime for July (top), August (middle) and September (bottom) 1995.

3.4 Recording of Spitsbergen data at NDPC, Kjeller

The average recording time was 65.81% as compared to 96.80% for the previous reporting period.

The main reasons for downtime follow:

Date	Time		Cause
01 Apr	0000	-	Power failure Spitsbergen 31/3
07 Apr		- 1205	
08 Apr	0000	- 0841	Software failure
10 Apr	0900	-	Hardware failure Spitsbergen
20 Apr		- 0718	
26 Apr	1037	- 1136	Hardware failure
04 May	1928	- 2017	Communication line failure
05 May	1001	- 1143	Communication line failure
09 May	0856	- 0922	Maintenance Spitsbergen
15 May	0112	- 0130	Communication line failure
15 May	0443	- 0506	Communication line failure
26 May	0705	- 0754	Communication line failure
26 May	0923	- 0943	Communication line failure
26 May	1115	- 1151	Communication line failure
20 Jun	2053	-	Hardware failure Spitsbergen
03 Aug		- 1950	
18 Aug	0643	- 0729	Hardware maintenance NDPC
21 Aug	1329	- 1438	Power breack NDPC
25 Aug	0946	- 1118	Maintenance communication line
04 Sep	0734	- 0825	Software failure
05 Sep	2105	-	Software failure
06 Sep		- 0621	
10 Sep	0037	- 0812	Communication line failure
13 Sep	0919	- 0942	Maintenance communication line

Table 3.4.1. The main interruptions in recording of Spitsbergen data at NDPC, 1 April 30 September 1995.

Monthly uptimes for the Spitsbergen online data recording task, taking into account all factors (field installations, transmission line, data center operation) affecting this task were as follows:

April 95	$:$	43.62%
May	$:$	98.14%
June	$:$	65.78%
July	$:$	0.00%
August	\vdots	90.27%
September	$:$	97.07%

Fig. 3.4.1 shows the uptime for the data recording task, or equivalently, the availability of Spitsbergen data in our tape archive, on a day-by-day basis for the reporting period.

J. Torstveit

Fig. 3.4.1. Spitsbergen data recording uptime for April (top), May (middle) and June (bottom) 1995.

Fig. 3.4.1. Spitsbergen data recording uptime for August (top) and September (bottom) 1995.

3.5 Event detection operation

This section reports results from one-array automatic processing using signal processing recipes and "ronapp" recipes for the ep program (NORSAR Sci. Rep. No 2-8889).

Three systems are in parallel operation to associate detected phases and locate events:

1. The ep program with "ronapp" recipes is operated independently on each array to obtain simple one-array automatic solutions.
2. The Generalized Beamforming method (GBF) (see F. Ringdal and T. Kværna (1989), A mulitchannel processing approach to real time network detection, phase association and threshold monitoring, BSSA Vol 79, no 6, 1927-1940) processes the four arrays jointly and presents locations of regional events.
3. The IMS system is operated on the same set of arrivals as ep and GBF and reports also teleseismic events in addition to regional ones.

IMS results are reported in section 3.6.
In addition to these three event association processes, we are running test versions of the so-called Threshold Monitoring (TM) process. This is a process that monitors the seismic amplitude level continuously in time to estimate the upper magnitude limit of an event that might go undetected by the network. Simple displays of so-called threshold curves reveal instants of particular interest; i.e., instants when events above a certain magnitude threshold may have occurred in the target region. Results from the three processes described above are used to help resolve what actually happened during these instances.

NORESS detections

The number of detections (phases) reported from day 091, 1995, through day 273, 1995, was 36,371 , giving an average of 199 detections per processed day (183 days processed).

Table 3.5.1 shows daily and hourly distribution of detections for NORESS.

Events automatically located by NORESS

During days 091,1995 , through $273,1995,2013$ local and regional events were located by NORESS, based on automatic association of P- and S-type arrivals. This gives an average of 11.0 events per processed day (183 days processed). 67% of these events are within 300 km , and 88% of these events are within 1000 km .

ARCESS detections

The number of detections (phases) reported during day 091, 1995, through day 273, 1995, was 86,374 , giving an average of 485 detections per processed day (183 days processed).

Table 3.5 .2 shows daily and hourly distribution of detections for ARCESS.

Table 3.5.2 shows daily and hourly distribution of detections for ARCESS.

Events automatically located by ARCESS

During days 091,1995 , through $273,1995,6187$ local and regional events were located by ARCESS, based on automatic association of P- and S-type arrivals. This gives an average 34.8 events per processed day (183 days processed). 57% of these events are within 300 km , and 87% of these events are within 1000 km .

FINESS detections

The number of detections (phases) reported during day 091, 1995, through day 273, 1995, was 41,241 , giving an average of 225 detections per processed day (183 days processed).

Table 3.5 .3 shows daily and hourly distribution of detections for FINESS.

Events automatically located by FINESS

During days 091,1995 , through $273,1995,2456$ local and regional events were located by FINESS, based on automatic association of P - and S-type arrivals. This gives an average of 13.4 events per processed day (183 days processed). 80% of these events are within 300 km , and 91% of these events are within 1000 km

GERESS detections

The number of detections (phases) reported from day 091, 1995, through day 273, 1995, was 38,748 , giving an average of 212 detections per processed day (183 days processed).

Table 3.5.4 shows daily and hourly distribution of detections for GERESS.

Events automatically located by GERESS

During days 091,1995 , through 273, 1995, 3917 local and regional events were located by GERESS, based on automatic association of P- and S-type arrivals. This gives an average of 21.4 events per processed day (183 days processed). 77% of these events are within 300 km , and 89% of these events are within 1000 km .

Apatity array detections

The number of detections (phases) reported from day 091, 1995, through day 273, 1995, was 114,866 , giving an average of 649 detections per processed day (177 days processed).

As described in earlier reports, the data from the Apatity array are transferred by one-way (simplex) radio links to Apatity city. The transmission suffers from radio disturbances that occasionally result in a large number of small data gaps and spikes in the data. In order for
the communication protocol to correct such errors by requesting retransmission of data, a two-way radio link would be needed (duplex radio). However, it should be noted that noise from cultural activities and from the nearby lakes cause most of the unwanted detections. These unwanted detections are "filtered" in the signal processing, as they give seismic velocities that are outside accepted limits for regional and teleseismic phase velocities.

Table 3.5 .5 shows daily and hourly distribution of detections for the Apatity array.

Events automatically located by the Apatity array

During days 091,1995 , through $273,1995,1309$ local and regional events were located by the Apatity array, based on automatic association of P-and S-type arrivals. This gives an average of 7.4 events per processed day (177 days processed). 41% of these events are within 300 km , and 72% of these events are within 1000 km .

Spitsbergen array detections

The number of detections (phases) reported from day 091, 1995, through day 273, 1995, was 126,090 , giving an average of 1009 detections per processed day (125 days processed).

Table 3.5.6 shows daily and hourly distribution of detections for the Spitsbergen array.

Events automatically located by the Spitsbergen array

During days 091,1995 , through $273,1995,12,388$ local and regional events were located by the Spitsbergen array, based on automatic association of P- and S-type arrivals. This gives an average of 99.1 events per processed day (125 days processed). 49% of these events are within 300 km , and 74% of these events are within 1000 km .

Hagfors array detections

The number of detections (phases) reported from day 091, 1995, through day 273, 1995, was 48,529 , giving an average of 265 detections per processed day (183 days processed).

Table 3.5.7 shows daily and hourly distribution of detections for the Hagfors array

Events automatically located by the Hagfors array

During days 091,1995 , through $273,1995,1963$ local and regional events were located by the Hagfors array, based on automatic association of P- and S-type arrivals. This gives an average of 10.7 events per processed day (183 days processed). 38% of these events are within 300 km , and 77% of these events are within 1000 km

U. Baadshaug

NRS . FKX Hourly distribution of detections
Day 000102030405060708091011121314151617181920212213123 Sum Date

91	6	4	1	2	6	9	5	5	5	8	6	5	7	10	4	1	5	0	6	2	4	2		5	112	Apr		day
92	1	3	8	7	3	3	0	11	24	38	13	3	1	2	2	9	8	3	σ	1	1	3	8	12	170	Apr	02	Sunday
93	17	28	26	33	24	9	3	8	4	6	7	13	9	6	16	0	9	9	4	2	6	13	5	9	266	Apr	03	Monday
94	32	29	52	50	29	18	11	10	6	5	10	17	19	11	11	8	10	14	7	18	3	0	0	0	370	Apr	04	Tuesday
95	0	0	0	0	0	1	4	9	9	10	12	14	21	30	8	12	12	2	4	11	12	4	1	4	180	Apr	05	Wednesday
96	4	6	3	5	1	7	13	2	9	5	3	13	9	14	12	2	30	10	4	19	1	2	4	4	182	Apx	06	Thursday
97	2	12	3	4	10	6	1	5	5	8	21	16	3	7	4	6	2	8	10	14	11	10	11	7	186	Apr	07	Friday
98	6	7	3	14	14	20	8	11	6	7	9	6	4	5	6	9	4	10	9	7	2	4	9	11	191	Apr	08	Saturday
99	47	53	20	20	31	20	3	3	13	16	6	16	11	9	2	1	4	2	11	5	14	12	17	7	343	Apr	09	sunday
100	20	28	15	16	30	22	13	16	12	9	17	9	7	10	11	11	7	14	5	77	52	4	0	5	410	Apr	10	Monday
101	2	3	3	3	8	6	7	4	4	3	7	8	21	16	17	12	16	4	21	7	6	7	4	4	193	Apr	11.	Tuesday
102	5	1	1	9	4	3	9	6	6	10	8	27	25	8	13	9	2	5	5	2	2	1	5	4	170	Apr	12	Wednesday
103	4	1	10	7	8	11	21	12	1	22	13	12	13	4	3	18	5	6	6	8	7	1	7	4	204	Apr	13	Thursday
104	7	6	3	1	3	3	3	4	151	31	116	16	4	10	8	6	5	27	10	7	5	1	3	3	379	Apr	14	Friday
105	1	3	5	1	3	19	2	7	6	4	6	9	4	8	3	4	1	12	2	16	6	5	7	5	139	Apr	15	Saturday
106	3	1	13	5	0	6	5	9	11	5	4	4	0	5	6	3	4	8	6	4	5	1	1	6	115	Apr	16	Sunday
107	4	9	5	4	5	6	1	7	10	11	4	10	3	19	3	6	2	5	4	3	9	6	5	71	212	Apr	17	Monday
108	11	1	15	4	9	6	7	0	1	6	5	9	13	3	3	6	4	6	5	16	3	15	4	4	156	Apr	18	Tuesday
109	0	2	3	2	9	1	1	5	1	9	5	3	15	10	10	7	8	0	7	7	2	2	6	2	117	Apr	19	Frednesday
110	3	0	2	1	5	3	3	3	6	7	4	15	5	7	13	8	14	5		121	5	12	4	3	258	Apr	20	Thuraday
111	27	12	12	3	3	9	2	1	6	7	12	6	8	7	6	0	2	13	8	12	8	2	5	1	172	Apr	21	Friday
112	16	6	8	6	1	9	4	1	4	1	2	6	2	15	3	2	6	3	27	7	6	7	6	4	152	Apr	22	Saturday
113	3	5	4	10	5	12	10	6	5	5	13	1	2	0	3	4	14	4	3	4	11	4	0	4	132	Apr	23	Sunday
114	6	16	2	4	4	2	7	1	1	3	6	4	2	10	9	20	7	7	5	7	0	7	2	8	140	Apr	24	Monday
115	1	4	1	6	1	3	7	1	8	12	16	4	16	31	9	2	10	5	1	10	5	8	1	3	165	Apr	25	Tuesday
116	0	5	14	5	1	3	2	5	2	10	11	13	20	12	2	5	11	6	2	5	6	1	5	1	147	Apr	26	Wednesclay
117	2	6	13	5	0	2	4	6	7	18	7	8	12	6	4	1	10	6	3	6	4	7	3	2	142	Apr	27	Thursday
118	2	4	12	0	2	2	8	4	2	2	14	3	15	1	5	4	9	18	6	11	4	4	0	0	132	Apr	28	Friday
119	3	2	2	1	2	9	7	2	4	8	5	5	3	7	8	9	4	3	5	1	1	2	1	4	98	Apr	29	Saturday
120	4	6	0	5	14	2	8	9	2	0	4	4	3	2	6	7	13	4	2	16	2	31	8	2	154	Apr	30	Sunday
121	6	5	5	3	5	6	6	2	10	4	6	5	6	7	7	13	3	8	9	4	1	5	6	14	146	May	01	Monday
122	3	16	7	2	6	7	15	9	9	3	13	14	8	8	2	2	5	4	3	12	6	9	3	5	171	May	02	Tuesday
123	4	4	10	7	0	4	2	1	5	2	12	10	5	12	2	6	9	4	4	12	1	13	3	1	133	May	03	Wednesday
124	8	11	12	3	3	3	0	4	2	11	6	10	10	19	4	6	35	2	5	5	5	14	3	2	183	May	04	Thursday
125	2	3	2	5	14	6	1	2	1	9	12	10	7	7	1	2	5	11	6	7	1	1	3	8	126	May	05	Friday
126	4	4	8	7	5	9	8	8	2	4	1	4	1	0	5	6	4	1	3	4	1	3	2	3	97	May	06	Saturday
127	1	0	1	0	1	2	2	4	2	4	5	3	5	2	1	1	2	0	5	2	1	1	4	2	51.	May	07	Sunday
128	0	6	1	12	0	4	0	0	7	6	3	4	9	4	10	8	4	12	11	5	5	2	2	17	132	May	08	Monday
129	5	8	6	1	2	0	0	3	0	7	12	10	16	2	5	1	4	0	5	4	4	10	2	1	108	May	09	Tuesday
130	0	4	2	0	2	0	1	0	2	5	1	3	6	8	9	7	2	2	3	5	2	10	5	9	88	May	10	Wednesday
131	1	2	9	1	2	1	1	7	1	4	5	9	10	6	17	11	3	16	4	4	3	12	11	4	144	May	11	Thursday
132	7	12	3	9	8	4	4	0	2	12	13	16	13	2	4	7	4	2	6	10	0	5	4	5	152	May	12	Friday
133	5	10	7	1	3	8	11	6	16	60	36	30	19	19	17	19	10	15	27	20	9	19	18	22	407	May	13	Saturday
134	20	14	19	18	14	16	22	8	10	6	7	8	7	5	7	4	3	6	5	6	1	3	5	3	217	May	14	Sunday
135	11	13	5	5	9	7	6	6	18	10	8	11	5	28	9	6.	4	2	1	11	24	80	6	2	287	May	15	Monday
136	2	12	5	9	11	7	0	1	20	2	6	8	8	10	8	5	10	1	8	11	24	25	12	6	211	May	16	Thesday
137	13	2	12	8	14	12	10	6	7	6	9	18	27	4	14	13	7	16	3	5	3	2	3	5	219	May	17	Wednesday
138	7	9	7	4	3	0	3	2	9	7	7	7	7	7	23	14	6	5	12	10	1	14	2	3	169	May	18	Thursday
139	1	17	5	2	243	380	25	7	2	0	6	8	8	9	8		13	12	18	7	1	4	4	3	571	May	19	Friday
140	0	6	3	3	7	4	2	2	5	4	4	5	2	10	2	3	3	7	5	7	25	8	10	4	131	May	20	Saturday
141	0	6	7	6	4	3	1	6	4	2	3	4	3	5	7	3	3	12	11	21	22	27	25	32	21.7	May	21	Sunday
142	31	31	27	25	21	6	8	2	0	22	13	24	17	9	15	5	13	7	3	5	14	8	5	4	315	May	22	Monday
143	4	16	5	9	9	5	6	9	11	1	12	9	22	5	9	16	13	9	13	15	17	19	1.7	23	274	May	23	Tuesday
144	18	25	23	24	13	10	9	16	15	10	24	25	11	14	8	13	16	6	1	11	8	16	3	2	321	May	24	Wednesday
145	8	7	3	12	10	15	15	3	7	22	3	13	20	8	4	3	4	5	6	3	4	6	1		189	May	25	Thursday
146	4	4	6	15	0	5	4	2	3	11	1	12	4	6	7	8	12	12	9	51	5	6	0	13	200	May	26	Fxiday

Table 3.5.1 (Page 1 of 4)

147	6	4	0	2	1	10	3	2	2	3	0	2	3	18	10	4	3	3	15	9	5	19	12	6
148	8	8	16	4	8	7	8	9	12	7	4	5	9	10	13	8	7	6	10	6	20	14	12	7
149	11	10	7	9	4	7	4	6	8	9	8	8	8	6	2	5	9	4	6	6	4	1	1	0
150	2	11	10	2	12	1	11	4	7	7	6	11	13	20	4	2	10	9	1	4	2	6	1	2
151	5	5	10	0	4	0	4	7	14	11	9	7	22	16	4	10	7	2	4	6	6	2	4	1
152	2	6	4	0	0	1	6	7	7	8	11	4	13	13	6	10	5	8	5	2	1	4	4	8
153	3	11	9	10^{\prime}	8	8	7	17	11	16	7	10	6	2	1	5	4	0	2	5	2	1	1	1
154	3	0	0	0	1	3	0	1	2	7	4	2	7	2	2	3	2	4	1	0	3	3	6	1
155	1	2	5	0	4	0	1	2	2	1	0	3	1	6	8	6	0	1	0	3	8	14	19	15
156	19	18	0	0	0	0	0	0	1	1	3	2	1	2	1	8	15	10	14	15	21	1	3	12
157	16	13	15	25	19	12	5	4	5	6	6	7	15	16	3	12	1	2	7	9	7	4	0	6
158	3	6	2	3	9	2	4	5	9	18	6	7	10	18	17	5	2	0	1	3	9	0	1	11
159	2	4	6	4	3	1	0	3	4	9	17	23	18	6	7	3	1	9	2	6	8	7	8	14
160	18	0	1	1	2	6	15	5	12	19	15	15	17	10	8	9	7	5	3	9	4	0	10	11
161	14	13	24	25	18	21	8	15	6	7	4	10	3	4	5	5	6	3	1	6	0	3	4	3
162	1	2	2	1	3	1	2	2	3	8	2	2	4	3	2	0	1	6	3	3	6	3	12	2
163	1	2	2	4	2	5	6	7	6	10	6	7	16	6	7	0	12	14	2	11	18	41	80	44
164	32	2	5	6	0	0	3	9	6	7	9	15	6	26	11	5	23	5	4	6	7	5	4	0
165	1	1	2	3	4	6	7	5	6	14	7	21	13	9	5	7	19	2	7	4	1	2	2	4
166	12	8	4	2	2	6	10	14	5	9	10	15	15	6	2	7	11	1	3	4	2	0	0	4
167	1	0	3	0	3	1	3	11	6	6	8	1	7	7	16	14	5	4	2	0	1	2	1	1
168	4	7	1	0	4	2	3	3	3	5	14	4	1	2	12	1	2	4	1	2	2	3	0	0
169	2	4	1	3	2	2	2	6	0	2	4	5	17	11	0	10	7	2	7	0	1	5	3	5
170	3	11	3	6	5	1	9	5	9	12	2	8	13	7	10	7	9	3	5	2	9	0	4	4
171	4	11	1	6	4	3	4	4	9	1	7	5	8	4	2	5	9	8	2	2	10	15	2	5
172	3	2	0	4	6	8	6	5	6	10	2	11	21	25	3	5	12	4	5	3	6	5	9	4
173	1	6	0	9	2	4	7	11	15	3	10	19	20	14	14	11	5	2	11	9	4	2	3	1
174	1	3	5	5	2	4	13	27	21	14	32	32	17	11	9	10	8	13	8	16	15	12	15	18
175	14	13	13	11	16	14	20	14	32	38	47	49	22	26	32	24	34	32	30	32	24	20	25	22
176	11	22	11	8	5	18	12	13	7	6	20	11	7	8	13	10	13	5	2	6	2	3	11	6
177	11	18	10	9	6	13	23	45	24	9	30	29	11	16	11	8	4	11	5	4	20	10	8	12
178	11	7	9	7	4	4	4	4	8	12	9	11	17	21	31	4	10	15	8	3	5	9	7	4
179	6	1	11	5	2	25	13	10	12	5	8	23	16	6	11	5	8	9	8	7.	13	9	3	4
180	4	11	2	3	3	5	5	7	2	0	6	7	27	7	17	6	5.	5	5	9	2	14	1	11
181	6	5	2	0	6	3	1	4	3	9	2	11	21	7	5	3	10	4	23	73	8	5	7	1
182	3	4	2	2	7	4	7	5	1	5	11	3	7	5	7	7	2	10	6	2	6	1	9	2
183	1	8	4	7	7	2	4	7	5	3	4	2	6	2	2	4	8	2	3	4	3	6	1	4
184	9	26	10	0	3	2	4	2	3	8	8	12	14	19	8	1	6	6	5	1	23	9	18	6
185	6	11	20	12	6	12	14	14	28	28	31	75	40	68	86	63	21	4	7	13	7	6	9	8
186	3	11	4	10	3	36	41	63	70	37	35	20	26	42	11	11	16	11	7	16	16	11	2	6
187	4	3	13	2	9	9	8	2	26	31	20	18	45	41	10	12	14	6	3	10	1	16	3	4
188	2	16	5	12	4	28	28	52	39	43	53	31	18	14	13	14	9	2	5	13	3	7	2	5
189	0	0	0	0	0	0	0	0	5	9	-	10	1	0	5	4	4	10	3	5	5	6	6	4
190	4	1	11	1	3	1	6	7	2	0	4	2	5	4	3	2		8	8	5	6	5	2	4
191	5	0	3	8	1	3	1	3	3	3	8	11	11	7	7	1	5	21	14	14	3	4	6	5
192	6	1	6	4	2	5	2	1	7	5	6	15	7	17	9	8	15	6	8	21	3	7	8	8
193	10	21	4	5	3	6	3	2	8	11	8	15	4		4	2	17	5	13	3	4	4	7	9
194	10	18	6	11	3	7	5	8	9	13	4	3	16	7	8	5	7	8	17	11	2	8	3	3
195	2	17	5	6	4	3	4	9	4	14	8	21	12	13	4	12	8	13	21	6	15	6	6	16
196	5	6	10	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
197	0	0	0	0	0	0	0	0	0	0	0	0	0	26	51	45	49	43	38	37	43	42	52	57
198	57	48	50	48	51	28	21	23	19	19	16	24	18	17	23	12	18	16	22	14	10	0	1	7
199	8	2	5	6	1	13	4	10	6	2	2	12	7	10	60	12	14	12	8	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0	0	9	7	3	9	7	5	14	6	5	1	3
201	5	7	3	4	6	16	3	4	5	4	6	9	6	0	3	9	14	5	18	3	10	2	3	2
202	2	1	2	1	2	4	2	4	1	6	13	6	3	15	6	9	12	11	5	27	3	3	6	6

Table 3.5.1 (Page 2 of 4)

NRS .FKX Hourly distribution of detections
Day 000102030405060708091011121314151617181920212223 Sum Date

03	3	1	14	4	1	7	3	11	3	6	3	7	0	7	3	1	3	4	3	9	6	2	1	3	105	Jul	22	Saturday
204	1	8	1	0	2	5	5	5	10	4	8	9	0	3	3	6	2	7	11	2	1	2	2	3	100	Jul		Sunday
205	6	3	4	1	2	4	6	4	4	6	8	9	3	9	15	5	20	7	12	10	4	1	4	4	151	Jul	24	Monday
206	18	1	4	5	2	7	5	4	3	6	4	10	12	10	7	15	8	3	15	3	6	4	8	1	161	Jul	25	Tuesday
207	5	0	0	0	0	0	2	1	0	13	11	11	17	1	5	4	12	6	13	4	8	5	2	11	131	Jul	26	Wednesday
208	21	3	1	1	1	9	8	5	1	3	7	4	9	12	9	9	6	5	9	2	4	3	5	5	142	Jul	27	Thuraday
209	13	2	1	3	2	2	2	12	11	17	15	7	6	6	10	12	0	5	5	11	23	2	3	5	175	Jul	28	Friday
210	11	5	1	4	1	9	1	1	8	5	8	4	6	1	3	2	8	7	10	1	3	6	8	3	116	Jul	29	Saturday
211	7	2	4	4	0	31	12	11	6	12	14	6	11	3	11	9	5	9	2	1	2	6	1	3	172	1	30	Sunday
212	3	3	1	4	3	4	4	8	27	14	10	7	10	6	7	10	3	3	3	12	2	5	3	6	158	Jul	31	Monday
213	1	15	5	1	0	2	1	5	22	40	52	24	61	49	6	11	4	3	0	8	2	10	8	8	338	Aug	01	Tuesday
214	2	5	1	3	6	16	42	16	59	64	65	32	63	62	11	7	8	6	3	19	1	5	4	2	502	Aug	02	Wednesday
215	5	16	7	6	2	66	55	43	56	56	50	24	59	57	10	4	5	11	1	2	14	5	0	3	557	Aug	03	Thursday
216	0	12	3	3	3	37	15	4	6	5	7	13	5	11	27	2	7	9	17	6	0	3	2	0	197	Aug	04	Friday
217	1	5	1	5	3	11	2	2	1	0	0	0	0	0	0	0	0	0	0	0	1	3	8	6	49	Aug	05	Saturday
218	8	8	3	3	6	7	0	5	6	3	3	3	3	3	3	6	6	2	1	5	2	4	1	6	97	Aug	06	Sunday
219	4	6	1	3	4	14	1	9	9	5	21	9	26	21	0	0	0	0	0	0	0	0	0	0	133	Aug	07	Monday
220	0	0	0	0	0	0	0	15	21	25	34	9	45	32	7		5	2	7	8	0	7	3	2	231	Aug	08	Tuesday
221	4	2	18	3	5	38	42	21	49	21	21	9	16	13	9	12	3	6	3	8	4	9	2	4	322	Aug	09	Wednesday
222	9	1	8	3	1	2	4	9	10	12	11	19	42	11	7	6	2	7	6	12	4	11	3	2	202	Aug	10	Thursday
223	1	2	10	6	8	3	7	2	17	12	17	15	7	9	5	0	5	1	6	19	1	5	6	2	166	Aug	11	Friday
224	1	3	6	0	3	12	1	7	12	3	7	4	9	10	7	8	3	10	3	11	7	1	11	7	146	Aug	12	Saturday
225	3	4	7	7	5	7	9	6	5	3	16	10	3	3	6	7	3	6	6	1	5	4	7	6	139	Aug	13	Sunday
226	7	14	7	3	11	6	0	2	2	0	2	7	11	6	10	7	3	7	4	1	4	8	5	6	133	Aug	14	Monday
227	2	20	7	7	2	5	3	2	7	5	13	10	20	10	8	3	6	2	1	8	9	11	1	2	164	Aug	15	Tuesday
228	5	4	9	3	7	9	8	4	4	8	28	25	17	9	11	14	18	7	5	14	2	15	7	18	251	Aug	16	We dnesday
229	15	14	7	5	9	11	4	5	9	8	12	18	16	9	13	21	7	10	9	5	5	13	6	16	247	Aug	17	Thuxscay
230	9	10	18	10	9	5	3	6	6	3	6	16	12	28	10	2	4	1	7	14	11	5	1	10	206	Aug	18	Friday
231	6	6	5	6	8	13	3	6	3	0	3	3	2	3	4	6	1	13	6	3	8	10	9	6	133	Aug	19	Saturday
232	0	7	3	11	4	3	4	3	2	11	12	0	5	4	5	3	1	1	6	12	2	3	2	2	106	Aug	20	Sunday
233	0	6	28	2	7	2	1	11	2	8	13	1	11	2	3	7	16	5	4	3	15	1	2	2	152	Aug	21	Monday
234	8	16	12	2	9	14	3	3	5	7	6	6	24	17	16	12	10	10	3	8	6	7	7	5	216	Aug	22	Tuesday
235	3	3	3	0	11	9	6	21	20	4	8	7	16	8	6	6	10	5	5	9	4	9	2	7	182	Aug	23	Wednesday
236	2	19	10	2	7	9	8	4	5	1	5	10	16	10	9	9	8	7	4	4	3	4	1	2	159	Aug	24	Thursday
237	2	10	4	2	7	2	1	3	4	6	5	12	8	6	7	14	4	5	8	4	5	3	11	0	133	Aug	25	Friday
238	10	5	9	3	4	7	3	5	3	2	2	4	8	3	5	7	4	13	1	6	4	6	6	6	126	Aug	26	Saturday
239	8	7	8	8	11	7	7	2	8	10	7	6	1	2	1	8	3	7	9	7	1	1	3	3	135	Aug	27	Sunday
240	7	14	2	6	6	3	1	4	2	4	9	10	7	7	5	12	6	4	4	9	4	2	15	3	146	Aug	28	Monday
241	8	4	13	2	4	3	7	0	6	7	10	8	9	13	18	13	4	7	3	11	2	8	8	5	173	Aug	29	Tuesday
242	2	2	4	7	7	11	6	4	8	11	10	6	13	17	7	9	7	11	2	12	8	12	4	7	187	Aug	30	Wednesday
243	5	1	2	8	4	6	1	3	11	5	7	9	10	19	7	12	1	14	5	5	5	4	3	7	154	Aug	31	Thursday
244	7	13	4	9	1	12	2	4	4	3	7	6	9	11.	8	0	10	5	4	14	5	6	4	11	159	Sep	01	Friday
245	13	5	8	14	2	7	3	9	7	5	9	1	5	3	2	3	7	6	3	13	17	12	11	29	194	Sep	02	Saturday
246	5	18	8	8	10	27	10	3	5	4	1	8	4	3	3	0	4	1	11	1	2	8	6	4	154	Sep	03	Sunday
247	7	19	6	3	10	4	6	0	3	1	6	12	9	3	10	9	9	2		9	3	1	1	1	137	Sep	04	Monday
248	10	15	6	2	4	6	2	1	7	11	12	13	18	14	17	1	8	7	3	19	7	18	2	4	207	Sep	05	Tuesday
249	4	5	6	3	5	5	9	9	7	4	7	10	8	12	2	2	4	5	7	9	15	13	8	29	188	Sep	06	Wednesday
250	30	27	13	11	4	9	7	10	13	6	10	16	18	16	14	4	14	9	5	12	3	4	5	5	265	sep	07	Thursday
251	8	20	12	8	14	5	3	1	14	10	17	3	13	10	7	9	10	3	8	24	8	8	3	4	222	Sep	08	Friday
252	5	13	7	2	3	17	4	1	8	11	2	5	12	17	4	9	2	8	6	3	3	3	10	4	159	Sep	09	Saturday
253	9	11	12	8	6	15	13	9	11	11	11	7	8	6	9	6	3	8	4	4	5	6	6	7	195	sep	10	Sunday
254	11	11	6	6	10	4	1	2	8	3	7	9	15	7	7	1	10	6	4	5	3	7	16	15	174	Sep	11	Monday
255	8	9	27	13	6	14	6	6	2	4	7	6	7	15	8	2	15	2	3	4	4	13	8	4	193	Sep	12	Tuesday
256	7	5	5	1	7	7	1	0	18	11	13	23	17	16	15	9	9	7	13	3	8	11	1	3	210	Sep	13	Wednesday
257	13	16	10	7	10	11.	8	3	7	19	16	29	17	12	12	7	9	9	5	10	4	5	4	3	246	Sep	14	Thursday
258	6	17	4	0	6	6	8	14	11	10	17	13	19	17	7	6	15	1	5	19	0	10	2	1	214	Sep	15	Friday

Table 3.5.1 (Page 3 of 4)

Table 3.5.1. (Page 4 of 4) Daily and hourly distribution of NORESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

	12	161	14	19	32	19	16	25	16	15	17	22	22	14		14				11	15	19			7	Apr 01	
92	11	11	10	18	17	10	2	7	3	11	17	11	8	9	7	7	12	17	21	22	12			14	70	2	
93	7	11	15	23	13	15	15	15	21	7	20	27	21	18	14	18	10	21	13	16	18		19	25	389	3	
94	14	61	13	21	19	12	14	20	25	21	5	16	11	19	18	9	17	25	18	34	52	65	84	79	27	4	
95	78	84	94		4	81	54	41	16	14	22	32	43	30		26	21	12	11	10	14	20	37	23	986	05	Fedneaday
9	28	18	27	1	13	15	17	28	31	21	25	21	28	23	23	21	18	17	13	25	20	18	15	21	03	06	Thuxsday
	30	46	45	58	32	20	24	21	31	24	14	40	17	15	12	16	12	21	8	17	10	12	49	47	621	7	Friday
98	64	8910	04		15	81		41	41	31	48	48	51	43	28	21	30	13	21		4		27	24	1104	pr 08	-
99	34	365	50	64	65	53	40	17	21	34	33	44	41	4	28	16	33	0	14	13	14	11	19	30	754	09	
00	21	30	25	33	26		17	11	17	11	19	33		28		13	23	18			10			25	48.	0	
101	14	7	8	5	11	16	22	11	17	27	33	19	19	26	22	33	11	5	15	12	19	16	7	17	392	11	
102	5	3	3	3	13	21	13	26	37		13	31	32	19	15	19	20	14	19	13	17	14	17	12	386	12	Wednesday
	13	1.6	41	60	33	13	15	19	13	12	20	20	23	29	14	26	12	23	16	11			23	27	486	3	
04	26	143	30	37	39	24	14	14	16	10	20	11	25	12	11	14	19	8	14	8	12	16	30	39	63	14	
105	50	54	61	48	24	14	20	5	30	20	16	13	10	17	12	13	19	16	15	16	3	26	58	63	623	15	Saturday
06	64	77	89	92	61	31	20	19	9	23		2	15	28	10	14	14	15	17	11	14	29		26	11.	16	
	9	15	9	22			15	16	18	22	12			26		11	26	19		13		15	31	29	384	7	ay
	12	7	13	18	17	29	12	21	18	25	14	18	24	11	13	15	25	9	5	17	14	22	19	20	398	18	
109	15	17	11	15	31	14	14	10	25	36	25	20	23	16	16	27	20	24	20	22	19	10	19	23	47	19	
	12	10	6	5	5	8	25	17	17	10		1	16	28	14	20	30	13	19	15	17	15	21	22	0	0	Thursday
	54	58	51	40	32	38	37	35	28	21	30	37	28	34	26	20	16	32	34	15	25		23	26	47		
	16	91	15	12	18	11	21	20	19	2	13	21	19	8	1	20	12	11	30	18	13	17	16	12	387	Apr 22	
	7	31	11	22	24	40	33	20	29	19	19		16	23	16	7	13	24	13	14	24	16	13	19	430	3	
	16	161					15	14	20		12	18	26			18	11		17		11	19	12	32	372	Apr 24	
	12	2	10	8		15	18	27	19	18	19	2	2	19	23	32	25	18	8	21	23		18	31	431	pr 25	
	11	19	2	7	9	12	30	4	25	2	19	18	2	16	17	28	13	21	21	13	9	14	25	29	430	6	day
	31	43	47	45	40	26	14	22	28	26	1	28	34	18	15	29	23	28	32	18	16	31	41	56	709		da
	83		3	90	98	71	57	48	26	28	31	41	27	22	40	30	22	34	13	17	16	14	21	36	106	28	
	45	8	87	94	8	64	46	26	26	27	16	26	28	13	38	20	15	15	15	12	14	15	22	15	4	9	,
	22	46	47	53	71	58	48	31	17	9.	12	27	31	22	22	22	19	12	11		16	30	20	13	66	0	
	14	18	40	32	3	35	22		20	17	15	25	20	14	18	24	20	10	21	11	20	10	26	22	49)	
	11	12	15	2	22	15	27	24	22	12	19	1	19	26	15		20	12	14	14	27	11	23	- 19	446	y	Y
	10	5	20	15		13	16	13		16	18	39	2	17	21	34	23	20	15	14		14	28	18	41		-
24	20	18	10	6		11	11	13	16	26	30		11	11	21	36	20	17	35	12	8	21	30	18	437	May 04	day
25	6		1	11	37	32	12	20	2	27	30	33	34	27	21	20	23	24	18	21	13		28	31	523	I	
	27	7	2	22	10		17	12		12	11	27		12	11	19		6	14	20		14	14	23	353	May 06	rda
	6	13	30	5		25	10	12	13	18	10		14	19	14	12	7	13	26	12	20		21	22	361	May 07	
28	13	4	9	21	12	23	10	13	11	18	17	11	21	16	24	16	23	1.7	33	14	21		21	25	410	ay	
	7	17	11	6	13	17	22	12	15	12	27	16	13		19	19	23	18	15	14			15	28	396	ay 09	近
	39	20	31	49	16	11	12	22	9	16	23	11	27	18	20	23	17	19	24	13	14	15	39	62	550	10	-
	48	73	8	88	58	35	16	14	10	8	15	25	12	18	21	20		14	13	15	10		28	20	7	May 11	day
32	20	16	35	50	58	24	10	21	30	26	39	27	2	18	35	28	25	10	25	19	22	19	14	35	628	y 12	
	13		21	17	16	12	24	16	17	42	28	31	13	11	11	19	11	8	19	12	13		17	30	428	ay 13	rda
	11	1.2	20	14	3		11	19	14	19	13	1	24	7	18	18	11	9	9	21	4	11	32	22		May 14	
	19	11	18	5	1	9	16	7	23	16	1	26	30	24		19	1	9	23	16	31	12	18	12			
,	13	23	8	13	28	13	16	20	23	24	19	20	23	32	15	30	15	27	15	11	35	41	45	33	542	ay 16	day
	22	20	36	6	24	20	18	14		30	21	22	23	19	16	18	21	13	16	18	10	21	13	16	446	May 17	day
	23	9	6	7	18	16	16	18	6	18	22	3	18	14	23	10	10	16	12		11		22	16	59	-	day
139	4	11	10	11	13	9	23	13	20	23	3	2	20	22	16	22	18	14	28	16	16	15	34	25	41	ay	day
140	16	14	27	22	15	8	8	20	24	30	17	28	34	39	19	19	17	25	31	11	20	16	22	24	506	ay 20	+1ay
41	21	13	9	28	9	19	17	19	17	17	12	15	32	22	30	9	16	26	16	18	14	24	21	18	442	Hay	day
142	5	31	14	21	22	8	14	20	24	26	37	42	36	22	23	20	30	29	19	11	18	12	11	21	4	May	onday
14	8	9	16	16	6	8	17	31	31	28	29	19	38	30	15	40	26	23	35	10	12	18	16	21	502	may 23	tuesday
144	8	19	13	10	15	11	31	36	32	31	32	32	42	33	28	29	15	18	18	19	21	14	15	16	538	May 24	dnesday
145	4	26	18	7	12	19	19	28	19	32	23	6	30	24	21	21	13	21	17	17	7	9	13	12	418	May	ursday
46	3	81	16	15	6	3	33	21	37	9	31	49	51	29	21	27	12	22	18	17	13	9	15	19	52	May 26	ay

Table 3.5.2 (Page 1 of 4)

Table 3.5.2 (Page 2 of 4)

Table 3.5.2 (Page 3 of 4)

Day	00	01	02	03	04	05	06	07	708	809	10	011	12	1314	1415	161	171	181	1920	2122	23		ate	
259	10	14	15	22	19	13	12	17	728	817	721	2124	18	2118	1821	171	171	181	1312	2221	21	431	Sep 16	Saturday
260	6	14	11	14	18	10	4	14	412	224		814	25	1720	2014	171	161	171	1225	1515	26	368	Sep 17	Sunday
261	6	6	11	13	22	28	41	48	41	127	743	3315	28	4617	1731	512	272	211	1324	1116	18	624	Sep 18	Monday
262	11	20	22	8	6	20	18	28	29	912	224	24	22	1518	1820	181	121	102	2316	1423	20	433	Sep 19	Tuesday
263	15	17	10	22	16	13	27	34	419	928	828	2825	27	4220	2033	182	232	213	3036	2150	48	623	Sep 20	Wednosday
264	40	46	47	45	39	40	41	47	750	024	452	5247	24	4729	2937	232	212	252	2425	520	16	814	Sep 21	Thursday
265	9	23	14	15	12	23	29	16	620	024	445	45	33	3024	2421	251	182	201	1820	1024	18	528	Sep 22	Friday
266	11	7	19	15	20	7	8	16	623	38	98	28	21	4018	1825	251	111	131	719	819	7	393	Sep 23	irday
267	11	6	10	5	3	3	8	20	26	623	18	88	11	1313	13	231	122	201	911	66	20	303	Sep 24	Sunday
268	19	6	12	9	14	19	17	15	17	718	823	2315	26	2021	215	291	182	211	818	168	12	396	Sep 25	Monday
269	25	18	12	-	,	16	27	20	30	- 37		70	15	2321	2129	452	292	231	1725	1312	11	469	sep 26	Tuesday
270	21	19	32	8	30	20	34	42	48	841	128	2846	40	3330	3021	472	262	2411	135	4038	28	742	Sep 27	Wodnesday
271	40	38	23	27	42	30	34	56	630	023	13	324	35	3946	4633	384	487	754	4939	2926	36	873	Sep 28	Thursday
272	37	25	31	23	25	37	32	48	322	235	541	4132	48	2622	2231	272	252	222	2726	2521	33	721	Sep 29	Friday
273	27	20	16	19	22	18	28	20	10	026	631	3126	36	3433	3341	293	323	383	3547	3945	51	723	Sep 30	Saturday
ARC	00		02	03	04	05	06	07	708	809	9	011	12	1314	1415	161	171	1819	920	2122	23			
Sum										4021		4850		81	3760			3122	22284	403				
	2752		283		392		835		4091		4347		403	3536		490	352	24	2959	3464		86374	Total	sum
178	15			18	19	18	22		23	323		427		2320	2021	20	192	201	817	16	22	485	Total	average
120	15			16	17	17			526	624		730		2521	2123	212	212	201	817	1620	23	502	Averag	e workdays
58	16		23	22	2					19		821	20	1917	1718	171	161	181	715	1718	20	446		weekends

Table 3.5.2. (Page 4 of 4) Daily and hourly distribution of ARCESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

FIN .FXX Hourly distribution of detections

Table 3.5.3 (Page 1 of 4)

FIN .FKX Hourly distribution of detections

Day

	2	5	4	13	5	3	5	4						16	14	5		0	5	7	11	26	9	3	0	May	27	day
48	3	12	14	8	7	7	12	2	2	3	6	5	8	5	6	3	9	8	13	7	17	19	14	9	199	May	28	Sunday
149	5	12	14	6	5	11	9	9	4	5	8	11	5	17	6	8	12	5	-	6	12	5	10	7	200	ay	29	y
150	9	15	15	7	9	7	11	8	7	10	19	19	18	9	12	6	6	15	8	7	14	13	9	5	258	ay	30	da
51	17	13	14	10	3	5	12	19	14	19	17	25	13	16	11		13	5	5	10	8	8	9	13	284	lay	31	sd
52	11	12	10	5	3		7	6	17	17	19	16	5	4	9	9	2	9	8	12	14	8	10	11	225	an	01	day
3	18	17	9	4	2		5	15	10	17	11	18			13	7	13	18	8	12	5		10	5	242		02	,
54	2	10	16	6	3	8		7	9	15	. 6	6			6	5			6	2	6	4	9	2	156	un	03	rday
55	8	2	10	8	4					9			5			1			11	9	10	12	8	5	157	Un	04	day
156	12	14	4		6							6	4			8	13	4	2	10	9	12	16	11	191	un	05	ay
157	12	16	13		9	5	4	6	4	7	3	18	9	17		9	9	11	8	11	9	4	8	10	212	un	06	day
8	8	9	8	5	4			5	13	13	16	23	9	5	4	4	4	6	10	8	16	15	14	17	227	Jun	07	Wednesda
159		16	13		3	5	9	5	7	11	13	14	15	13	13	2	16	7	8	5	10	9	8	22	238	un	08	sclay
0	16	12	1		6	14	16	8	10	12	15	18	12	2	10		8	13	6	6	4	4	1	12	226		09	
161	4	10	12	4	7	10	10	9	2	6	7	1	0		0	0		0	0	0	0	0	0	0	82	un	10	urday
62		0			0	0						0		5	2	10		8	13	8	16	8	14	5	100	un	11	day
163	9				5			2	7	7	4	22	6	18	10	2	8	21	10	1	13	14	12	10	205		12	y
164	11			2	9	4		13	15	17	11	15	11	9	7	7	25	5	6	9	15	8	13	10	240		13	day
65	9	9	9	2	13	8		4	21	11	14	25	11		17	15	10	17	4	9	7	2	10	8	245	un	14	Wednesda
166	24	12	8	9	6	O		17	4	13	9	8	9	4	12	13	5	4	5	10	5	10	10	13	21	un	15	Thursday
167	16	11	12	6	6	7		11	13					18	10	15	21	14	9	7	8	13	7	8	238		16	ay
168	8	4	17	7	2	6		13	8	5	3	4						2	4	7	14	18	17	13	182		17	urday
169	5	12	5	1	6	10	4	8	15	13	16	8	9	10	4	14	6	16	13	9	6	10	8	10	218		18	unday
170	18	12	11		3	3				13	10	15	11	8	10	10	12	5	14	10	10	10	7	5	226		19	Mondiay
1	7	16	10	7	7		7		14	8	19	19	11	10	8	14	12	11	10	8	13	13	5	10	25		0	Tuegday
172	22	20	14	6	6	5	8	4	13	18	18	19	12	14	16	11	9	9	5	5	12	9	13	12	280	nn	21	sday
173	11	14	13	10	5	4	6	12	21	15	20	20		4					9	13	8	3	2	10	226		22	sclay
174	2				9			4	11			15							10				8		127		23	dey
5				3	0	5	7	13	6			3				3		5	4	1	2	3	0		88		4	aturday
6		6	2	0	4	14	7	5	11	3	0	6	2	2	2	2	4	11	9	19	4	15	14	7	151		5	
177	5	13	6	6	7	7	5	11	11	11	15	13	7	8	8	7	6	7	9	6	12	9	10	11	210		26	Monday
178	11		13	8	4	3	4	12			27	19	5	15	4	10	B	15	11	6	7	9	14	2	22		27	Tuesday
179	10	6	12	11	3	11	6	6	6	14	13	24	17	14	11	4	2	4	6			5	7	8	214		28	adnesday
180	9	20		1	7	3	5	8	13	7	2	18	13	9	5	14			3	3	9	5	11	12	194		9	Thursday
181	0	12	8	2	5	3	10	14		12	10	19	8		5	4			11	8	9	6	7	0	178		30	Friday
2	4	13			9	14	14	13			10					3			4	1	2		9		15		01	rcay
183	8	4	1	1	5		3			6	7	6	4	2	3	1.	5		12	11	7	4	10	6	122		02	Sunday
184	10	9	15	4	3		3	8		11	10	16	20	6	2	8	6	8	6	6	15	9	19	7	214	1	03	
185	13	10		10	3	0	2	2	6	11	10	8	8	7	12	8	4		7	3	5	6	11	4	162		04	Tuesday
186	6				2				16		12	13	19	6		5	12		8	5	5	7	6	7	181		05	wednesday
187	6				4	1	4		12	6	12	18	22	11	6	0	5		12	11	11	12	4	14	197		06	Thuxsday
18	4	5		9	8	7	10			17	13	7			9		3		12			7	7	4	173		7	Friday
189	5	6	3	7	4	5	16	9		10	7	13	5	1	2	5	12		2	7	4	3	1	3	141		08	Saturday
190	7	4	9	2	7				2		3	4	5	4	2	5	2	8		17	15	9	8	14	153	1	09	day
1	5	5	11	6	6	2	6	3	13	9	17	14	9	14	10	12		15	9	14	9	8	7	12	222		10	Conday
192	9	11	7	10	7	7	4	6	7	24	9	18	21	14		13	6	9	6	7	16	5	7	11	242		11	day
193	4	13	7	3	4	4	15	12	12	14	19	15	13	12	8	15	14	7	13	8	11	13	21	14	27	1	12	-odnesday
194	18	14	11	8	11	11	2	4		11	9	20	13	5	10	8	10	12	7	9	17	7	10	14	247	ul	13	Thursday
195	12	9		10	4	3	8	3	4	11	10	14		2					10			11	9	7	184	1	14	riday
196	7	11			0	0	0	0			0		0	0	0	0	0		0	0	0	0		-	26		15	gaturday
197	0	0	0	0	4	10	6	8	8	5	7	6	11	2	4	3	7		10	13	17	12	14	11	163	1	16	Sunday
198	17	14	7	3	2	4	4	4	9	5	11	18	15	6	6	7	8	8	5	10	14	8	11	15	211	1	17	Monday
199	13	4	19	9	3	4	4	4	9	8	9	16	13	11	11	12	2	10	3	2	6	10	4	17	3	ul	18	Tuesday
200	10	18	1	3	3	2	3	7	7	1.1	17	12	16	16	3	10	10	1	11	3	10	5	20	9	208	11	19	Wednesday
201	3	11	4	7	6	13	3	10	7	11	11.	17	9	10	23	15	11	9	12		13	-		7	233	1		chursday
202	13	6	6	20	16	8	7	14	11	7	9	21	16	12	2	5	4	5	0	3	6	7	13	5	216	ul		Friday

Table 3.5.3 (Page 2 of 4)

FIN . FKX Hourly distribution of detections
Day

203	8	0	7	5	6	3	2	11	3	4	1	4	3	5	0	2	7	4	1	6	1	2	2	13	100	1	22	Saturday
204	30	4	8	2	2	5	13	10	4	5	7	. 6	2	2	1	1	6	12	12	15	10	10	15	2	184	ul	23	Sunday
205	9	7	12	4	4	9	3	7	7	7	17	13	9	15	8	0	10	5	11	12	12	10	11	10	212	1	24	Monday
206	12	6	6	7	12	6	11	9	5	16	21	17	9	14	3	14	4	10	9	2	6	8	8	6	221	1	25	Tuesday
207	7	8	7	5	13	8	3	5	13	21	16	20	24	25	25	13	18	19	5	6	9	8	6	15	299	u1	26	Wednesda
208	11	18	15	4	26	19	17	14	18	11	15	7	15	9	12	33	14	14	12	12	9	8	18	12	343	1	27	Thursday
209	7	11	5	13	6	3	11	22	16	11	20	15	6	10	10	9	4	3	10	5	8	3	5	4	217	1	28	Friday
210	5	5	6	3	3	0	4	6	8	6	2	4	2	5	7	4	4	3	13	1	8	0	11	0	110	Jul	29	Saturd
211	3	2	2	3	2	21	8	5	10	5	9	11	10	7	5	16	11	6	11	9	8	10	13	5	192	Jul	30	Sunday
212	8	12	4	10	6	5	4	5	16	10	8	11	10	9	10	11	10	13	15	5	12	8	13	10	225	Jul	31	Monday
213	13	14	7	4	5	2	4	6	3	10	9	8	12	10	6	10	8	17	10	8	4	13	16	9	208	ag	01	Tuesday
214	9	15	2	10	10	5	7	15	17	16	26	7	16	9	11	8	8	6	9	15	11	10	14	11	267	g	02	Wednesday
215	10	12	13	11	4	0	2	6	9	12	7	16	9	6	9	7	3	4	13	8	11	8	8	8	1.96	ug	03	Thursday
216	9	8	11	7	3	2	9	6	12	13	15	18	15	13	9	6	3	5	6	7	5	11	5	6	204	g	04	Friday
217	8	5	0	1	10	0	9	10	4	4	3	8	11	2	6	3	9	4	5	4	9	3	6	4	128	g	05	aturday
218	5	10	2	0	5	2	2	4	2	5	8	7	8	3	15	3	5	4	11	15	9	6	11	14	156	g	06	Sunday
219	12	4	7	7	6	15	19	7	9	18	17	14	6	21	15	21	15	7	5	7	12	11	15	10	280	Aug	07	Monday
220	14	19	8	6	4	6	4	13	6	11	14	7	10	19	26	9	12	11	6	9	11	3	10	5	243	g	08	Tuesday
221	11	11	11	4	7	3	2	3	14	33	21	13	15	23	7	9	1	4	3	8	4.	8	10	15	240	g	09	Wednesclay
222	9	11	12	7.	1	1	8	11.	11	11	9	29	22	6	7	7	7	7	8	6	15	12	11	10	238	g	10	Thursday
223	7	6	8	10	7	3	3	2	5	16	7	10	9	10	12	7	6	8	10	4	8	2	8	1	169	ug	11	Friday
224	6	6	6	3	3	3	2	6	5	0	1	2	5	11	15	8	4	5	10	5	4	3	14	3	130	g	12	rday
225	1	5	5	3	6	18	7	4	4	6	7	2	11	8	1	4	0	10	18	9	16	11	20	6	182	g	13	Sunday
226	3	8	6	4	9	4	0	6	18	7	9	29	30	10	17	13	11	7	13	5	0	5	7	4	231	g	14	Monday
227	3	14	5	2	6	9	9	7	8	12	21	14	8	9	7	5	3	12	10	6	9	4	11	4	198	g	15	Tuesday
228	3	11	7	3	3	6	7	8	10	22	34	30	20	17	18	20	23	13	16	3	9	7	7	18	315	gr	16	Wednesday
229	14	16	9	2	5	19	9	10	10	11	13	11	12	9	2	12	8	11	12	7	14	5	8	7	236	ug	17	Thursciay
230	7	5	25	3	5	4	4	12	12	12	17	14	2	6	3	4	5	3	6	4	4	3	8	13	181	g	18	Friday
231	5	10	4	7	12	5	8	5	3	6	3	3	3	6	3	1	3	2	10	0	9	9	9	1	127	ug	19	aturday
232	3	8	3	5	5	6	4	3	4	5	3	5	6	3	0	3	5	2	13	8	4	7	12	5	122	ug	20	Sunday
233	0	7	10	5	5	2	2	5	8	17	6	5	13	5	5	10	13	3	11	1	6	9	9	5	162	g	21	Monday
234	4	3	4	3	5	5	4	5	10	10	14	8	9	6	9	8	5	8	3	6	4	7	16	4	160	ug	22	Tueaday
235	4	2	7	6	3	8	10	34	18	19	13	18	11	11	5	12	8	5	3	2	10	1	4	6	220	1	23	Wednesday
236	7	6	19	6	3	4	8	7	17	2	10	23	14	5	12	12	9	3	2	9	4	9	4	4	199	g	24	Thuxsday
237	9	4	3	5	2	1	3	3	5	11	8	18	10	4	6	6	7	9	4	2	4	3	6	2	135	ug	25	Friday
238	4	7	7	6	4	5	3	6	3	. 2	6	7	5	8	3	6	6	3	1	4	4	0	6	2	108		26	Saturday
239	6	2	5	5	2	4	2	2	4	8	3	4	4	5	3	2	4	8	6	5	9	5	5	3	106	Aug	27	Sunday
240	4	3	6	5	2	1	2	6	7	6	13	13	7	6	8	10	9	5	0	4	3	3	11	3	137	ug	28	Monday
241	5	5	5	1	2	3	1	4	11	13	8	17	14	7	4	11	7	8	6	10	0	4	8	6	160	Aug	29	Tuesday
242	4	7	5	5	8	4	9	5	17	18	12	14	12	5	5	7	7	12	2	5	4	13	6	7	193	g	30	Wedresday
243	5	3	3	4	2	4	5	0	0	0	0	12	16	7	8	8	7	11	5	5	10	7	13	8	143	g	31	Thursday
244	6	9	7	3	7	6	6	6	14	16	17	15	9	6	3	8	6	3	8	9	8	10	8	3	193	sep	01	Friday
245	4	2	5	8	0	6	4	5	1	5	4	5	3	4	4	5	9	1	2	1	6	1	0	3	88	号	02	Saturday
246	3	6	1	2	3	1	2	3	4		4	2	2	2	6	2	3	7	11	2	4	6	8	7	94		03	Sunday
247	4	6	8	5	8	6	5	4	9	6	12	20	17	5	10	9	9	5	7	7	11	3	9	9	194	sep	04	Monday
248	10	6	15	6	3	5	8	10	5	12	15	13	17	13	12	8	10	11	7	12	10	9	11	3	231	Sep	05	Tuesday
249	9	8	8	0	5	7	4	5	6	10	21	8	3	7	9	4	5	4	8	-		7	9	7	166	Sep	06	Wednesday
250	6	9	7	4	3	8	9	8	12	14	27	7	15	17	13	4	13	13	7	10	4	12	15	9	246	Sep	07	Thurscday
251	9	11	12	7	16	5	9	9	10	8	15	20	9	4	6	12	11	14	14	12	11	10	7	9	250	Sep	08	Exiday
252	13	8	8	8	9	9	8	15	11	7	20	9	16	18	14	11	15	13	23	14	11	10	14	17	301	sep	09	Saturday
253	10	9	9	11	10	10	10	5		4	8	4	7	9	3	7	7	13	12	9	8	11	14	6	205	Sep	10	Sunday
254	13	15	6	2	6	6	0	0	0			3	7	7	4	13	7	6	4	7	6	9	12	5	138	Sep	11	Monday
255	2	2	5	3	4	2	2	7	7	4	8	12	13	11	6	4	9	4	7	2	9	6	5	1	135	sep	12	Tuesday
256	9	7	7	4	2	3	6	2	11	17	8	14	15	7	4	8	4	7	7	1	5	10	6	4	168	sep	13	Wedinesday
257	7	9	3	1	7	3	3	7	5	11	18	12	14	5	15		9	5	3	4	7	10	4	4	173	Sep	14	Thursday
258	2	10	2	6	3	1	6	7	10	7	9	13	7	2	4	3	4	2	5	3	4	9	9	8	136	sep	15	Friday

Sum Date

Table 3.5.3 (Page 3 of 4)

FIN .FKX Hourly diatribution of detections

259	6	12	8	6	9	8	4	7	3	3	6	5	3	1	4	6	2	4	4	11	2	8	3	0	125	Sep	16	S
260	3	4	6	8	6	5	4	6	7	4	5	7	4	5	2	1	7	11	2	9	12	6	14	5	143	Sep	17	Sunday
261	8	9	7	8	3	0	2	12	7	9	15	10	8	9	5	3	3	11	5	2	13	7	3	7	166	Sep	18	Monday
262	8	10	11	4	3	5	2	6	12	9	9	22	10	9	4	6	6	14	13	4	10	7	13	8	205	Sep	19	Tuesday
263	10	7	3	6	4	4	5	3	9	21	15	22	24	12	7	4	7	9	4	4	6	9	9	3	207	Sep	20	Wednesday
264	9	1	6	4	3	6	0	8	10	19	13	14	16	2	4	4	6	4	7	5	10	8	10	5	174	Sep	21	Thursday
265	6	4	8	8	4	8	2	14	11	9	8	16	31	4	4	14	13	7	5	4	1	8	5	4	198	Sep	22	Friciay
266	6	3	4	7	5	10	1	3	2	3	1	2	5	2	1	3	5	6	0	4	3	6	9	3	94	Sep	23	Saturday
267	1	6	1	3	2	4	3	1	1	9	9	7	1	5	1	3	2	2	7	6	10	2	9	2	97	Sep	24	Sunday
268	6	8	3	7	1	4	2	1	2	6	8	9	20	10	5	5	2	4	3	8	4	4	4	8	134	Sep	25	Monday
269	3	2	6	2	5	5	2	8	2	6	16	9	10	13	2	7	3	5	5	2	6	4	7	5	135	Sep	26	Iuesday
270	6	3	7	4	1	4	3	4	3	10	7	11	17	7	5	3	4	7	3	5	4	7	4	14	143	Sep	27	Wedinesday
271	5	5	5	3	4	9	8	5	11	15	7	5	18	5	9	4	4	0	4	3	9	4	2	7	151	Sep	28	Thursday
272	1	2	4	2	5	8	7	4	4	8	12	13	14	2	7	2	4	1	1	1	0	1	3	12	118	Sep	29	Friday
273	1	3	1	3	2	6	1	3	8	5	11	3	3	9	7	8	3	4	7	1	3	2	1.	8	103	sep	30	Saturday

FIN $\begin{array}{lllllllllllllllllllllllllllll}00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}$
$\begin{array}{llllllllllllll}\text { Sum } & 1902 & 1392 & 1339 & 1532 & 2089 & 2559 & 1844 & 1601 & 1617 & 1503 & 1622 & 1629\end{array}$
$\begin{array}{lllllllllllllllll}1743 & 1760 & 1354 & 1362 & 1847 & 2175 & 2099 & 1579 & 1506 & 1625 & 1719 & 1843 & 41241 & \text { Total sum }\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll}283 & 10 & 10 & 10 & 8 & 7 & 7 & 7 & 8 & 10 & 11 & 12 & 14 & 11 & 10 & 9 & 9 & 8 & 9 & 9 & 8 & 9 & 9 & 10 & 9 & 225 & T o t a l & \text { average }\end{array}$

60

Table 3.5.3. (Page 4 of 4) Daily and hourly distribution of FINESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

GER . FRX Hourly distribution of detections

91	3	1	2	2	4	4		3	8	4	5		6			2	5	0	11	6	12	10	12	5	122	Apr		day
92	6	6	8	4	1	2	6	0	1	0	9	3	1	1	1	1	0	0	8	0	2	3	2	4	69	Apr		Sunday
93	4	1	4	5	2	1	2	7	12	8	10	12	11	14	11	9	9	1	5	2	7	1	6	4	148	Apr	03	Monday
94	3	3	8	5	2	3	3	15	7	25	19	30	8	10	7	9	0	15	3	2	1	5	3	6	192	Apr	04	Tuesday
95	4	0	5	0	5	4	11	11	13	19	25	20	11	8	7	10	6	3	0	6	2	0	6	2	178	Apr	05	Wednesday
96	0	2	1	1	2	7	7	12	21	25	22	18	18	22	8	5	2	3	1	2	3	7	4	4	197	Apr	06	Thursday
97	1	3	2	2	2	5	2	13	11	12	15	36	1	3	4	1	3	2	3	3	7	2	9	12	154	Apr	07	Friday
98	9	8	3	3	6	2	4	2	1	3	14	6	2	2	3	1	5	6	4	2	2	2	6	8	104	Apr	08	Saturday
99	3	3	3	2	6	1	1	2	1	5	12	0	1	1	1	3	5	1	1	2	9	4	8	6	81	Apr	09	Sunday
100	4	5	3	10	3	4	11	6	8	21	24	21	10	11	11	1	5	4	3	9	1	4	2	1	182	Apr	10	Monday
101	3	4	4	1	2	2	7	12	8	18	28	28	38	6	14	13	2	4	5	6	3	8	6	1	223	Apr	11	Tuesday
02	2	2	6	3	5	4	6	14	16	19	35	12	15	11	9	9	2	2	3	1	5	3	0	4	188	Apr	12	Wednesday
103	3	1	8	10	5	5	5	8	5	25	28	30	6	14	3	9	2	2	8	7	4	3	7	5	203	Apr	13	Thuxsday
104	3	1	2	1	1	0	7	9	11	16	11	10	6	5	8	0	3	5	8	1	6	1	8	13	136	Apr	14	Friday
105	6	1	5	1	3	7	2	1	5	4	14	8	9	4	1	5	1	2	1	4	1	6	1	4	96	Apr	15	Saturday
106	1	11	3	6	6	0	6	5	2	6	8	1	2	5	5	8	2	3	4	2	2	3	4	0	95	Apr	16	Sunday
107	3	5	3	8	5	3	0	5	2	0	6	0	2	1	2	7	5	6	12	0	1	5	5	9	95	Apr	17	Monday
108	6	7	5	3	12	3	15	12	13	13	14	14	11	7	8	12	2	1	2	4	3	4	5	8	184	Apr	18	Tuesday
109	3	4	8	1	8	1	2	11	7	13	29	15	12	13	7	2	6	7	4	2	3	2	7	4	171	Apr	19	Wednesday
110	4	1	4	2	1	1	9	12	19	27	20	16	8	17	8	6	1	3	1	2	5	5	6	10	188	Apr	20	Thursday
111	19	10	7	7	7	6	7	14	25	20	16	22	0	4	1	11	2	8	7	1	7	5	2	1	209	Apx	21	Friday
112	9	5	4	5	2	1	0	3	9	B	17	8	1	5	6	3	0	5	4	7	0	4	8	1	115	Apr	22	Saturday
113	4	3	2	9	3	15	10	6	4	12	9	0	4	0	2	0	3	2	3	3	5	4	8	5	116	Apr	23	Sunday
114	9	6	5	3	11	2	9	7	3	14	17	17	14	5	8	11	5	3	1	1	3	0	0	3	157	${ }_{\text {Apx }}$	24	Monday
115	13	2	2	1	5	3	9	6	23	16	34	11	10	9	5	3	8	6	4	6	1	5	2	3	187	Apr	25	Tueaday
116	6	1	3	12	0	2	8	7	18	22	14	34	6	13	21	7	2	3	9	1	4	17	3	2	215	Apr	26	Wednesday
117	2	0	6	2	1	1	9	5	7	21	31	31	18	12	15	1	7	7	1	2	4	0	1	5	189	Apr	27	Thursday
118	4	3	2	10	5	9	9	12	19	19	21	15	10	3	2	5	9	14	12	4	4	5	1	1	198	Apr	28	Friday
119	3	3	7	3	4	4	5	0	7	13	12	8	3	7	13	5	4	3	8	6	2	3	2	2	127	Apr	29	Saturday
120	3	7	4	4	5	4	1	1	0	4	11	6	16	3	6	3	7	1	4	3	2	1	1	6	103	Apr	30	Sunday
121	4	1	4	0	4	1	1	6	4	15	38	15	4	6	2	3	1	5	1	3	3	3	7	6	137	May	01	Monday
122	1	5	4	4	7	7	21	10	17	26	19	22	11	11	5	3	2	17	8	2	5	3	5	10	225	May	02	Tuesday
123	4	5	3	3	4	5	15	10	16	24	32	16	9	9	14	8	3	3	3	4	3	11	6	2	212	May	03	Hednesday
124	8	6	6	3	3	11	8	10	25	13	22	32	21	23	20	13	11	2	4	5	2	4	5	4	261	May	04	Thursday
125	9	3	4	3	13	10	16	13	23	29	11	35	13	13	2	9	9	7	2	12	6	5	5	10	262	May	05	Exiday
126	5	3	16	11	3		3	3	6	3	5	13	1	8	8	3	5	1	1	20	5	3	0	0	133	May	06	Saturday
127	0	1	0	0	3	4	5	2	1	9	8	3	3	4	10	7	1	0	5	0	1	6	7	3	83	May	07	Sunday
128	7	7	4	17	1	8	12	14	11	8	13	32	32	36	21	11	0	6	8	4	0	38	0	0	290	May	08	Monday
129	0	0	0	0	0	0	0	13	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	May	09	Tuesday
130	0	0	0	0	0	0	0	14	21	19	15	32	8	15	12	7	2	1	4	2	3	3	11	7	176	May	10	Hednesday
131	4	3	6	9	5	5	10	6	18	23	20	32	18	25	23	11	7	4	1	5	10	2	7	6	260	May	11	Thursday
132	2	7	8	3	1.	4	5	15	4	16	20	12	5	5	3	9	7	5	7	5	6	4	8	1	162	May	12.	riday
133	6	8	7	16	7	4	5	7	13	15	12	25	4	5	8	7	6	11	7	7	7	4	4	11	206	May	13	Saturday
134	2	4	7	5	8	6	10	2	3	3	11	8	8	6	4	2	0	7	7	0	1	5	8	3	120	May	14	Sunday
135	5	6	1	3	13	8	8	16	14	16	15	20	13	18	14	18	3	6	6	4	12	3	7	3	232	May	15	Monday
136	3	6	0	8	13	7	9	23	25	18	21	15	18	19	18	12	0	7	0	0	0	0	0	0	222	May	16	Tuesday
137	0	0	0	0	0	0	6	21	29	31	41	28	27	12	24	20	7	13	12	21	19	11	8	5	335	May	17	Wednesday
138	10	9	7	7	3	2	16	10	31	29	44	24	26	35	18	25	10	11	6	8	15	0	9	2	357	May	18	Thursday
139	9	6	3	5	12	5	17	16	17	25	16	16	14	23	8	6	9	11	18	7	5	3	6	2	259	May	19	Friday
140	2	7	5	12	2	2	8	3	8	12	19	17	5	4	0	4	4	6	4	5	8	7	5	0	149	May	20	Saturday
141	1	3	2	2	6	3	8	7	5	5	9	17	10	10	6	4	4	8	5	7	5	3	8	2	140	May	21	Sunday
142	5	0	4	10	20	13	8	20	16	25	36	42	21	13	22	18	8	5	3	6	9	5	8	7	324	May	22	Monday
143	2	1	14	15	5	15	6	8	22	32	39	16	26	21	10	11	20	7	5	10	5	4	25	2	321	May	23	Tuesday
144	3	6	9	4	19	17	21	23	32	34	28	31	22	18	25	25	5	6	4	3	17	9	4	3	368	May	24	Wednesday
145	1	4	0	9	7	4	6	3	27	17	16	29	7	7	6	15	3	10	3	0	1	6	9	9	199	May	25	Thursday
146	9	8	18	9	3	5	10	6	20	13	19	17	13	7	6	4	9	7	11	11	2	3	6	9	225	May	26	Friday

Table 3.5.4 (Page 1 of 4)

GER . FKX Hourly distribution of detections

			5			8	18	13		10	15	11		27	15	12			12	5	8	14			209			Saturday
148	3	3	5	6	2	0	10	5	8	13	24	7	3	2	8	2	2	5	3	6	12	8	4	12	153		28	Sunday
149	11	7	8	12	23	15	14	20	25	31	36	22	13	20	15	9	5	7	21	7	10	7	4	8	350	,	29	Monday
150	6	64	5	39	24	14	13	17	29	37	20	16	27	15	14	14	1	10	3	1	3	7	3	8	390	Hay	30	Tuesday
51		7	4	8	6	12	18	21	35	23	31	1.5	20	24	13	21	1.4	26	37	32	0	0	0		373	ay	31	Wednesda
52		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	31	18	2	3	14	13	3	92	Jun	01	Thursday
53		3	0	24	14	28	10	7	17	20	38	19	8	13	16	17	27	13	20	6	2	2	3	4	313	an	02	Friday
54		0	3	11	9	8	8	8	7	13	16	16	11	6	9	5	8	10	3	2	3	4	3	2	174	un	03	saturday
55		3	6	4					3	9	14	3		12		3	2	5	1	2	1	3		0	96	un	04	Sunday
56	3	3	1		1		2	7	12	5	25	7	3	2	4	13	5	2	1	3	12	3	8	7	136	un	05	y
57	11	10	6	2	10	7	10	17	13	39	27	37	13	24	1	10	5	5	1	2	4	5	3	8	270	un	06	Tuesday
8	0	10	3	5	1	3		9	20	18	22	28	15	13	10	13		2		3	8	6	3	11	225	an	07	Wednesda
59		3	2		3	7		19	14	29	20	30		14	15	26	5	9	2	5	8	11	17	8	267	an	08	Thursday
60		2	5	13	8	2	5	6	14	16	27	18	8	12	12	11	9	17	5	5	8	3	5	15	233	Jun	09	day
161		3	10	11	8	5	7		7	9	7					5	3	5	8	8	3	6	2	0	136	un	10	day
62			1	1	1		8	0	4	3	14		9			8	6	1	13	4	9	7	15		132		11	Sunday
63	10	9	7	10	2	2		15	15	18	16	24	15	9	17	13	12	10	10	7	16	15	18	28	302	Jun	12	Monday
164	19	20	16	9	4	4	6	18	12	20	22	30	10	11	18	7	9	5	9	7	1	3	2	3	271	Jun	1	Tuesday
65	4	3	3	1	6	17	9	14	15	29	25	33	18	14	10	5	6	5	6	2	8	4		0	239	un	14	Wednesday
66	16		3		9	2		10	7	17	32	26	5		11		4	2						4	197	an	15	Thursday
67	8		5		2	4	8	8	22	31.	32	13	12	8	12	2	1	2	0	4	4				197	Jun	16	Friday
168	2		9	8		3				5	14	21	12	8	10	3	7	2		1	3	6	2	0	147	un	17	aturday
69			2	1		1	3	7	9	10	5	11	8	11	2	2	13	5		2	9				136	un	18	Sunday
70		6	5	28	3	6	12	13	24	26	24	15	20	20	14	15	0	1	2	3	3	2		3	253	Jun	19	Monday
71	5	10	3	3	8	14	16	20	24	30	31	22	22	19	14	10	10	8	10	2	2	2	8	2	295		20	Tuesday
72	2	7	8	16	5	4	16	26	5	28	36	32	14	8	54	34	16	14		5	6	2	2	7	351	1 n	21	Wednesday
3	6	10	6	7	7	6	5	16	21	31	40	25	33	15	15	4	18	6	4	5	13	3	4	2	302	an	22	Thursday
4	1	7	5	12	1	0	6	9	11	15	28	18	17	11	11	18	8	0		0	3		2	2	191	n	23	
5	6	8	6	4	1	12	10	25		8	6	17	9			10	4	6	5	2	2	5	0	0	166	מ	24	Saturday
76		2	5	7		3	12	5	4	6	3	2	8	5		3	2	11	9	3	3	1	0	1	98	an	25	Sunday
7			1	28	4	4	12	10	18	17	29	19	12	15		11	19	6					2		254		26	Monday
78	3	6	6	14	17	4	6	13	17	16	30	22	21	17	5	13	12	17	3	5	1	9	2	2	256		27	Tuesday
79		6	7	8	5	5	8	7	19	13	31	31	18	13	17	13	10	6	9	2	10		7	9	265		2	day
180		10	5	7	5	6	8	15	1	41	39	15	25	10	17	6	15	6	11		1	3			281	1 n	2	Thursday
81	8	6	11	3	5	7	9	21	17	34	23	11	14	11		16	13			3	5	11		5	250		30	Friday
82		1	4	1	7	7	3		10	13	6	15	3	6	4	1	0	6	3	2	0	7	9	0	116	1		rday
183	2	4	3	3	1	1	1	7	2	3	17	6	1		2	7	0	1	4	3	1	13	4	4	93	1	02	unday
84	13	12	7	1	0	6		14	11	21	27	19	14	9	22	37	33	12	9	13	9		15	1	315	1	0	Manday
185		9	6	6	1	2	9	12	12	27	26	18	12	13	13	15	21	3	8	3	5	3	13	5	243		04	Tuesday
86	5	4	5	7	1	2	2		12	17	30	22	11	8	20	11	10	3	10	5	3	6	1	5	204	1	05	Vednesday
87	3	2	3	3	1	6	3	9	22	13	20	17	17		21	19	11	4	3	4	8	11	8	14	227	11	06	hursday
88	11	12	5	5	6	2	9	19	23	25	33	30					18	8	10	12	18	16	8	7	309	1	07	lay
9		8	6	2	9	6	11	12			10		3	3	1	5	6	7	. 2	5	17	10	10	1	158	11	08	urday
90		2	8	2	0	2	2	8		7	21	9	8	4	9	9	5	3	4	2	10	1	7	3	135		09	Sunday
191	4	5	7	8	6	3	14	15	7	20	13	18	11'	15	8	6	4	7	10		5		12		211	1	10	day
192	8	5	4	1	2	5	3	15	17	13	14	27	11	55	89	22	37	8	0	2	2	3	5	7	355		11	Iuesday
9	11.	4	3	3	6	5	10	16	19	25	24	16	5	12	3	8	21	21	6	6	5	8	8	4	249	1	12	recinesday
194	10	8	4	21	3	2		12	19	30	21	72	17	8	16	16	5	4	8	7	3	4	6	15	316		13	Thursday
195		11	7	1	0	4	5	16	26	28	34	22		4		9	15	16	8	11	3		3	7	249	1	14	riday
196		3	5	7	0	0	0				0		0	0	0			0	0			0		0	17	1	15	Saturday
97	0	0	0	0	0	0	0	0	0	0	0	0	24	5	10	4	9	3	3	5	5	2	4	14	88		16	Sunday
98	17	4	9	44	12	3	10	17	19	23	27	19	13	15	7	2	16	3	2	8	3	11	4	9	297	1	17	Monday
199	2	4	4	8	3	9	4	19	25	32	18	29	16	9	13	13	9	5	3	2	4	5	11	7	254	1	18	Iuesday
200	16	7	6	5	19	3	9	28	14	25	10	16	21	12	15	12	3	4	8	9	8	7	5	6	268	11	19	edinesday
1	8	8	9	10	15	9	10	12	22	35	28	28	21	17		17	10	3	5	27	7	11	9	16	346		20	ursday

Table 3.5.4 (Page 2 of 4)

FKX Hourly distribution of detections

	5	2	4	4	0	7	4	9	10	7	8	19	0	8	11	4	3	1	3	1	16			0	7	Jul		day
204	1	4	4	1	1	2	8	9	0	6	8	6	2	4	3	6	5	2	5	8	4	12	12	6	119	Jul	23	Sunday
205	19	4	6	3	0	1	8	43	13	15	24	34	17	19	8	15	12	18	7	12	5	14	9	8	314	ul	24	Monday
206	5	9	11	49	10	2	18	14	18	11	33	34	23	14	11	14	7	3	18	6	4	6	10	5	335	Jul	25	Tuesday
207	13	9	4	5	10	1	5	8	13	32	23	20	18	9	16	7	1	9	8	2	6	12	5	7	243	Jul	26	Wednesday
208	12	10	3	6	7	1	14	10	19	16	29	25	14	27	25	11	10	2	3	6	10	13	23	4	300	1	27	day
209	6	9	7	1	4	27	16	35	21	38	19	21	9	4	17	4	9	3	3	4	3	4	10	2	276	Jul	28	Friday
210	1.7	3	5	5	0	5	2	9	15	3	8	18	7	3	5	7	12	5	14	5	3	0	6	1	158	Jul	29	rday
211	4	0	5	5	5	11	4	5	8	16	12	11	10	8	7	7	5	4	2	3	7	14		5	166	Jtul	30	Sunday
212	8	6	6	5	7	4	16	12	17	27	18	16	13	10	13	5	9	16	8	3	3	8	4	5	239	Jul	31	Monday
213	5	12	12	8	5	3	6	15	16	18	10	24	13	21	37		2	2	4	5	0	3	10	5	242	ug	01	day
214		7	9	14	1	5	13	13	21	24	32	17	18	15	17	6	3	3	6	10	10	4	10	7	272	Aug	02	vedinesclay
215	3	8	11	2	2	12	2	17	14	13	31	20	12	11	11	8	7	12	6	3	10	5	2	7	229	Aug	03	Thursday
216	6	10	8	0	12	7	13	21	19	34	29	63	45	79	14	16	8	15	21	3	6	0	3	6	438	Aug	04	Friday
217	2	7	6	2	3	5	1	3	11	0	4	10	7	1	4	5	22	4	3	2	6	1	4	4	117	Aug	05	Saturday
218	3	3	6	3	4	2	0	2	17	11	5	6	3	10	5	11	3	5	4	5	2	15	6	7	138	Aug	06	day
219	9	20	14	12	1	2	8	8	16	16	19	5	18	21	18	12	9	1	14	8	5	7	7	3	253	ang	07	Monday
220	6	16	12	6	4	0		9	7	16	22	24	22	15	17	8	7	2	7	6	6	0	8	2	228	ug	08	Tuesday
21	0	5	11	4	1	4	4	19	38	23	15	19	26	6	9	16	6	9	0	0	2	0	6	4	227	Aug	09	Wednesday
222	17	7	5	8	2	5	12	12	12	26	17	21	20	22	14	9	8	8	9	0	4	3	1	2	244	ug	10	Thursday
223	2	3	4	4	74	12	4	13	14	22	45	14	26	12	9	4	0	5	4	5	3	6	1	4	290	Aug	11	Friday
224	8	3	1	8	6	5	8	10	10	10	11	26	2	10	13	1	1	2	6	1	3	0	5	1	151	ug	12	rday
225	0	5	1	0	9	10	4	4	2	9	9	3	7	1	7	5	2	7	4	0	7	4	8	6	11	ug	13	Sunday
226	4	7	9	5	6	3	10	10	11	12	31	21	11	7	8	7	7	5	6	4	2	4	σ	2	198	Aug	14	Monday
227	0	6	3	6	2	4	4	2	17	28	15	23	11	9	13	3	2	0	1	0	6	6	12	6	179	ug	1.5	uesday
28	4	12	2	8	1	4	5	7	12	19	55	42	14	14	20	24	7	7	4	4	4	0	0	0	269	ug	16	Tednesday
229	0	0	0	0	0	3	2	9	15	28	17	25	14	17	49	16	12	5	10	1	3	5	8	14	253	ug	17	sday
230	7	5	11	9	4	11	12	11	12	36	21	14	10	3	4	1	3	5	8	3	7	4	1	4	206	ug	18	iday
231	5	5	6	3	5	10	12	3	9	27	17	13	5	3	0	2	6	0	9	0	4	11	9	1	16	ug	19	Saturday
232	1	5	4	11	12	4	5	6	10	6	1	6	4	4	3	6	3	4	5	8	7	4	10	7	136	g	20	Sunday
233	5	7	6	0	11	10	10	14	15	22	23	24	12	2	2	11	10	4	24	5	1	6	5	4	233	g	21	Monday
234	5	5	6	3	4	-	10	12	12	34	18	24	15	18	12	11	11	1	4	1	1	1	11	5	23	ug	22	Tuesday
235	5	5	7	7	13	5	12	22	21	25	34	16	19	27	21	8	7	1	5	3	4	3	5	77	35	ug	23	ednesday
236	17	2	11	3	4	10	16	19	18	42	28	30	10	15	12	7	7	11	5	3	4	6	1	7	288	$u g$	24	Thursday
237	3	4	6	3	15	6	4	22	21	25	15	14	9	3	11	15	7	7	4	8	3	4	5	0	214	ug	25	Friday
238	4	7	1	2	2	5	0	10		17	4	11	3		4	4	6	7	1	2	9	3	4	1	11	Aug	26	rday
239	5	0	2	3	6	10	2	0	5	17	10	5	0	3	2	4	1	8	7	15	4	48	20	7	184	ug	27	Sunday
240	18	4	8	19	8	5	5	6	8	31	31	15	21	15	7	11	13	7	3	4	6	,	5	2	255	Aug	28	Monday
241	6	3	14	12	4	2	5	14	18	19	17	21	15	10	10	6	4	1	4	6	1	2	4	6	204	Aug	29	Tuesday
242	3	2	7	5	0	2	5	18	12	21	15	16	20	18	7		6	2	1	6	4	11		9	192	g	30	Fednesday
3	0	7	8	3	0	0	5	7	16	23	27	35	15	14	18	8	6	14	2	9	5	1	4	5	232	ug	31	Thuraday
244	1	2	2	6	1	7	7	6	11	14	9	20	13	6	8	11	0	3	11	7	3	1	1	3	153	ep	01	Friday
245	1	1	4	2	7	3	1	8	3	3	5	7	11	10	2	6	0	3	3	6	1	8	1	2	98	ep	02	aturday
246	3	3	4	2	0	1	3	6	10	7	3	2	10	2	1	4	1	1	1	6	3	1		1	81	sep	03	Sunday
47	11	10	6	2	13	0	5	17	10	14	19	25	5	6	18	7	10	10	2	9	4	6	1	3	213	ep	04	onday
248	3	7	4	8	2	4	7	14	20	1.9	27	22	21	14	11	12	12	9	1	11	6	4	2	2	242	ep	05	Tuesday
249	5	18	17	11	2	7	4	10	21	19	27	32	18	13	6	10	3	3	5	6	6	4	11	8	266	Sep	06	Wedresday
250	5	6	10	10	3	3	6	3	12	19	31	27	24	11	6	4	13	16	7	8	4	2	12	7	249	ep	07	Thursday
251	14	21	12	16	2	3	5	10	15	15	17	25	11	13	7		9		8	6	3	1	7	7	237	Sep	08	Friday
252	5	5	2	4	3	7	2	3	2	10	11	5	9	12	7	7	12	5	4	9	4	8	2	3	141	Sep	09	saturday
253	3	1	4	7	8	2	6	8	6	10	13	4	12	5	19	14	5	9	5	4	1	6		7	162	Sep	10	Sunday
254	2	12	6	1	13	6	5	12	25	22	21	21	20	12	14	8	7	9	4	5	1	4	5	6	241	Sep	11	Monday
255	3	15	43	2	6	1	3	10	15	34	20	23	14	19	17	7	2	14	6	1		5	10	5	281	Sep	12	Tuesday
256	4	12	7	2	2	3	10	10	9	20	22	37	8	20	14	11	10	2	5	3	2	1	1	0	215	Sep	13	Wednesclay
257	3	16	6	5	8	4	5	10	16	22	18	24	11	6	11	9	8	9	6	3	3	9	4	5	221	Sep	14	Thursday
258	1	2	1	1	2	3	3	10	23	21	25	23	10	11	4	2	11	8	2	3	2	6	3	2	179	Sep	15	Eriday

Table 3.5.4 (Page 3 of 4)

GER	. FKX	Hou	U	y	dis	trib	but	n																			
Day	00	01.	02	03	304	05	06	07	08	09	10	11	12	13	14	15	16		18		20		22	23	Sum	Date	
259	10	6	5	8	26	4	1	8	2	7	5	3	10	12	2	9	4	3	2	7	0	0	2	2	138	Sep 16	Saturday
260	4	1	2	1	17	3	2	10	3	4	11	9	7	631	125	7	15	10	0	7	3	6	6	9	315	Sep 17	Sunday
261	8	5.1	11	8	812	1	3	6	21	4	15	26	11	13	15	10	12	14	9	2	10	2	0	4	222	Sep 18	Monday
262	5	171	13	6	68	8	13	12	16	33	22	38	28	33	23	14	12.	10	7	9	3	4	3	12	349	Sep 19	Tuesday
263	3	B 1	14	11	13	7	16	21	20	21	39	24	22	17	21	14	7	6	3	4	7	6	11	13	318	Sep 20	Wedinesday
264	9	5	5	10	6	6	3	13	19	16	24	36	20	16	14	7	2	4	6	1	10	5	0	3	240	Sep 21	Thursday
265	11	7	8	7	74	17	17	50	22	22	12	30	12	14	13	2	6	2	5	7	10	1	0	4	283	Sep 22	Friday
266	0	8	5	6	64	7	8	2	6	10	6	6	7	10	0	3	4	6	1	1	2	7	8	7	124	Sep 23	Saturday
267	3	1	2	3	31	1	1	0	2	11	4	14	11	13	3	3	6	5	3	2	4	5	1	7	106	Sep 24	Sunday
268	7	5	6	14	4	13	3	3	9	15	16	30	28	21	10	17	3	6	0	4	4	6	7	6	236	Sep 25	Monday
269	2	7	6	5	58	5	9	5	23	15	21	22	19	36	15	19	10	8	17	2	6	3	4	7	274	Sep 26	Tuesday
270	6	51	11	10	2	2	8	12	17	26	25	33	23	19	21	16	9	5	7	5	3	2	6	4	277	Sep 27	Wednesday
271	1	6	8	8	85	10	11	7	19	11	13	21	23	17	17	13	18	9	2	7	2	2	2	9	241	Sep 28	Thursday
272	5	2	8	4	46	4	15	7	18	22	24	38	27	22	5	7	3	4	1	4	7	3	5	3	244	Sep 29	Friday
273	1	4	1	3	36	4	1	1	3	3	11	9	10	13	2	5	4	1	1	0	12	0	4	1	100	Sep 30	Saturday
GER	00	01	02	03	304	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Sum		71		84		949		956		242		479		204		605		15		33		91		78			
	976	1.05	58		1041		332		442		607		282		096		262	10	39		225	103	31		8748	Total	sum
183	5	6	6	6	56	5	7	11	13	18	20	19	12	12	11	9	7	6	6	5	5	5	6	5	212	Total	average
123	6	7	7	7	76	6	8	13	17	22	24	23	15	14	13	10	8	7	6	5	5	5	6	6	247	Averag	e workdays

Table 3.5.4. (Page 4 of 4) Daily and hourly distribution of GERESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

	2	5	5	12	23	9	17	12	14	24	15	9			5	12											
92	1	1	4	14	11	8	11	3	12	8	5	11	10	4	7	9	5			7	0	1	4	144	Apx	02	
93	6	8	4	5	15	16	23	8	25	13	19	24	18	5	5	10	1	5	8	6	4	1	11	247	Apx	03	y
94	5	4	14		12	24	22	25	12	18	22	12	13	17	12	7	17					5	9	88	Apr	04	
95	22	37	27	24	1336	19	17	11	22	13	25	18	36	18	25	5	13		8	3	8	0	5	11		05	dres
96	9	20	10	11	29	18	9	15	18	16	20	21	19	8	9	10	4	5	1	11	7	5		307	Apr	06	Y
97	10	7	10	4	22	18	27	31	20	41	61	36	16		22	5	8	3		16		22		404	Apr	07	day
98	13	11	13	12	76	19		17	16	30	11	7	8		2	12	12		6	5	5	5	9	240		08	rd
99	2	3	3	1	618	8		5		10	8	12	15	5	3	13	3	2	4		5	9	4	168	Apr	09	Sunday
100	14		12	13	1419	17	1	16	10		14		22	14	7		14	24	13					297	Apx	10	Monday
101	3		20	15	1538	17	23	2	17	13	16	25	17	16	29		10	0	3	17		8	0	348	Apr	11	day
102	3	9	15	21	34	43	37	40	1	19	36	29	31	38	30	26	22	15	38	6	22	19	24	91		12	g
103	23	33	31	44	4838	31	24	30	23	25	25	37	39	36	22	11	30	32	17	17	9	5	4	634	Apr	13	Thursday
104	15	13	34	46	3870	66	60	44	44	42	32	37	39	45	25	22	16	21	16	19	10	15	15	84	Apr	14	
105	20	13	17	14	20	33	35	67	22	20	32	3	33	45	33	44	46	24	12	5	42	21	12	7		5	Saturday
106	7	21	21	27	30	59	31	34	26	21	35	39	43	94	21	12	31	33	18		14	17	32	692	Apr	16	Sunday
107	29	40	26	44	3652	69	63	65	57		56	61	53	41	28	19	23	10	24	7	14	18	13	904	Apr	17	
	23	19	29	56	65	7	52	55	79	53	42	48	47	34	37	31	32	14	14	17		10	8	908		18	
109	12	22	33	60	5769	85	88	67	71	69	90	86	62	37	39	43	25	13	30	17	12	15	12	1114	Apr	19	
110	8	12	50	62	7060	83	68	51	59	57	62	45	66	53	58	16	34	15	4	8	8	18	7	74		0	Thursday
	37	37	59	39	51	80	59	5		73	57	39	7	3	31	46	45	34	32	23	12	11	27	109		1	
12	21	5	41	19	3449	42	36	39	27	26	54	37	32	28	5	25	17	35	38	19	12	12	15	68		2	
13	24	26	21	17	3924	24	2	16	16		22	23	14	33	16	34	26	29	10	44	52	52	31	623		23	-
114	42	49	5	65	6680	7		8	73	79	79	86	70	58	49	51	42	2	61	44	31	20	50	14		4	
115	36	22	50	33	06	75	44	42	78	48	76	35	51	44	61	49	40	47	49	55	29	51	11	11		25	
116	34	36	36	76	4992	72	73	90	69	92	52	46	32	48	43	45	46	60	71	45	53	39	55	1354		26	Wednesday
117	36	34	53	32	46	48	43		22	48	62	72	64	58	37	32	49	48	41	60	89	68	48	1284		7	day
	24	31	35	46	31	46	38	27	34	20	33	47	42	54	47	52	75	47	60	32	44	38	31		Apr	28	
119	57	25	18	2	181	43	11	20	27	12	36	28	2	28	24	29	32	40	31	40	2	36	18	65		29	day
120	31	40	24	15	2020	25	10	12	18	27	30	13	19	44	28	15	27	25	23	33	28	48	49	624		30	ay
121	39	24	2	1	11		15	33			17	1	22	9	8	26	12	7	4	15	30	53	39	45	May	1	
122	39	38	31	21	1220	43	10	40	60	76	40	30	42	49	32	48	29	22	10		24	19	29	770			(1)
123	37	24	56	1	3843	39	78	38	66			03	88	33	43	66			0		0		0	939	y	3	sclay
124		0			00	0		0	0	0	0	-		0		0	0	0	6	9	22		25	69		4	scay
125	5	16	40	48	66	92	67	82	91	66	50	72	50	38	42	33	29	30	49	44	22	15	17	1155	May	05	1
126	42	59	48	5	4829	63	97	52		12	98	68	40	40	31	30	35	28	24	34	16	24	16	1181	May	06	rday
127	10	33	26	19	40	20	10	31	18	17	29	44	52	43	23	22	29	45	23	13	1.5	14	17	630		07	
128	9	22	6	14	27	30	3	4	15	35	36	60	39	27	17	56	42	45	16	24	43	22	33	730	Y	08	Monday
129	44	22	36	21	24	31	12	3	55	68	29	70	55	48	26	72	53	4	16		12		8	767	May		day
130	8	15	18	25	31	5	50	5	74	40	38	46	21	46	21	32	30	11	10	18	27	22	40	91	ay	0	d
31	40	26	33	25	4692	63	5	62	40	52	59	45	35	71	33	21	21	32	14	20	9	13	9	19			hursday
2		10	29	35	4832	49	48	40	46	40	51	48	41	37	27	33	11	8	25	14	9	7	20	710		12	day
33	3	5	16	10	1820	3	24	37	34	21	29	1	2	15		21	5	27	20	17	17	18	5	441	May	13	laturday
134	18	9	13		202	30	20	16	21	8	30	2	1	19	5	14	7	13	16	20	16	40	37	438			
135	37	33	27	44	4171	84	65	74	50	42	84	57	63	36	30	40	61	38	36	39	21	13	5	1091		5	
6		15	41	41	4973	71	49	60	56	62	43	54	48	28	38	28	24		11	16	8		17	849	ay	16	day
37	7	8	35	47	4670	69	71	5	45	57	43	57	. 37	29	25	36	24	35	30	12	22	9	5	87	Na	17	ednesday
138	20	23	42	44	43	80	80	39	56	55	51	55	67	55	33	17	33	36	25	12	23	14	1	962	Nay	18	hursday
39	4	7	41	48	4354	68	51	47	65	55	67	49	49	24	41	53	20	6	19	12	6	7	12	848	ay	19	day
0	8	2	17	28	2737	25	19	11	23	11	1.2	33	17	24	24	18	11	24	14	12	13	9	21	440	-	20	Saturday
41	14	16	11	16	1922	20	23	12	9	3	14	24	21	20	7	23	0	18	4	9	11	20	2	348	May	21	Sunday
142	19	21	41	27	6276	71	75	51	64	61	59	61	39	28	25	13	19	24	16	20	2	1	12	887	Hay	2	onday
3	9	4	56	38	4278	67	68	56	51	76	97	81	71	43	51	25	22	30	3	8	10	8	2	996	May	23	uesday
144	14	7	35	56	8473	62	45	73	55	59	81	82	73	48	45	40	40	23	41	28	10	31	7	1112	May	24	lednesday
145	2	18	40	67	43105	67	77	48	86	39	73	55	57	59	33	61	49	32	18	53	25	57	14	1178	May		hursday
46	29	17	35	34	4661	62	50	70	64	40	60	61	47	42	32	20	25	11	23	11	7	15	10	872	May	26	Friday

Table 3.5.5 (Page 1 of 4)

APA . FRX Hourly distribution of detections

Table 3.5.5 (Page 2 of 4)

03		8	8	1	2,	22	15	5	10	17	7	14	32	9	20	8	22	1						2	337	Jul	22	
204	0	12	1	12	18	13	9	6	19	19	19	21	18	9	11	2	15	16	4	8		0	8	6	248		23	
205	17	5	16	20	44	69	79	59	65	29	70	51	44	51	33	23	24	9	10	17		7	9	3	759		4	-
06	8	14	25	2	43	68	62	52	43	36	47	47	55	45	33	16	8	8	7	5		1	13	6	676		25	da
207	4	10	19	27	44	75	75	65	68	62	51	49	55	33	12	23	22	12	15	14	6	3	16	14	774		26	-
208	14	15	29	26	37	57	81	40	53	92		04	78	55	70	14	8	25	15	0	19	6	4	7	912		27	Y
209	7	2	12	15	28	49	49	47	42	51	42	68	65	40	35	19	28	27	9	20	0		5	7	667		8	
10	3	5	7	12	12	14	25	15	21	18	23	29	9	10	16	5	22	19	15	3		4	0	2	294	ul	29	-
11		4	19	5	12	15	13	6	7	1	11	9	11	10	15		8	2	7			1	0	1	194	ul	30	Y
212		2	14	26	26	56	49	34	34	38	31	45	40	25	24	8	10	9	13			3	1	1	99	ul	31	day
13	9	7	21	33	44	59	44	37	41	39	48	49	43	33	17	24	17	12	9	5	6	19	3	0	619		01	day
214	13	16	13	33	47	76	50	64	54	51	40	35	38	34	15	19	21	15				3	3	9	659	ug	02	ednesday
215		11	25	27	40	50	49	24	28	36	37	22	38	17	22	16	11	15	14			7		2	511	ug	03	Thursday
16		21	30	28	4	57	40	44	37	30	46	58	22	27	22	21	21	27	11	14		9	0	8	626			
217		14	9	24	19	7	17	9	15	23	16	30	11	14	16	23	23	12	0	8	0	20	2	1	324	g	05	Saturday
218		5	4	12	19	16	10	6	9	16	9	17	14	16	14	10	16	14	0			17	17	1	250	Ag	06	y
219	1	7	27	31	30	41	38	16	24	31	24	38	44	34	34	24	21	20	17			2	0		524.	ug	07	y
220	10	5	21	40	46	61	86	65	49	41	72	50	56	31	20	19	30	20	8	12	6	5	5	3	761		08	day
21	1	3	25	34	32	55	51	57	63	42	48	41	46	35	23	22	16	21	18		9	4	9	6	667	g	09	
22	9	4	26	30	22	78	64	53	6	50	48	25	64	37	27	18	17	11	27	6	13	17	13	26	747	g	10	rsday
23	20	34	48	52	53			01	88	71	57	65	47	30	19	43	25	14	13	17	23	17	14	3	1017		11	lay
224	2	11	12	9	20	29	25	22	23	47	23	17	17	21	15	8	16	8	5	12	5	8	8	0	363		12	rday
225		2	3	13	6	11	23	2	14	10	10	22	21	25	10	11	9	9	25	3	14	0	8	1	258	ug	13	day
26		17	21	17	36	48	44	39	23	35	42	41	42	37	25	20	11	10						0	534		14	ay
227		11	32	26	40	67	62	34	34	29	28	31	50	45	32	13	17	22	7				5	3	61.1			day
228	0	12	26	28	29	62	65	39	5	31	49	60	46	25	33	30	23	9	21	4	5	3	3	14	669		1	ednesday
229	2	8	23	3	37	41	51	65	5	58	48	47	32	34	27	49	17	15	13	2	8	20	8	6	703		17	sday
30	2	10	30	32	45	47	66	59	35	73	54	55	41	32	41	24	31	15	10		14	12	9	4	75		18)
231		9	21	29	26	23	19	23	17	18	16	18	26	17	24	25	10	22	15	5	5	8	15	12	407		19	rday
232		11	4	26	19	21	25	31	20	18	33	55	46	36	30	28	27	7	14	21		13	1	6	506	g	0	
33		11	20	38	46	50	5.	77	51	84	53	70	35	54	26	31	32	11	19	10		5	8	10	803		21	onday
234	8	13	28	41	35	71	72	75	39	79	61	54	35	45	25	33	12		5		9	2	5	7	62			lay
235	5	5	13	41	43	57	50	54	37	62	80	59	54	38	34	26	27	17	11	7	18	9	11	4	762		23	Wedresclay
236		26	26	33	60	58	52	56	36	64	57	73	60	40	34	14	21	14		13	10	1		3	756			Thursday
237	0	10	26	21	43	40	43	42	33	59	40	63	32	30	28	32	21	18	5		2	10		5	61		25	day
238		9	19	8	22	9	14	21	27	30	32	16	25	16	13	16	24	6	14	4				0	339	g	6	rday
239	7	3	7	14	12	10	27	20	15	16	17	9	22	7	32	9	11	11	5	20		6	5	1	290		27	
240	3	14	22	27	40	75	65	56	32	35	53	53	47	47	34	16	29		10	23	5	8	6	3	709		28	Monday
241	1	5	21.	42	30	73	75	61	38	56	67	5	31	27	31	4	18	8	17	18	15		11	4	29		29	Tuesday
242	6	13	17	27	69	58	53	40	38	42	53	48	51	52	25	25	18	16	9	16	12	5	4	1	析	drg	30	Wednesday
243	4	5	25	20	37	45	51	43	42	37	36	41	42	30	19	15	20	15	11		8	11	3	13	581			Thursday
244	4	12	33	24	41	44	65	63	69	54	76	46	48	29	9	17	18	18	11		1	9	2	4	705			riday
245	2	8	16	23	6	18	12	4	13	18	11	29	18	17	17	8	9	14			8			8	279	ep	02	aturday
246	0	3	6	5	13	27	16	21	8	13	13	2	12	15	18	15	11	16	1		11	1		1	232	Sep	03	Sunday
247	6	21	15	27	21	54	44	33	32	47	60	27	35	31	24	11	23	15	6	8	1	11		1	562	Sep	04	Monday
248	1	19	37	36	59	50	42	56	43	72	42	63	30	47	39	11	22	19	11	9			3	4	726	Sep	05	Tuesday
249	1	10	23	29	25	40	36	64	38	48	74	62	55	21	34	28	18	16	18	21	3	6	12	19	701	Sep	06	lednesday
250	31	30	36	40	31	64	65	61	60	48	34	54	61	40	21	15	26	15	4	11	1	4	22	16	790	Sep		Thursday
251	7	14	34	44	42	61		105	57	84	77	68	50	29	31	26	20	25	17	13	23	7	7	12	921	ep	08	Friday
252	6	5	28	18	20	10	15	12	17	25	23	39	19	13	19	6	17	19	5	11	7	11	4	2	351	Sep	09	Saturday
253	3	5	13	9	18	32	17	10	22	22	16	19	23	13	17	13	10	2	11	3	4	12	2	2	298	Sep	10	sunday
254	2	8	25	27	41	66	89	94	75	93	93	67	47	42	21	16	16	11	5	10	0	0	1	3	852	sep	11	Monday
255	4	6	20	40	30	54	73	64	55	65	41	35	45	35	37	11	24	11	9	6	7	0	1	0	673	ep	12	Tuesday
256	12	13	14	30	43	69	64	73	41	41	47	55	41	46	46	26	21	14	12	10	12	2	3	0	735	Sep	13	ednesday
257	10	15	28	24	40	51	55	70	48	70	65	58	33	41	39	17	20	34	19	0	3	10	3	1	754	ep	14	ursday
58		2	20	26	28	65	34	77	63	81	97	77	61	47	26	32	29	15	14	17	16	21	5	11	86			riday

Table 3.5.5 (Page 3 of 4)

APA .FRX Hourly distribution of detections

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	1.9	20	21	2	23	Sum	Dat		
259	13	17	37	29	25	18	20	20	34	14	12	22	40	17	25	17	8	7	11	17	6	12	6	10	437	Sep	16	Saturday
260	4	10	5	14	18	11	19	26	5	10	23	15	15	18	17	12	23	18	2	18	5	5	5	6	304	Sep	17	Sunday
261	14	11	13	36	33	58	80	67	62	60	70	61	45	46	26	26	15	14	7	6	9	12	8	9	788	Sep	18	Monday
262	12	16	19	22	35	65	48	55	78	86	60	63	53	57	31	8	16	18	21	18	11	12	8	15	827	Sep	19	Tuesday
263	2	12	20	33	33	73	50	57	32	52	43	53	61	42	37	41	16	13	10	9	8	4	0	9	710	Sep	20	Wednesday
264	7	1	29	38	46	49	38	30	42	38	60	29	58	36	50	10	18	11	8	13	15	0	2	5	633	Sep	21	Thursday
265	0	10	17	39	44	49	45	45	43	63	61	49	52	40	31	31	22	17	29	12	7	5	6	12	729	Sep	22	Eriday
266	2	7	31	27	23	16	10	20	30	19	23	25	27	21	24	10	26	16	22	3	5	11	1	4	403	Sep	23	Saturday
267	5	1	16	7	19	18	16	12	5	19	5	16	33	25	18	16	25	19	9	10	16	10	1	4	325	Sep	24	Sunday
268	4	0	12	32	27	30	22		1281	81	1	31	0	0	0	0	0	0	0	0	0	0	0	0	469	Sep	25	Monday
269	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sep	26	Tuesday
270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sep	27	Wednesday
271	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sep	28	Thursday
272	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sep	29	Friday
273	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sep	30	Saturday

Table 3.5.5.(Page 4 of 4) Daily and hourly distribution of Apatity array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 01	Saturday
92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 02	Sunday
93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 03	Monday
94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 04	Tuesday
95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 05	Wednesday
96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 06	Thurscay
97	0	0	0	0	0	0	0	0	0	0	0	0	10	27	13	9	21	11	33	20	21	23	37	16	241	Apr 07	Fxiday
98	0	0	0	0	0	0	0	0	13	36	32	59	43	44	32	22	31	43	30	42	28	45	27	14	541	Apr 08	Saturday
99	14	17	21	22	23	9	18	20	15	22	26	13	40	23	26	29	43	24	25	27	27	15	19	41	559	Apr 09	Sunday
100	26	40	13	18	13	32	39	37	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	240	Apr 10	Monday
101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 11	Thesday
102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 12	Wednesday
103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 13	Thursday
104	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 14	Friday
105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 15	Saturday
106	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 16	Sunday
107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 17	Monday
108	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 18	Tuesday
109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Apr 19	Wednesday
110	0	0	0	0	0	0	0	54	33	36	57	14	31	33	38	59	36	24	65	49	55			58	803	Apr 20	Thuraday
111	92	93	75	54	63	70	79	81	76	50	74	59	68	41	85	75	44	63	51	43	70	48	39	35	1528	Apr 21.	Friday
112	49	56	48	51	50	45	51	68	38	40	35	34	22	21	39	17	38	42	29	19	14	37	45	28	916	Apr 22	Saturday
113	23	27	12	23	47	44	43	20	50	22	24	23	24	6	31	34	52	12	19	21	25	27	33	40	682	Apr 23	Sunday
114	31	20	33	22	32	43	33	39	28	22	33	46	35	15	38	60	36	38	49	36	38	32	23	27	809	Apr 24	Monday
115	19	41	38	18	40	40	43	55	32	26	32	58	25	29	36	36	53	44	52	82	35	18	43	32	927	Apx 25	Tuesday
116	39	15	47	28	21	25	27	31	54	49	47	19	39	32	50	55	39	71	46	48	23	67	49	59	980	Apr 26	Wednesday
117	27	38	34	71	49	51	47	27	28	38	65	36	43	29	28	41	63	60	38	63	46	26	29	59	1036	Apr 27	Thursday
118	38	46	18	37	35	41	34	51	34	37	60	37	34	28	87	61	53	97	86	16	61	53	86	47	1177	Apx 28	Friday
119	48	40	35	41	51	34	38	17	28	33	34	50	24	30	53	48	38	45	64	26	28	42	30	13	890	Apr 29	Saturday
120	14	29	15	19	35	23	43	58	34	16	47	27	19	28	45	34	21	25	21	58	52	39	34	35	771	Apr 30	Sunday
121	37	37	29	34	26	20	44	39	39	27	26	37	62	37	11	52	23	27	39	29	25	19	15	27	761	May 01	Monday
122	25	6	17	21	39	14	43	21	24	15	31	30	18	14	14	21	42	31	23	42	28	21	22	26	588	May 02	Tuesday
123	39	19	27	26	14	19	24	20	24	29	42	25	17	14	9	15	18	20	12	14	14	19	19	17	496	May 03	Hednesday
124	22	29	25	29	13	11	16	17	16	13	18	27	9	24	43	36	44	16	26	12	13	29	19	25	532	May 04	Thursday
125	29	23	23	27	41	25	38	40	32	38	1	15	17	33	26	51	32	28	44	22	24	39	17	30	695	May 05	Friday
126	39	39	24	24	13	6	18	21	32	44	29	28	30	49	24	12	29	22	12	14	13	30	35	28	615	May 06	Saturday
127	15	24	23	13	13	19	29	11	23	29	26	26	34	18	29	41	49	22	17	27	33	38	28	41	628	May 07	Sunday
128	35	32	46	34	24	15	29	25	50	36	27	35	35	42	43	30	42	58	87	36	49	31	48	35	924	May 08	Monday
129	49	38	43	25	26	44	20	24	27	18	31	17	49	27	22	22	33	29	28	15	45	44	37	28	741	May 09	Tuesday
130	50	52	34	33	26	21	10	4	13	22	18	9	22	29	33	10	29	37	13	23	35	24	28	35	610	May 10	Wednesday
131	38	21	33	39	17	57	17	32	14	27	30	35	23	76	31	69	43	84	21	15	31.	31	33	39	856	May 11	Thursday
132	32	38	29	28	28	14	32	41	31	27	17	23	25	28	37	25	30	33	27	33	23	37	41	31.	710	May 12	friday
133	54	21	26	49	25	25	43	37	31	29	40	60	32	26	60	35	48	52	60	42	25	28	58	77	983	May 13	Saturday
134	49	43	40	32	31	29	30	33	43	38	36	33	29	13	36	42	39	29	28	32	15	25	31	34	790	May 14	Sunday
135	21	22	45	39	20	25	39	31	39	19	36	24	18	40	40	38	16	33	17	54	49	26	44	29	764	May 15	Monday
136	27	29	25	28	29	32	17	28	38	11	34	31	24	24	20	18	5	33	17	8	33	28	39	23	601	May 16	Tresday
137	26	12	20	11	50	45	27	14	22	37	16	28	28	27	20	15	19	18	25	24	16	16	15	9	540	May 17	Wednesday
138	28	19	13	17	24.	15	22	19	11	26	24	39	14	27	20	21	11	27	33	14	41	24	31	22	542 N	May 18	Thursday
139	14	15	11	19	23	14	14	23	21	19	10	22	27	34	48	21	26	29	36	29	23	30	31	34	573 M	May 19	Friday
140	38	33	22	19	13	40	21	19	15	22	29	32	32	42	35	34	32	22	27	28	39	32	39	38	703 M	May 20	Saturday
141	11	25	49	22	38	28	41	17	17	23	29	49	20	29	9	22	37	27	18	31	27	15	16	19	619	May 21	Sunday
142	17	24	24	36	52	23	31	32	29	28	34	18	28	6	16	31	17	17	15	28	23	20	11	15	575	May 22	Monday
143	5	23	19	33	17	26	22	26	20	21	37	25	50	37	26	51	41	15	11	57	13	13	19	11	618 N	May 23	Tuesday
144	17	20	40	18	26	20	6	24	18	35	14	33	30	11	7	17	26	16	12	16	18	4	17	33	478	May 24	Wednesclay
145	10	35	21	27	28	49	19	28	21	35	29	22	24	18	23	66	75	2	0	16	35	19	45	43	690 M	May 25	Thursday
146	43	33	52	23	20	30	25	0	21	8	8	23	36	28	21	22	22	11	6	29	28	20	16	29	554 M	May 26	Friday

Table 3.5.6 (Page 1 of 4)

SPI .FKX Hourly distribution of detections

147	13	17	32	27	36	18	24	27	37	36	43	23	20	45	42	32	24	24	28	14	19	48	10	17	656	May 27	Saturday
148	11	11	28	20	23	35	14	9	11	26	21	23	24	8	19	25	19	21	16	27	31	27	12	12	473	May 28	Sunday
149	19	17	9	13	17	12	6	17	10	27	28	4	15	15	30	15	13	7	19	18	24	19	14	9	377	May 29	Monday
150	25	12	7	10	18	13	11	11	4	9	8	16	18	22	11	3	24	21	8	17	17	23	10	14	332	May 30	Tuesday
151	26	12	15	10	9	18	10	12	15	15	10	22	28	14	27	9	18	21	20	11	18	9	26	14	389	May 31	Wednesclay
152	15	6	21	14	23	17	20	11	15	14	27	22	21	29	30	31	20	29	14	14	8	8	26	18	453	Jun 01	Thuraday
153	21	17	12	23	19	25	13	33	39	25	33	29	36	33	23	24	26	27	37	15	13	7	13	34	577	Jun 02	Friday
154	10	14	18	13	15	19	17	14	25	30	31	37	54	0	18	38	19	43	29	28	29	21	31	37	590	Jun 03	Saturday
155	28	33	45	30	25	21	17	45	32	15	27	30	19	15	29	17	21	25	24	14	27	18	54	28	639	un 04	Sunday
156	64	40	41	58	68	69	52	62	25	25	49	30	31	25	22	14	35	45	36	24	49	20	16	20	920	Jun 05	Monday
157	34	22	14	26	38	35	32	12	18	23	27	35	20	36	29	43	27	20	36	25	36	26	29	29	672	Jun 06	Tresday
158	27	33	14	28	29	16	21	31	25	23	42	29	33	28	29	38	35	33	34	22	19	41	20	47	697	Jun 07	Wednesday
159	21	19	32	34	31	24	25	32	22	27	28	27	34	41	48	26	40	27	21	15	16	25	14	14	643	Jun 08	Thursday
160	23	51	18	33	18	52	20	16	31	23	25	26	25	23	44	19	28	38	29	29	24	41	24	34	694	un 09	Friday
161	20	29	33	33	33	37	28	33	17	22	24	14	19	22	34	19	29	23	25	23	38	24	26	13	618	an 10	Saturday
162	10	19	14	23	39	25	32	30	41	30	23	39	40	20	37	56	40	42	34	34	25	33	36	36	758	un 11	Sunday
163	23	31	42	17	13	23	27	35	32	29	32	40	19	41	35	33	21	35	25	27	36	27	34	31	708	un 12	Monday
164	15	22	17	34	23	38	35	31	47	32	44	25	29	19	14	22	29	20	25	32	12	38	22	27	652	Jun 13	Thesday
165	14	12	14	21	24	25	19	18	27	24	30	38	25	20	46	16	21	23	14	22	27	27	24	34	565	Jun 14	Wednesclay
166	33	23	16	30	35	32	30	22	16	20	17	23	25	31	22	19	27	5	17	28	14	29	20	20	554	Jun 15	Thursday
167	23	18	22	19	16	32	40	21	20	27	18	20	24	39	17	28	33	32	36	31	48	41	6	34	645	Jun 16	Friday
168	36	45	38	29	23	42	49	67	32	28	49	44	26	38	34	31	24	43	29	33	36	32	27	19	854	Jun 17	Saturday
169	12	25	35	33	27	15	20	29	30	47	30	37	25	35	36	26	29	25	28	24	36	28	15	28	675	Iun 18	Sunday
170	11	26	20	16	32	37	20	25	32	43	27	24	28	34	27	21	27	18	25	18	17	12	30	1.9	589	un 19	Monday
171	15	15	14	29	26	15	23	14	31	36	32	24	39	32	26	32	23	14	12	24	22	0	0	0	498	Jun 20	Tuesday
172	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	un 21	Wednesday
173	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	un 22	Thursday
174	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	Friday
175	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n 24	Saturday
176	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	un 25	Sunday
177	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	an 26	Monday
178	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27	Thesday
179	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	un 28	Wedinesday
180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jun 29	Thursday
181	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n 30	Friday
182	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 01	Saturday
183	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 02	Sunday
184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 03	Monday
185	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1104	Tuesday
186	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 05	Wednesday
187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 06	Thursciay
188	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	107	Friday
189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 08	Saturday
190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$11: 09$	Sunday
191	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11.10	Monday
192	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	111	Tuesday
193	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 12	Wednesday
194	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 13	Thuxsday
195	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	ul 14	Eriday
196	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ul 15	Saturday
197	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul 16	Sunday
198	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul 17	Monday
199	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ul 18	Tuesday
200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tul 19	Wednesclay
201	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ul 20	Thursday
202	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul 21	Friday

Table 3.5.6 (Page 2 of 4)

SPI . FRX Hourly distribution of detections

3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul		Saturday
204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ju1	23	Sunday
205	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul	24	Monday
206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul	25	Theaday
207	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul	26	Wedinesday
208	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	27	Thursday
209	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	Ju	28	Friday
210	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	ul	29	d
211	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul	30	Sunday
212	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Jul	31	Monday
213	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	g	01	Tuesday
214	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Aug	02	edinesday
215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	50	48	27	34	163	Aug	03	Thursday
216	46	49	69	68	40	43	51	41	48	27	23	25	35	28	15	42	26	33	35	42	33	36	46	64	965	Aug	04	Friday
217	67	72	79	64	71	86	70	67	746	50	57	44	33	39	37	20	39	48	38	37	69	43	40	46	1262	Aug	05	rday
218	57	50	34	72	63	70	35	52	243	62	45	30	50	38	43	32	35	43	42	43	56	36	37	33	1101	ag	06	day
219	58	34	50	28	29	36	47	57	748	37	44	33	31	35	47	43	37	49	34	32	17	30	40	41	937	Aug	07	Monday
220	47	50	40	31	31	53	61	43	32	38	31	19	23	30	20	32	20	26	24	49	54	41	39	43	877	ug	08	Tuesday
221	59	55	63	52	41	64	44	59	37	42	35	41	50	23	41	27	30	45	42	60	41	61	42	61	1115	Aug	09	Wednesday
222	26	46	47	31	50	41	44	42	243	27	46	51	21	27	30	21	32	16	33	23	45	39	31	43	855	Aug	10	Thursday
223	45	23	39	23	26.	36	36	35	52	25	24	31	15	21	36	45	44	36	36	47	36	34	48	43	816	ug	11	Friday
224	56	57	43	40	50	42	46	53	362	55	41	41	34	59	26	40	50	57	81	54	40	52	38	18	1135	Aug	12	aturday
225	43	16	38	41	41	34	20	39	38	28	32	45	34	53	43	67	55	50	63	62	50	73	59	55	1079	Aug	13	Sunday
226	41	66	60	68	44	67	82	67	79	48	69	70	44	26	37	30	34	25	29	41	38	58	51	32	1176	Aug	14	Monday
227	51	54	56	53	52	39	29	36	628	25	21	36	24	29	28	43	49	36	58	86	77	31	25	26	992	Aug	15	Tuesday
228	18	34	16	19	22	22	65	34	440	38	47	35	17	26	23	47	37	49	30	31	40	42	45	42	819	Aug	16	Wedinesday
229	23	60	29	61	44	63	36	45	535	37	48	42	29	39	53	67	43	67	49	27	28	43	64	57	1089	Aug	17	Thursday
230	61	72	67	54	54	52	40	26	533	46	49	21	36	43	31	28	16	43	23	38	55	40	40	49	1017	Aug	18	Friday
231	45	38	47	46	29	42	25	33	326	35	21	38	10	29	22	26	34	32	16	26	31	32	46	44	773	Aug	19	Saturday
232	49	43	59	49	22	34	39	37	77	48	44	50	35	39	28	35	35	40	55	37	32	58	42	58	1005	Aug	20	Sunday
233	96	95	92	65	64	57	76	77	768	54	49	73	73	24	13	50	64	73	82	84	57	51	57	69	1.563	Aug	21	Monday
234	82	76	96	85	89	62	60	88	85	56	62	58	77	47	54	59	60	49	49	48	55	52	58	55	1532	ug	22	Tuesday
235	56	62	781	1	08	79	87	64	78	85	81	84	58	60	57	73	74	59	59	46	66	55	50	74	1708	Aug	23	Wednesday
236	95	80	77	82	67	63	40	48	60	50	47	40	35	61	64	63	74	39	52	68	76	95	75	74	1525	A	24	Thuraday
237	71	35	55	41	40	54	66	80	38	43	0	56	42	70	68	58	58	64	39	74	67	58	48	67	1292	Aug	25	Friday
238	65	75	73	49	74	94	71	72	70	67	70	53	64	70	86	80	77	72	90	74	70	93	761	104	1789	Aug	26	Saturday
239	74	91	99	851	05	88	99	71	182	68	58	63		102	74	55	69	41	75	80	62	55	36	54	1762	Aug	27	Sunday
240	45	58	55	56	70	88	86	89	27	50	39	31	38	24	38	40	28	39	17	13	33	31	8	36	1039	Aug	28	Monday
241	19	13	25	30	33	19	26	27	41	37	28	34	37	39	15	36	47	43	24	49	26	73	42	34	797	Aug	29	Tuesday
242	46	42	33	47	43	28	28	31	22	43	42	25	34	23	28	14	27	29	28	26	18	8	25	21	711	ug	30	Wedresday
243	25	22	28	18	23	43	45	36	37	39	30	52	46	29	36	46	47	43	57	50	43	63	59	43	960	Aug	31	Thursday
244	79	7	14	07	08	18	87	75	565	66	72	79	68	50	57	51	68	76	72	43	57	58	65	63	1805	Sep	01	Friday
245	53	35	57	63	85	56	91	55	554	48	52	66	47	26	51	49	56	48	66	88	51	66	73	64	1400	sep	02	Saturday
246	45	53	67	73	70	61	52	87	73	48	77	65	79	80	84	66	79	73	77	74	78	82	73	74	1690	Sep	03	Sunday
247	49	45	56	72	66	51	70	59	46	901	100	81	89		11	102	91	83	82	70	80	90	67	78	1805	gep	04	Monday
248	47	461	100	90	88	93	82	76	672	76	82	71	75	89	94	781	113	86	79	92	94	8	0	0	1731	Sep	05	Tuesday
249	0	0	0	0	0	0	58	92	74	46	60	67	01	77	69	75	43	48	65	88	67	68	64	79	1241	Sep	06	Whednesday
250	71	52	78	69	78	76	76	81	166	68	771	103	69	91	83	98	98	66	80	70			1001	17	1956	Sep	07	Thursday
251	114	92	941	114	32	25	98	161	6108	91	77	55	73	74	91	751	1051	101	92	95		041	10	108	2327	Sep	08	Friday
252	122	351	1271	1361		126		121	91	90	86	86	65	84	85	77	871	102	871	31	151	351.	1211	110	2611	Sep	09	Saturday
253	75	0	0	0	0	0	0		012	112	991	1291	114	96	96	76	95	75	80	82	85	68	99	53	1554	Sep	10	Sunday
254	64	54	45	81	73	53	54	72	86	56	771	101	71	50	26	69	94	671	116	90		105	72	64	1732	sep	11	Monday
255	66	73	57	57	40	82		1071	7101	991	117	90	70		111	69	69	73	79	86	87	871	109	86	1979	Sep	12	Tuesday
256	69	66	76	84	74	75		103	366	561	101	82	84	83	821	1091	104	941	1491	1271	291	171	241	162	2296	Sep	13	Wednesday
257	1131	221	1271	139	97	58	85	46	691	54	61	70	50	37	54	45	74	59	71	56	48	40	63	34	1694	Sep	14	Thursday
258	36	41	49	68	49	68	62	59	67	64	67	74	58	69	41	56	47	58	65	68	61	65	29	63	1384	Sep	15	Friday

Table 3.5.6 (Page 3 of 4)

```
SPI .FKX Hourly distribution of detections
Day 00 01 02 03 04 05 06 07 08 09 10 111 12 13 14 15 16 17 18 19 20 21 22 23 Sum Date
259 87 60 42 62 60 76 51 87 83 74 93100 52 47 62 62 95 64 50 64142122126114 1875 Sep 16 Saturday
260
```



```
262 42 47 60 46 45 50 52 57 63 65 59 60 37 49 51 65 59 62 42 43 43 39 35 66 1237 Sep 19 Tuesday
263 66 76 76101 69 85 54 56 44 50 42 80121 85 78 62 871061381111117 97113125 2039 Sep 20 Wednesday
264 112150160128 97106 74 93 83 45 50 35 56 48 47 64 66 62 444 53 36 41 33 52 1735 Sep 21 Thursday
```



```
266
```



```
268 45 43 46 80 72 63 68 73 58 48 62 59 70 64 56 46 74100 91 67 71 51 34 34 1475 Sep 25 Monday
```



```
272 46 38 35 36 40 33 46 77100 32 44 68 85 67 71 75 97 96 81 73127 86 66105 1624 Sep 29 Friday
```



```
SPI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1, 19 20 21 22 23
Summ 5030
    5153 5306 5236 5173 5223 5250
```


Table 3.5.6. (Page 4 of 4) Daily and hourly distribution of Spitsbergen array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6	7	6	8 13	5	4	5	10	5	2	3	1	3	0	3	1	4	8	2	6	6	16	25
36	62	88	76	68	36	25	52	42	35	31	44	51	46	31	20	9	2	3	10	24	36	49	42
58	75	83	68	64	51	70	51	51	22	25	31	8	11	7	7	4	15	6	2	3	0	0	0
0	0	0	0	0	0	0	0	0	0	19	22	19	43	8	6	2	4	1	3	2	3	1	16
27	28	14	15	29	19	15	20	37	49	39	55	40	52	28	3	6	2	3	0	6	6	0	1
3	5	2	17	51	2	4	5	8	8	16	20	13	8	3	3	3	3	10	4	7	5	16	5
2	6	4	4	4	13	16	9	21	18	15	13	15	15	8	14	3	6	5	5	3	5	11	19
17	44	49	81	108	95	68	21	7	12	6	7	9	6	14	1	11	12	3	7	0	11	16	50
851	137	1181	108	94	67	33	13	10	9	6	10	3	14	4	4	0	4	4	4	5	3	2	5
0	6	4	1	3	9	8	10	9	4	8	10	28	14	12	6	8	3	5	2	5	7	1	1
4	0	5	6	3	11	12	5	5	5	4	27	36	21	19	5	2	3	8	1	1	3	1	3
3	3	13	10	15	7	3	4	1	11	12	7	8	0	7	13	7	14	2	8	8	1	8	3
7	5	1	4	6	6	7	10	7	15	10	15	2	4	17	5	2	2	0	7	9	4	1	7
2	3	2	1	5	11	8	15	6	7	10	32	17	18	16	23	1	5	3	1	2	2	5	9
4	3	3	2	0	9	2	14	7	5	12	23	5	17	4	5	4	1	4	4	8	1	0	1
2	13	2	6	7	5	2	14	26	8	8	3	11	34	6	9	5	20	7	3	6	5	6	2
8	1	4	4	15	10	8	3	3	19	5	7	22	10	7	10	3	6	4	6	6	2	4	3
1	2	6	2	14	6	2	4	0	17	5	11	15	8	14	7	1	5	6	1	1	1	2	1
1	1	1	2	1	5	2	6	9	7	3	15	10	9	18	7	4	7	5	1	4	3	4	4
35	29	14	7	0	1	3	6	10	10	8	4	12	6	9	6	4	12	3	4	17	2	3	0
0	0	0	0	0	0	0	0	6	2	3	8	2	5	1	0	0	9	8	4	0	5	5	1
2	6	2	19	5	19	15	10	12	9	4	11	5	3	16	5	5	7	6	4	4	2	1	6
3	3	8	6	7	4	9	4	3	2	7	9	4	13	6	18	2	14	3	1	2	3	2	2
3	2	2	2	6	3	3	2	19	16	11	3	10	42	11	4	9	3	0	3	4	2	0	3
3	1	9	0	0	0	0	5	0	3	10	14	11	13	4	1	3	3	6	5	3	4	1	2
3	1	3	8	5	4	5	2	5	7	5	7	19	10	8	3	4	2	1	8	3	1	1	3
6	10	0	2	1	8	8	9	9	6	6	14	19	7	9	7	10	23	10	5	9	11	4	4
7	1	4	7	8	5	10	4	5	7	6	12	10	22	12	8	5	6	11	2	4	7	7	16
11	19	7	20	13	18	9	19	5	3	13	19	6	5	8	21	23	4	12	11	4	9	27	32
26	22	36	17	5	20	9	6	13	1	8	5	10	11	21	26	9	2	2	3	10	7	5	10
5	2	7	3	10	11	15	14	14	6	7	14	14	9	13	7	6	7	5	2	2	3	3	4
1	2	15	8	4	7	4	7	12	9	21	27	11	23	2	4	2	5	0	4	1	13	3	3
12	3	9	6	7	4	7	7	14	14	20	10	19	29	14	13	13	4	4	6	6	5	4	1
4	2	3	4	29	12	6	3	11	18	19	18	12	11	18	13	8	17	7	3	2	1	5	16
7	4	14	8	2	7	8	13	8	11	5	12	5	2	13	15	15	8	9	7	11	8	5	6
7	2	4	9	6	12	6	14	9	14	10	8	19	5	14	11	9	6	10	2	3	4	8	3
8	6	1	19	2	7	6	3	12	11	11	3	8	6	16	11	10	24	30	8	1	2	5	7
5	17	3	3	2	4	5	9	5	10	10	12	14	7	14	9	6	7	7	7	5	3	1	1
5	4	3	2	6	3	4	1	9	17	14	2	10	12	20	11	5	11	2	5	0	5	10	9
3	4	1	1	6	3	1	6	6	4	2	21	6	6	18	12	6	12	1	5	4	1	9	5
5	6	8	12	12	15	7	6	3	14	13	13	13	3	14	11	13	7	12	11	7	16	10	15
13	9	14	14	20	9	23	19	33	58	37	0	6	8	22	16	12	14	28	14	8	25	8	21
15	9	24	1.9	19	14	22	15	11	20	14	4	18	8	14	6	9	6	10	5	2	10	9	9
15	8	6	11	11	1	6	5	16	10	7	19	5	20	22	8		14	1	4	11	0	8	2
10	13	2	7	11	4	1	5	14	5	9	18	7	9	14	0	5	2	15	1	21	13	12	14
14	4	8	13	17	7	17	14	7	6	9	25	12	1	12	12	16	12	5	15	4	3	4	6
12	4	8	5	1	8	12	8	10	5	8	12	10	13	17	17	5	12	8	4	2	1	1	6
4	11	6	9	0	9	15	14	6	3	12	14	9	2	7	3	10	12	0	0	0	0	0	0
0	0	0	0	0	0	9	7	7	4	9	6	5	6	10	11	8	10	16	11	28	22	30	11
16	6	41	18	15	8	10	15	12	4	7	7	7	9	6	14	4	9	10	11	6	14	3	5
5	3	7	4	19	8	3	3	4	16	12	22	19	11	25	12	7	5	5	6	7	6		-
1	2	2	14	4	9	9	14	22	9	15	11	6	6	18	24	22	5	3	3	0	12	1	2
4	6	5	7	5	7	7	19	18	8	39	28	42	33	24	19	13	11	7	4	6	6	3	5
6	10	1	9	7	11	7	14	5	23	10	27	21	44	46	11	12	6	10	4	9	8	3	5
3	3	16	16	13	22	32	3	8	7	6	19	19	12	10	23	13	7	8	3	21	4	3	6

 267 May 26 Friday

Table 3.5.7 (Page 1 of 4)

HFS . FKX Hourly distribution of detections

		11	2			16	14		14	14	13			37	27	17		9	15	20	12		20			May 27	day
148	4	7	14	9	10	5	18	11	19	7	14	6	4	9	14	10	13	20	6	4	12	15	7	0	238	May 28	リ
149	5	7	4	6	1	9	10	8	2	8	8	5	2	10	7	17	9	4	14	1	9	0	5	3	154	May 29	Monday
150	3	3	12	7	24	6	8	8	13	13	2	6	13	21	14	10	13	18	3	10	3	9	0	2	221	May 30	Tuesday
151	10	6	0	5	3	3	6	3	14	5	4	9	16	29	8	18	12	14	72	5	8		3	3	257	May 31	Wednesda
152	4	6	3	3	3	2	9	2	6	2	14	6	13	18	17	11	14	13	15	5	3	1	1	4	175	01	day
153	4	7	3	8	2	4	7	5	-	8	11	14	13	11	4	10	8	6	4		4	0	5	2	152	n 02	,
154	0	0	0	0	0	0	0	9	15	32	37	16	30	27	22	18	32	31	16		8	15	10	16	339	03	rday
55	18	21	15	2	13	7	6	10	13	6	4	6	10	11	4	9	5	4	4	2	4	2	5	4	185	$n 04$	day
156	2	6	3	1	5	6	5	20	7	7	17	21	7	11	13	10	15	4	4	2	9	9	6	10	200	05	day
157	7	1	6	8	13	5	2	4	1	2	5	6	3	14	2	17	3	7	10	15	4	6	14	10	165	06	day
158	4	9	8	7	2	1	17	8	14	11	9	8	7	14	21	8		8	4	1	7	8	6	10	195	07	W
159	7	3	3	5	2	0	1	5	3	20	23	39	18	22	17	8		3		4	10	10	7	16	239	08	Thursclay
160	22	0	4	1	3	9	3		7	7	6	20	26	10	16	9	4	12	9	1	1	4	12		197	109	Eriday
161	0	5	4	7	7	10	3	9	8	2	8	12	6	12	8	10	11	6	3	9	0		1		147	10	cday
162	3	3	6	5	7	1.4	10	8	6	10	10	9	10	6	4	12	14	18	13	15	13		11	3	214	11	y
163	8	2	4	5	6	7	11		5	12	7	34	19	16	13	2	0	0	0	0	3	11	18	20	209	12	lay
164	15	2	11	2	5	1	5	2	8	3	8	18	11	20	31	15	37	0	3		5	9	5	2	223	13	day
165	5	0	7	7	10	21	21	6	6	10	7	24	13	9	12	17	19	11	8		1	2	1	4	225	n 14	Wednesday
166	18	17	13	8	7	11	3	11	5	3	17	18	3	19	8	16		2	8		1	10		9	223	15	Thursday
167	3	4	2	2	8	12	11	19	21	16	12	28	11	23	21	28	7	13	9	14	13	2	1	3	283	16	Friday
168	9	9	10	0	8	7	12	8	13	7	23	7	20	17	24	12	22	19	11	20	8	13	3	4	286	17	rday
169	3	6	15	4	6	5	4	9	2	10	7	10	8	10	12	10	5	15	8	11	8			7	187	18	Sunday
170	3	9	5	11	13	11	8	12	45	11	11	19	11	24	24	23	10	3	11	10	6	2	5	2	289	19	Monday
171	3	14	2	4	18	9	11	7	11	15	12	1	0	0	0	0	0	16	19	7	11	17	6		190	20	Tuesday
172	3	5	3	4	14	11	10	7	3	0	8	13	20	33	10	17	13	4	12	6	10	7	1	2	216	21	Wednesday
173	3	12	0	10	7	4	2	14	14	4	5	10	18	10	21	19	17	15	25	6	8		2	7	239	22	Thursday
174	2	5	8	3	6	5	15	9	16	19	8	34	24	20	9	17	19	2	16	17	16	8	3	13	294	23	riday
175	5	3	9	6	3	3	13	27	15	11	17	26	17	18	5	17	18	30	24	19	7	11	15	11	330	24	rday
176	7	11	4	2	2	21	8	17	25	22	21	23	17	15	18	28	27	22	15	18	12	7	6	6	354	25	Sunday
177	8	1	11	4	15	24	15	12	6	15	31	9	8	16	16	13	20	18	8	10	14	17	3	5	299	26	Monday
178	9	2	1	4	13	15	23	10	12	15	17	21	12	21	30	27	16	16		2	1	2	2	2	279	27	Tuesday
179	5	1	8	23	19	26	10	18	33	29	31	48	36	28	19	24	10	10	7	7	7	7	4	2	412	28	Wednesday
180	2	5	12	23	21	29	6	27	10	19	14	12	37	7	30	19	21	3	10	15	8	3	2	18	353	29	Thursday
181	7		7	4	9	17	36	15	17	17	8	19	20	14	11	24	20	24	12	16	6		8	1	319	30	Friday
182	2	3	3	2	13	14	8	9	25	21	9	5	8	29	18	28	23	21	13	14	10	8	22	4	312	101	Saturday
183	5	7	0	6	14	5	9	8	17	11	14	26	16	14	21	16	15	38	13	15	18	4	6	5	303	1102	Sunday
184	9	11	6	6	15	18	10	16	13	8	19	23	18	31	31	11	18	8	11	9	26	10	14	6	347	03	Londay
185	5	4	4	16	17	32	13	29	3	6	20	32	44	30	17	13	37	16	23	10	13	4	14	3	405	104	huesday
186	10	6	6	12	4	9	9	25	18	35	54	34	37	29	32	16	34	6	14	10	21	3	1	7	432	105	Wednesday
18	3	3	0	4	6	28	13	8	14	3	23	24	16	8	31	12	20	15	11	12	7	10		3	274	106	Thursday
188	2	5	3	17	16	1.6	12	10	4	17	11	32	23	30	24	19	14	11	5	4	17	9	9	8	318	07	Friday
189	3	2	3	6	6	41	23	10	19	27	17	34	18	9	16	14	16	33	16	13	10	3	17	2	358	108	Saturday
190	13	3	23	4	3	7	12	11	4	7	20	27	25	18	31	23	44	29	20	15	24	8	3	4	378	1109	Sunday
191	9	3	7	2	5	7	26	4	8	3	2	0	4	25	31	43	23	27	23	21	14	5	9	16	317	110	tonday
192	7	0	4	5	8	5	9	7	13	9	9	15	10	26	15	19	17	13	9	11	7	13	16	12	259	11	uesday
193	2	15	6	2	9	9	9	9	18	20	19	20	22	13	21	31	34	16	11	25	11	13	9	5	349	12	Wednesday
194	11	5	5	9	6	8	18	45	23	20	11	19	4	27	16	22	21	29	22	17	8	6	4	2	358	113	Thursday
195	1	1	5	18	21	6	10	14	16	17	19	23	22	26	18	15	24	21	6	13	9	8	12	8	333	1 14	riday
196	2	8	6	6	7	6	15	6	12	31	22	21	30	15	14	13	12	21	17	38	9	12	16	20	359	115	aturday
197	26	45	35	50	51	25	16	25	30	20	24	27	23	15	6	17	21	14	4	27	2	10	3	28	544	16	Sunday
198	51	47	61	52	39	28	17	11	9	20	25	28	21	41	36	37	8	14	13	17	12	8	4	12	611	117	Monday
199	5	6	8	20	22	16	6	10	10		8	18	15	14	10	9	6	7	15	12	14	10	65	17	330	118	Tueaday
200	16	3	1	3	11	7	2	6	8	6	10	13	12	13	21	10	17	8	15	8	6	6	4	7	213	119	Hednesday
201	6	3	4	7	7	13	3	6	14	15	9	21.	9	9	11	16	17	12	5	5	8	6	6	13	225	ul 20	hursday
02	2	7	8	2	6	6	2	11	14	7	15	10	6	20	11	9	5	8	8	6	5	2	8	1	179	ul 21	Friday

Table 3.5.7 (Page 2 of 4)

HFS .FRX Hourly distribution of detections

203	8	3	14	3	4	0	19	28	18	16	22	23	9	45	25	2	18	3	17	25	17	1	9		354	Jul	22	Saturday
204	6	10	2	10	9	6	13	13	20	13	24	40	36	17	10	1.4	16	18	12	15	8	3	1	2	318	Jul	23	Sunday
05	8	7	1	3	1	6	13	7	5	16	15	14	11	15	18	6	16	6	15	22	13	0	2	5	225	Jul	24	Monday
06	1		5	10	6	9	14	25	10	2	27	10	21	15	27	28	32	18	22	8	19	11	13	8	346	1	25	Tuesday
07	8	10	10	15	26	24	13	16	10	22	28	6	17	15	19	25	24	29	24	16	25	13	7	18	420	1	26	Wedneaday
208	6	9	11	21	23	24	22	7	7	4	9	9	22	15	33	44	21	14	13	8	6	6	18	3	355	ul	27	Thursciay
09	1	4	1	8	10	10	13	16	9	15	17	16	6	9	32	22	12	17	19	15	15	15	8	6	296	1.	28	Friday
210	18	6	10	2	3	4	8	9	26	14	22	20	17	15	22	17	17	18	15	15	21	1	10	3	313	1	29	Saturday
211	8	5	9	4	0	34	18	18	16	24	41	18	38	16	24	26	23	14	11	18	4	19	8		403	ul	30	Sunday
12	33	37	21	29	25	2	1	7	11	18	14	17	15	21	9	20	9	14	10	18	7	0	14	4	356	1	31	Monday
3	5	17	43	18	11	2	2	4	6	9	7	9	24	27	6	10	12	4	8	12	2		5	5	252	g	01	Tuesday
214	1	45	21	12	16	6	1	3	7	5	9	12	14	16	6	17	4	10	6	12	3	8	6	a	240	Aug	02	Wednesday
215	4	13	18	22	9	3	9	12	12	9	5	12	10	13	30	6	8	25	6	1	11	8	12	5	263	Aug	03	Thursday
16	5	3	10	9	3	5	8	2	2	7	10	4	17	15	25	13	6	10	10	13	18	11	7	14	227	g	04	Friday
217	10	12	9	7	13	12	9	4	10	19	11	13	9	8	21	19	17	22	11	10	9	20	14	17	306	Aug	05	Saturday
218	14	23	18	10	16	19	4	8	12	10	13	15	19	8	15	17	19	17	6	12	6	5	4	18	308	Aug	06	Sunday
219	11	2	7	10	4	1	7	6	0	5	6	14	6	13	14	3	9	8	4	10	6	3	3	4	156	Aug	07	Monday
220	11	10	6	3	4	5	3	7	6	2	5	14	20	22	1	10	11	8	7	13	2	2	2	3	177	g	08	uesday
221	1	2	3	8	5	3	1	8	5	6	11	5	6	13	8	14	4	6	3	4	8	1	5	7	137	Aug	09	Fednesday
222	10	2	1	4	2	3	8	3	7	10	8	39	40	1	11	24	5	5	7	8	5	10	4	8	225	Aug	10	Thursday
23	11	8	5	14	5	2	2	4	5	24	20	16	14	6	11	10	7	7	7	4	4	8	7	2	203	Aug	11	iday
224	4	2	14	16	18	7	9	14	13	15	8	13	25	10	13	18	5	12	21	29	17	20	18	22	343	Aug	12	aturday
225	11	19	21	17	15	19	11	19	17	23	22	14	12	11	7	15	20	13	16	8	19	10	12	4	355	Aug	13	Sunday
226	7	6	4	7	13	7	2	2	6	9	4	8	9	2	15	5	3	7	15	2	3	2	10	4	152	ug	14	Monday
227	2	4	7	13	5	6	5	4	4	4	9	8	18	18	15	6	3	6	5	6	2	3	2	6	161	ug	15	Tuesday
228	6	3	10	12	2	6	0	2	4	15	24	28	15	6	24	23	13	12	7	3	1	9	2	22	255	g	16	Wednesday
229	22	4	4	5	0	11	4	1	3	5	10	22	14	20	7	10	15	8	5	4	13	9	9	18	223	A	17	Thursday
30	8	2	13	9	13	9	3	2	11	31	17	25	11	23	9	7	4	4	6	10	11	8	11	11	258	ug	18	Friday
231	8	9	8	8	13	0	11	5	8	6	6	5	17	10	8	15	7	10	19	11	19	16	20	13	252	ug	19	Saturday
33	15	15	8	22	10	10	12	9	4	13	7	10	13	5	2	3	4	14	15	14	12	11	4	4	236	aug	20	Sunday
233	14	4	12	3	6	4	0	5	6	10	3	7	11	10	10	13	9	7	12	2	4	2	0	1	155	ug	21	Monday
234	2	11	4	2	4	23	14	17	4	5	1	10	39	13	18	12	5	8	2	2	1	0	10	4	211	g	22	Tuesday
3	4	6	9	7	3	12	15	30	25	3	6	5	8	9	4	15	18	7	6	5	6	2	5	4	214	ug	23	Wednesday
236	6	6	15	0	10	3	10	3	17	3	21	24	13	8	8	14	11	9	1	2	6	11	3	1	205	Aug	24	Thursday
37	2	1	9	10	4	2	4	5	4	22	5	28	21	11	17	13	13	12	11	9	12	4	6	13	238 A	Aug	25	Friday
238	6	9	20	12	18	18	13	18	5	2	13	4	11	11	11	13	11	6	24	15	22	18	10	6	296	Aug	26	Saturday
339	33	6	17	15	12	15	4	13	5	12	3	10	8	10	3	6	6	10	15	9	6	5	2	10	235	Aug	27	Sunday
40	11	2	11	1.3	6	0	0	5	0	1	15	19	9	26	11	19	6	3	3	2	7	1	6	3	179	Aug	28	Monday
	9	4	4	10	4	0	1	5	7	17	7	11	5	18	17	8	10	6	8	10	2	7	12	7	189	Aug	29	Tuesday
	15	1	3	9	8	6	6	3	12	9	10	8	20	15	16	16	7	13	7	0	3	11	5	12	21.5	Aug	30	Wednesday
	5	3	1	10	7	2	5	5	18	4	8	12	3	15	8	11	4	14	13	3	5	8	8	5	177	Aug	31	Thursday
	3	3	4	7	6	9	12	7	22	4	7	14	2	12	11	6	7	4	1	5	2	5	2	5	160	Sep	01	Friday
	14	3	16	8	3	2	3	2	9	7	4	11	4	1	1	6	5	7	7	7	12	4	5	4	145	Sep	02	Saturday
	6	12	12	11	12	9	8	3	5	14	12	10	9	13	0	13	8	1	6	8	8	3	10	14	207	Sep	03	unday
	11	5	9	7	24	2	9	12	12	7	8	15	24	8	13	4	4	11	3	3	4	3	6	4	208	Sep	04	Monday
	9	3	5	2	2	13	2	8	10	8	6	16	15	16	24	10	14	9	3	11	10	3	1	3	203	Sep	05	Thesday
	5	8	2	6	9	2	4	14	1.1	5	14	13	10	11	14	9	17	6	4	4	13	8	6	12	207	Sep	06	Wednesday
	5	2	10	20	3	9	3	5	17	9	11	7	18	12	15	5	14	8	7	2	2	7	5	11	207	Sep	07	Thursday
	13	8	3	11	12	2	1	2	4	18	8	6	5	4	10	6	12	6	7	23	8	4	7	11.	191	Sep	08	Friday
	5	7	5	10	5	9	6	4	9	10	6	6	14	26	2	5	2	12	18	25	16	18	17	19	256	Sep	09	Saturday
	24	8	20	12	10	18	14	16	7	13	16	9	4	15	10	14	2	8	7	7	6	6	6	10	262 S	Sep	10	Sunday
	6	11	9	6	10	9	4	10	8	8	13	9	17	5	10	6	14	3	4	2	10	2	3	6	185	Sep	11	Monday
	4	2	11	14	5	4	3	10	5	17	4	11	9	12	26	6	20	10	9	3	14	10	3	1	213	Sep	12	Tuesday
	1	6	5	28	14	10	6	9	24	11	8	21	19	12	27	8	8	10	6	1	2	8		1	252	Sep	13	Wednesday
	6	12	8	24	24	9	14	9	4	12	9	9	17	34	13	15	13	22	5	3	5	6	3	7	283	Sep	14	hursday
	1	6	5	10	6	11	13	13	16	3	6	16	6	19	33	5	12	18	5	4	7	8	2	2	227	S	15	Friday

Table 3.5.7 (Page 3 of 4)

Table 3.5.7. (Page 4 of 4) Daily and hourly distribution of Hagfors array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day

3.6 IMS operation

The Intelligent Monitoring System (IMS) was installed at NORSAR in December 1989 and was operated at NORSAR from 1 January 1990 for automatic processing of data from ARCESS and NORESS. A second version of IMS that accepts data from an arbitrary number of arrays and single 3 -component stations was installed at NORSAR in October 1991, and regular operation of the system comprising analysis of data from the 4 arrays ARCESS, NORESS, FINESS and GERESS started on 15 October 1991. As opposed to the first version of IMS, the one in current operation also has the capability of locating events at teleseismic distance.

Data from the Apatity array were included on 14 December 1992, and from the Spitsbergen array on 12 January 1994. Detections from the Hagfors array were available to the analysts and could be added manually during analysis from 6 December 1994. After 2 February 1995, Hagfors detections were also used in the automatic phase association.

The operational stability of IMS has been very good during the reporting period. In fact the IMS event processor (pipeline) has had no downtime of its own; i.e., all data available to IMS have been processed by IMS.

Phase and event statistics

Table 3.6.1 gives a summary of phase detections and events declared by IMS. From top to bottom the table gives the total number of detections by the IMS, the number of detections that are associated with events automatically declared by the IMS, the number of detections that are not associated with any events, the number of events automatically declared by the IMS, the total number of events defined by the analyst, and finally the number of events accepted by the analyst without any changes (i.e., from the set of events automatically declared by the IMS)

Due to reductions in the FY94 funding for IMS activities (relative to previous years), new criteria for event analysis were introduced from 1 January 1994. Since that date, only regional events in areas of special interest (e.g, Spitsbergen, since it is necessary to acquire new knowledge in this region) or other significant events (e.g, felt earthquakes and large industrial explosions) were thoroughly analyzed. Teleseismic events were analyzed as before.

To further reduce the workload on the analysts and to focus on regional events in preparation for Gamma-data submission during GSETT-3, a new processing scheme was introduced on 2 February 1995. The GBF (Generalized Beamforming) program is used as a pre-processor to IMS, and only phases associated to selected events in northern Europe are considered in the automatic IMS phase association. All detections, however, are still available to the analysts and can be added manually during analysis.

There is one exception to the new rule for automatic phase association: all detections from the Spitsbergen array are passed directly on to the IMS. This allows for thorough analysis of all events in the Spitsbergen region.

	Apr 95	May 95	Jun 95	Jul 95	Aug 95	Sep 95	Total
Phase detections	67747	86293	66994	52292	90234	103062	466622
- Associated phases	4006	6298	5266	2314	6015	8113	32012
- Unassociated phases	63741	79995	61728	49978	84219	94949	434610
Events automatically declared by IMS	888	1603	1283	476	1710	2549	8509
No. of events defined by the analyst	50	111	131	55	62	106	515
No. of events accepted without modifications	0	0	1	0	0	0	1

Table 3.6.1. IMS phase detections and event summary.
U. Baadshaug
B. Ferstad
B.Kr. Hokland
L.B. Loughran

B. Paulsen

4 Improvements and Modifications

4.1 NORSAR

NORSAR data acquisition

The final phase of the NORSAR refurbishment has comprised installation of short period seismometers in the Short Period Vaults - SPVs.

The technical challenge of installing new equipment in the more than 25 year old vaults has been almost overwhelming. The SPV sites are in remote mountain areas with no access roads and no AC power. DC power is obtained through the old buried cables, which are up to 14 km long. Thus DC power supply has been the largest problem. The new seismometer installation requires DC power to the amplifier, the digitizer, the GPS clock and the modems. Numerous experiments and tests have been performed to find and acquire modems, batteries and other electronics necessary to control and operate the seismometer, amplifier and digitizer at the lowest possible power consumption.

The Teledyne Brick Amplifiers 57010-0107 were delivered in July 1995, and the new Teledyne Geotech 20171-0104 instruments were delivered in August 1995.

Patton Electronics modems for transmission of data between the SPV and the Central Terminal Vault - CTV - were delivered in August and October 1995.

During September/October 1995, old electronics and seismometer equipment from 7 CTVs, 7 LPVs (Long Period Vaults) and 42 SPVs have been removed. The sites have thereafter been refurbished with new moisture-resistant paint and new lids.

All electronics have been prepared and mounted in sealed boxes at the Maintenance Center at Hamar for a "plug-in" mode of installation. This has reduced the time of installation, and has allowed completion of the installation during November 1995. The CTV, LPV and SPV sites have been completely rebuilt with respect to instrumentation.

See NORSAR Sci. Rep No. 2-93/94 and NORSAR Sci. Rep No. 2-94/95 for a detailed description of the installations within SPVs and LPVs.

The Science Horizons XAVE data acquisition system has been operating satisfactorily during the intermediate installation period. A block diagram of the digitizer and communication controller components is found in NORSAR Sci. Rep No 2-94/95.

An example of recording from the new instrumentation is shown in Fig. 4.1. A test period with different combinations of gain resulted in using the Brick amplifier together with a gain of 10 in the AIM24 digitizer. This gave the best signal-to-noise ratio for frequencies above 2 Hz .

The NORSAR array has 42 short period seismometers, logically grouped into 7 subarrays. For data requests from stations that participate in GSETT-3, it is usual to have one name
that signifies the full array and then individual station names of the individual components. For NORSAR it is suggested that NORSAR signify the full array, NAO signify all components of subarray 01A, a.s.o. See table 4.1 for the site naming convention for the NORSAR array.

Table 4.1.1. NORSAR site naming. The table shows original subarray names, ISC codes of the center instrument in each subarray and suggested names of each of the 6 SPV sites.

Old	(Sub)ar- ray name	Site names
	NORSAR	All sites within NORSAR
01A	NAO	NA1-00, NA1-01, NA1-02, NA1-03, NA1-04, NA1-05
01B	NBO	NB1-00, NB1-01, NB1-02, NB1-03, NB1-04, NB1-05
02B	NB2	NB2-00, NB2-01, NB2-02, NB2-03, NB2-04, NB2-05
02C	NC2	NC2-00, NC2-01, NC2-02, NC2-03, NC2-04, NC2-05
03C	NC3	NC3-00, NC3-01, NC3-02, NC3-03,NC3-04, NC3-05
04C	NC4	NC4-00, NC4-01, NC4-02, NC4-03, NC4-04, NC4-05
06C	NC6	NC6-00, NC6-01, NC6-02, NC6-03, NC6-04, NC6-05

NORSAR detection processing

The NORSAR detection processor has been continuously updated for the differences in acquisition system, and has been running satisfactorily. To maintain consistent detection capability, the NORSAR beam tables have not been changed.

Detection statistics for the NORSAR array are given in section 2.

NORSAR event processing

The routine processing of NORSAR events as described in NORSAR Sci. Rep No 2-93/94 has been continuously updated for the differences in acquisition system, and has been running satisfactorily.

J. Fyen

Fig.4.1.1. Schematic illustration of remote SPV electronics. The buried cable between the SPV and the CTV is used for both power and data. The GPS antenna is installed outside the vault, inside a vertical PVC sewage pipe with a lid. The four boxes with electronics all fit into the original zinc-tank vaults. The sensitivity of the 20171-0104 seismometer is $650 \mathrm{~V} / \mathrm{m} / \mathrm{s}$, and a damping of 0.707 is used. The gain of the Brick amplifier is 39.8, and an additional gain of 10 is used in the AIM24 digitizer.

Figure 4.I.2 A Caspian event as recorded by the new short-period instrumentation at NC6-02/sz which is co-located with NRA0/sz. The two lower traces are original data after DC offset removal. The two upper traces are filtered $2-4 \mathrm{~Hz}$.

5 Maintenance Activities

Activities in the field and at the Maintenance Center

This section summarizes the activities at the Maintenance Center (NMC) Hamar, and includes activities related to monitoring and control of the NORSAR teleseismic array, as well as the NORESS, ARCESS, FINESS, GERESS, Apatity, Spitsbergen and Hagfors small-aperture arrays.

Activities involve preventive and corrective maintenance, planning and activities related to the refurbishment of the NORSAR teleseismic array.

NORSAR

Visits to subarrays in connection with:

- Removal of Guralp broadband instrument, LPV 06C, at completion of test period
- Installation of overvoltage protection at all subarrays
- Repair of power supplies at remote sites after heavy thunderstorm
- Maintenance work on the CTVs and LPVs
- Installation of GPS clocks in LPVs
- Installation of JB-boxes and GPS clocks at remote sites

NORESS

- Repair of Hub 14 digital card which had been damaged by lightning
- Repair of fiber optical link to remote sites C7 and D7
- Repair of LF-DC synchronized clock
- Repair of broken power supply a remote site B4
- Replacement of CPU card and repair of broken power supply at remote site C5.
- Repair of fiber optical link and power supply are remote sites

ARCESS

- UPS unit found to be defective. Switched to bypass position (July 95)

Spitsbergen

- Charged batteries and replaced a defective windmill (April 95)
- Replacement of fuse on RD6 remote digitizer no. 2. RD6 no. 1 found to be defective
- Replacement of RD6 digitizer no. 1 (May 95)
- Installation of Guralp broadband seismometer in borehole B4
- Failure of NORAC data collection device. Sent to NORSAR for repair (June 95)
- NORAC reinstalled in Longyearbyen (July 95). No data received in Longyearbyen over the radiolink due to low battery voltage at the site.

NMC

- Continued the NORSAR refurbishment work

Additional details for the reporting period are provided in Table 5.1.

P.W. Larsen

K.A. Løken

Subarray/ area	Task	Date
April 199%		
NORSAR	Disconnected Guralp broadband instrument from borehole CPV 06C. Test period ended.	27/4
Spitsbergen	Replaced windmill and charged the batteries Checked battery voltage and acid level in batteries Replaced fuse on RD6 remote digitizer no. 2. RD6 no. 1 found to be defective	$\begin{aligned} & 6-8 / 4 \\ & 19-21 / 4 \end{aligned}$
NMC	NORSAR refurbishment work continued.	April
May Ioss		
$\begin{aligned} & \text { NORSAR } \\ & \text { 03C } \end{aligned}$	Reset CIMs at 03C due to power failure	8-10/5
SptisbergenNMC	Replaced RD6 digitizer no. 1 Installed Guralp broadband seismometer in borehole B4	8-10/5
	Continued NORSAR refurbishment work	May
गHens95		
NORSAR		
01A	Installed new modem	8/6
02B	Installed overvoltage protection	1/6
	Reset CIM2 data collection device	29/6
03C	Installed overvoltage protection	1/6
06C	Installed overvoltage protection 220 V AC power failure due to lightning	12/6
	Installed overvoltage protection. Adjusted gain	2/6
	Installed overvoltage protection. Adjusted gain	6/6
	Installed overvoltage protection. Adjusted gain. Modem failure due to lightning	7/6
	Reset CIM2 data collection device	29/6

Subarray/ area	Task	Date
Spitsbergen NMC	Failure with the NORAC data collection device. Sent to NORSAR for repair Continued NORSAR refurbishment work	20/6 June
IMWI\%\%		
NORSAR	A heavy thunderstorm over the array damaged all power supplies for the remote sites	18/7
02C	Communications problems between site 02 C and NDPC Replaced modem at 02C, but still problems due to defective communication line.	$\begin{aligned} & 25 / 7 \\ & 26 / 7 \end{aligned}$
06C	Pointed out cable 06CSP01 in connection with cultivation	4/7
NORESS	Repaired Hub 14 digital interface card which had been damaged by lightning Repaired fiber optical link to remote sites C7 and D7	$19 / 7$ $27 / 7$
ARCESS	The UPS unit was found to be defective, probably damaged by overvoltage on the main 220 V AC line. The UPS was switched to bypass position	17/7
Spitsbergen	NORAC reinstalled in Longyearbyen. No data received in Longyearbyen over the radio link due to low battery voltage at the site	6/7
NMC	Continued NORSAR refurbishment work	July
NORSAR	NORSAR refurbishment work continued at all CTV, LPV and remote sites	August
01B	Repaired broken power supply in CIM master unit Site 01B shut down. Started maintenance of the CTV and LPV (NORSAR refurbishment)	$\begin{array}{\|l\|} \hline 3 / 8 \\ 21 / 8 \\ \hline \end{array}$

Subarray/ area	Task	Date
02B	Site 02B shut down. Started maintenance of the CTV and LPV. Installed GPS clock in LPV (NORSAR refurbishment)	28-29/8
02C	Site 02C shut down. Started maintenance of the CTV and LPV. Installed BPS and JB-boxes at all remote sites (NORSAR refurbishment)	22-25/8
03C	Site 03C shut down. Started maintenance of CTV and LPV (NORSAR refurbishment)	29/8
04C	Visited site due to failure on main 220 V AC power line.	4/8
NORESS	Repaired LF-DC synchronized clock	8/8
NMC	Continued NORSAR refurbishment work.	August
Septmtermsot		
NORSAR	NORSAR refurbishment work continued at all CTV, LPV and remote sites	September
01A	Site 01A shut down. Started maintenance of CTV and LPV. Installed JB-boxes and GPS at all remote sites. (NORSAR refurbishment)	7/9
04C	Site 04C shut down. Started maintenance of CTV and LPV. Installed JB-boxes and GPS at all remote sites. (NORSAR refurbishment)	5/9
NORESS	Repaired broken power supply at remote site B4	17/9
	Replaced CPU card and repaired broken power supply at remote site C5. Replaced fiber optical link and power supply at remote site D6.	18/9
NMC	Continued the NORSAR refurbishment work	September

Table 5.1. Activities in the field and the NORSAR Maintenance Center during 1 April - 30 September 1995.

6 Documentation Developed

Argo, P., R.A. Clark, A. Douglas, V. Gupta, J. Hassard, P.M. Lewis, P.K.H. Maguire, K. Playford \&F. Ringdal (1995): The detection and recognition of underground nuclear explosions. Suveys in Geophysics, 16, 495-532.

Fyen, J., F. Ringdal \& B. Paulsen (1995): Development of improved NORSAR time delay corrections. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 195/96, Kjeller, Norway.

Harjes, H.-P., M. Jost \& J. Schweitzer (1994): Preliminary calibration of candidate alpha stations in the GSETT-3 network, Ann. Geof., XXXVII, 383-396.

Lindholm, C. (1995): Analysis of data recorded at the Spitsbergen array. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Kremenetskaya, E.O., F. Ringdal, I. Kuzmin \& V.E. Asming (1995): Seismological aspects of underground mining activity in the Khibiny Massif. Russian Academy of Sciences, Kola Science Centre, Kola Regional Seismological Centre, Apatity, Russia.

Kremenetskaya, E.O. \& V.M. Trjapitsin (1995): Induced seismicity in the Khibiny Massif (Kola Peninsula). PAGEOPH, 145, 1, 29-37.

Kværna, T. (1995): Automatic onset time estimation based on autoregressive processing. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Mykkeltveit, S. \& U. Kradolfer (1995): Recommendation on Auxiliary Seismic Stations for the IMS Network. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Mykkeltveit, S. , B.Kr. Hokland \& U. Baadshaug (1995): A comparison of the NORSAR array monthly bulletin with the Reviewed Event Bulletin (REB) of the GSETT-3 IDC. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Ringdal, F. (1995): Magnitude estimation at the IDC - a case study. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Ringdal, F., T. Kværna \& S. Mykkeltveit: Global seismic threshold monitoring and automated network processing. Paper presented at the ARPA CTBT Monitoring Technologies Conf. 1995.

Schweitzer, J. (1995): An assessment of the estimation mean mislocation vectors for small-aperture arrays. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Semiannual Tech. Summary, 1 October 94 - 31 March 1995, NORSAR Sci. Rep. 2-94/95, NORSAR, Kjeller, Norway.

7 Summary of Technical Reports / Papers Published

7.1 Analysis of data recorded at the Spitsbergen array

Introduction

This report presents results from analysis of data recorded at the Spitsbergen array (SPITS) from events in the Svalbard region during the period July through December 1994. Through this period 1258 seismic events in the Svalbard region were manually checked and located using data from the SPITS array.

Recording Performance

Since the installation of the Spitsbergen array in 1992, the SPITS data have been processed at NORSAR in the following way:

- From 11 December 1992 data from SPITS were included in the manual Intelligent Monitoring System (IMS) analysis when the data quality allowed for it. During the manual review of the automatic IMS results from the processing of data from the other arrays in the northern European region, the NORSAR analysts manually added the relevant SPITS data for the events already defined by the IMS.
- From 12 January 1994 the SPITS data were fully integrated in the IMS and automatically processed in the same way as the data from the other arrays.

Only data that have been manually checked are included in the analysis and shown in the maps in this report.

As indicated in Fig. 7.1.1 the recording performance from July through December 1994 was very good with no month except August having less than 90% uptime. The low uptime in August reflects the field work performed during 22-31 August, when cables were put in trenches, the $\mathrm{S}-500$ seismometers were replaced with Guralp extended shortperiod (CMG3ES) seismometers and new batteries were installed. Also, a three-component Guralp broad band instrument (CMG-3T) was installed at site B4.

The gain factor and filtering of the new instrumentation was changed on 19 November. For the short period instruments the gain was changed from $6.1 \mu \mathrm{~V} / \mathrm{bit}$ to $0.61 \mu \mathrm{~V} / \mathrm{bit}$, and for the broad band instrument the new gain was set to $1.2 \mu \mathrm{~V} / \mathrm{bit}$. At this visit also the highpass filter corner frequency was changed from 10 to 2 seconds for the short-period instruments. The effect of this change is that we get better on scale recordings of regional seismic events, as can be seen in the difference between the 8 October and 24 November recordings in Figs. 7.1.8 and 7.1.9.

Detections and Locations

The total number of automatically determined event locations for which data from the SPITS array were used was 1378 events during the 6 months from 1 July through 31 December 1994, whereas the number of manually reviewed locations where SPITS data were used was 1258 .

An overview of the Svalbard region is shown in Fig. 7.1.2, showing the location of the SPITS array and the KBS three-component station. In the same figure the four main mining sites (Pyramiden, Barentsburg, Svea and Gruve 3 \& 7) are indicated.

Figs. 7.1.3 and 7.1.4 show the locations of reviewed seismic events in the period covered as well as those recorded on the array since the installation. The Mohns Ridge and the Knipovitch Ridge show a relatively high seismic activity as should be expected for these parts of the mid-Atlantic spreading ridge system. Possibly more interesting are the clusters of seismic activity on and off shore Svalbard:

1) In the northeast, Nordaustlandet shows a dispersed seismic activity at a relatively high rate, and with a possible $\mathrm{E}-\mathrm{W}$ lineation over the central part.
2) In the Heerland area east of the Svea mine the seismic activity is very high and concentrated within a relatively small area.
3) East of the southern tip of Svalbard, in Storfjorden, a high activity seismic cluster in a relatively small area is found. The activity seems to extend in a northeasterly direction from this cluster.
4) Southeast of Egdeøya (in the Barents Sea) a more dispersed seismic activity is seen.

Some of the seismic clusters above have been recognized by earlier investigators (Bungum et al, 1982; Mitchell et al, 1990), notably the Heer Land zone and the Nordaustlandet seismicity, but also the more dispersed seismicity described under 3) above.

It is also of interest to observe that the Barents Sea south and east of the zone described under 4) seems to be void of seismic activity, and this is also the case for the off shore areas east of the Svalbard Archipelago.

The clustering of seismic events was so intriguing that a cluster analysis of the database was performed in terms of location, magnitude and time of day as shown in Fig. 7.1.5. From this figure it can be concluded that the seismicity shows a clear geographic clustering in the areas mentioned above, but that no clear clustering can be observed in the time of day distribution. This lack of time clustering around certain hours is a very good indicator that the data are real earthquakes and not man-made events, that tend to cluster in certain "firing" hours.

A very crude analysis of the Gutenberg-Richter recurrence parameters was attempted with the M_{L} magnitudes calculated. Most of the events in the area $76^{\circ} \mathrm{N}-80^{\circ} \mathrm{N}$ and $10^{\circ} \mathrm{E}-$ $25^{\circ} \mathrm{E}$ had no magnitudes assigned, or had an m_{b} magnitude assigned. There were 61 earthquakes with M_{L} magnitudes greater than or equal to 2.0. The regression analysis yielded a relation

$$
\begin{equation*}
\log N=4.06+1.25 \cdot M_{L} \tag{1}
\end{equation*}
$$

which for the area under consideration tentatively would indicate return periods of 9 years for magnitude 4 and above and 150 years for magnitude 5 and above. As seen from Fig. 7.1.6 the b value is stable; however, the small amounts of data and the different tectonic environments covered (spreading ridge, oceanic crust and continental crust) certainly warrants further investigations with more data in order to obtain more reliable return periods.

Data examples

The broad band capability of the new extended short-period Guralp sensors is demonstrated through the records shown in Fig. 7.1.7 of the Chinese nuclear test on 7 October 1994. Figs 7.1.8 and 7.1.9 show SPITS recordings from events on the Knipovitch Ridge and Zone 3 (see list above), respectively. These two events occurred before and after the sensors were changed, and the difference in data quality should be evident. The new Guralp extended short-period sensors provide resolution also of the lower frequencies, where the larger earthquakes are particularly rich in energy. The smaller nearby earthquakes do not have sufficient low frequent energy to exceed the background noise, and hence must be filtered before the signal can be recognized.

C. Lindholm

References

Bungum H., B.J. Mitchell and Y. Kristoffersen (1982): Concentrated earthquake zones in Svalbard. Tectonophysics, 82, pp. 175-188.

Mitchell B.J., H. Bungum, W.W. Chan and P.B. Mitchell (1990): Seismicity and present day tectonics of the Svalbard region. Geophys. J. Int., 102, pp. 139-149.

Fig. 7.1.1. Monthly uptime in percent for the SPITS on-line data recording during July-December 1994, taking into account all factors (field installations, transmission line, and data center operation) that affect the recording uptime.

Fig. 7.1.2. Geographic names in the Svalbard region for main sites and areas mentioned in the text.

Fig. 7.1.3. Events located with data from the SPITS array in the six month period July through December 1994. Filled symbols represent epicenters within this reporting period, whereas open circles represent epicenters from before this reporting period.

Fig. 7.1.4. Events located with data from the SPITS array in the six month period July through December 1994. Filled symbols represent epicenters within this reporting period, whereas open circles represent epicenters from before this reporting period.

Fig. 7.1.5. Cluster plot of the seismic events in the region $76^{\circ} \mathrm{N}-80^{\circ} \mathrm{N}$ and $10^{\circ} \mathrm{E}-25^{\circ} \mathrm{E}$. A strong correlation between any two of the four parameters latitude, longitude, hour of the day and magnitude would have been revealed here.

Fig. 7.1.6. Recurrence relation based on M_{L} magnitudes and a small sample of events (61) from the region $76^{\circ} \mathrm{N}-80^{\circ} \mathrm{N}$ and $10^{\circ} \mathrm{E}-25^{\circ} \mathrm{E}$.

Fig. 7.1.7. Recording of the October 7, 1994, Chinese nuclear test at the SPITS array. The upper two records are unfiltered short-period channels for vertical instruments at sites A0 and A1, and the lower two records are the $4-8 \mathrm{~Hz}$ bandpass filtered records for the same two sensors.

Fig. 7.1.8. Recording at SPITS of the 8 October 1994, $3.5 m_{b}$ earthquake on the Knipovitch Ridge $\left(78.2^{\circ} N, 7.8^{\circ} E\right)$

Fig.7.1.9. Recording at SPITS of a 24 November 1994 earthquake off shore and south of the Heer Land Zone ($77.1^{\circ} N, 17.9^{\circ} E$). The upper three channels are raw short-period recordings, whereas the lower three traces are 2-15 Hz band pass filtered data for the same three instruments.

7.2 A comparison of the NORSAR array monthly bulletin with the Reviewed Event Bulletin (REB) of the GSETT-3 IDC

Introduction

The NORSAR teleseismic array has during the fall of 1995 undergone a complete technical refurbishment with respect to its electronic field components (seismometers, analog-to-digital converters and communications interfaces). Following completion of this effort, the NORSAR array will be used as an Alpha (primary) station in GSETT-3 and thus be among the stations that determine the event detection capability of the GSETT-3 network.

In order to assess the future contributions of the NORSAR array in GSETT-3, we have compared the REB issued by the GSETT-3 IDC with the NORSAR array bulletin for the period January - August 1995. The NORSAR bulletin is issued on a monthly basis and comprises events detected and located by the NORSAR teleseismic array on a stand-alone basis. During January - August 1995 the NORSAR array was operated in a temporary configuration, using the old HS-10 short period seismometers and Nanometrics RD-6 18-bit digitizers.

The comparison between the REB and the NORSAR monthly bulletin involved the determination of events in the REB that were not in the NORSAR bulletin, events that were clearly common but where the event solutions differed substantially, and events in the NORSAR bulletin for which there were no counterparts in the REB. Only events in the latter category are dealt with in this short contribution.

Analysis and discussion

Table 7.2.1 lists 207 events from the NORSAR bulletin during January - August 1995 for which there are no corresponding events in the GSETT-3 REB. The events in this table are plotted in Fig. 7.2.1. Most of the events are seen to cluster in four areas: the Balkans, Hindukush, Japan and the Kuriles, and the Fiji-Tonga-Kermadec area.

Based on their long experience with data from the NORSAR array, our analysts believe all 207 events in Table 7.2.1 to be real ones. Note, however, that the event epicenters may have an uncertainty of up to several hundred kilometers, as they are based on apparent velocities and arrival azimuths measured at one array station only. Only 11 of these 207 events are confirmed by the PDE bulletin, and the relevant PDE solutions are also given in Table 7.2.1.

For an event to appear in the REB it must have defining P-phases from three or more primary stations of the GSETT-3 network. The primary stations of the GSETT-3 network as of 26 August 1995 are shown in Fig. 7.2.2. The estimated detection capability of this network is shown in Fig. 7.2.3. The theoretical detection threshold for all four regions named above are seen in Fig. 7.2.3 to be at magnitude 4 and above, in terms of a 90% probability of P-wave detection at three primary stations in the GSETT-3 network.

By inspecting the magnitudes for the events in Table 7.2.1, one finds that the large majority of the events have magnitudes below the theoretical detection threshold of the GSETT3 network in place by the end of the time interval under study. A few events in the Balkan area, however, do have NORSAR magnitudes slightly above the GSETT-3 neiwork threshold. These events are from the Greece earthquake sequence in May 1995, which has been studied in detail by Ringdal (1995). The fact that a few events above the 90% threshold have not been reported is of course not necessarily a contradiction, and as shown in the mentioned paper, the REB detectability for the Balkan area is consistent with the theoretical estimates inferred from Fig. 7.2.3. Some events in the Japan-Kuriles region have NORSAR magnitudes of the order of the network threshold or slightly above, but again, this is to be expected. In general, our data confirm the validity of the theoretically estimated GSETT-3 detection capability.

Conclusion

Taking into account the uncertainty in the magnitude estimates, one may conclude that this investigation has qualitatively confirmed the theoretical detection thresholds of the GSETT-3 network in the four regions considered. Also, it shows that introduction of the NORSAR teleseismic array in the GSETT-3 primary network in the near future holds promise that more events from these four regions will enter the REB. In this connection, it should be noted that the on-going implementation of an improved NORSAR detector algorithm (Fyen et al, 1995) might add further events from areas where the NORSAR array is especially sensitive.

S. Mykkeltveit
 B.K. Hokland
 U. Baadshaug

References

Fyen, J., F. Ringdal \& B. Paulsen (1995): Development of improved NORSAR time delay corrections. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Ringdal, F. (1995): Magnitude estimation at the IDC - a case study. Semiannual Technical Summary, 1 April - 30 September 1995, NORSAR Sci. Rep. 1-95/96, Kjeller, Norway.

Table 7.2.1. This table lists 207 events from the NORSAR monthly bulletin for the period January - August 1995 for which there are no corresponding entries in the REB of the GSETT-3 IDC. PDE event solutions for 11 of these events are also given in the table.

MOMSA					YUE				
Q Matek				M\%					
January									
04	10.59.12	33N	78E	3.5					
08	11.14.27	29N	88E	3.7					
08	17.49.20	46N	149E	3.9					
09	02.51.38	46N	148E	4.2					
10	17.59.22	34N	77E	3.9					
11	15.01.28	27S	179E	3.7					
12	02.38.22	31N	141E	3.8					
13	06.32 .36	44N	151E	4.2					
13	08.03.21	31N	140E	3.9					
13	23.05.02	47N	149E	3.8					
14	12.14.00	32N	75E	3.7					
16	07.36.09	26S	173W	3.8					
17	18.58 .23	45N	147E	4.0					
17	22.53.30	41N	142E	3.8					
18	14.23.01	46N	148E	4.1					
19	10.01.21	47N	148E	4.3					
19	18.17 .58	32S	176W	3.9					
23	08.03 .45	33N	92E	4.0	08.03.35	32 N	93E	33	3.8
25	13.55.57	43N	146E	3.9					
26	01.36.13	32S	179W	3.5					
31	14.32.46	29N	83E	3.9					
February									
01.	16.12.24	34N	136E	4.1					
11	21.15.32	33S	178W	3.6					
12	12.22.31	43N	149E	4.0					
22	08.55.22	29N	73E	4.2					
25	19.45 .46	40N	126E	3.3					
26	14.47 .46	26 S	179W	3.6					

40月SM,					ค\%M				
Ofters						\!			
March									
03	00.12.09	44N	150E	3.7					
03	22.36 .30	39N	145E	3.8					
05	07.59.35	42N	28E	3.3					
09	04.48 .45	60N	154W	4.4					
13	02.30 .36	44N	150E	3.7					
14	13.15 .41	45N	152E	4.0					
15	22.41 .53	47N	151E	3.9					
17	18.22.39	27S	178W	3.7					
18	10.20 .10	25 S	179W	3.7					
18	12.53.19	48 N	150E	3.8					
22	06.57 .14	51N	168E	3.8					
24	23.49.11	38N	142E	3.9					
25	23.14.42	34S	177W	3.8					
26	15.56.49	32S	179W	3.7					
26	17.05.40	43N	143E	3.9	17.05.25	39N	144E	33	4.1
29	12.51 .08	36N	76E	4.0					
30	02.30.09	39N	25E	3.2					
30	15.26.48	31 N	71 E	3.7					
31	04.15.40	46N	27E	3.2					
April									
04	11.17.29	35N	145E	4.2	11.17.37	36N	144E	33	4.4
04	11.44.02	34N	146E	4.0					
05	03.18.39	29N	97E	3.8					
08	08.34.15	55N	158E	4.1					
10	00.14.52	36N	68E	3.3					
10	04.08.30	39N	22E	3.1					
11	07.36.24	36N	22E	3.4					
11	09.10 .53	34N	71E	3.6					
13	06.33 .25	32S	179W	4.0					
14	08.11.46	43N	142E	3.9					

MOMSAM,					pyly				
		\% \%	Non			\#			M\%
16	00.36 .16	45N	145E	3.8					
17	03.20.10	34N	141E	3.7					
17	15.21.49	32S	179W	3.7					
18	01.20.40	39N	144E	3.8					
18	03.55.19	50N	152E	4.0					
20	13.40 .35	43N	150E	4.0					
21	01.58.45	14S	167E	4.1					
21	05.19.24	11 N	125E	4.8					
22	10.39 .34	11 N	125E	4.4					
22	11.42.01	41N	144E	3.9					
22	22.33.46	16N	61W	3.8					
23	18.11.53	44N	145E	3.4					
24	18.13 .08	23N	124E	3.8					
24	21.47.04	31N	136E	3.8					
25	23.22.59	37N	74E	3.8					
28	17.02.30	45N	149E	3.4					
28	17.02 .50	45N	149E	3.6					
30	10.51.23	28S	177E	3.1					
May						'			
03	22.33.28	42N	22E	3.0	22.33.06	41N	24E	33	
05	11.04.13	26N	59E	3.7					
15	00.31 .47	44N	22E	3.5	00.30 .56	40N	22E	10	
15	04.58 .41	34N	22E	3.8					
15	05.55 .29	44N	21E	3.8					
15	06.15 .52	44N	21 E	3.4					
15	12.03.54	41N	20E	3.3					
15	13.01.42	36N	23E	3.8					
15	13.51.37	44N	22 E	3.3					
15	13.58 .33	36N	23E	4.2					
15	15.47.19	45N	21E	3.5					
16	04.27.59	46N	27E	3.5					

					P1Men				
				雍納		(enk	\%		
16	04.39.21	44N	21E	4.3					
16	15.01.03	43N	19E	3.2					
17	01.56.02	44N	21E	3.3					
17	02.04.12	45N	22E	3.3					
17	10.07 .57	41N	20E	3.8					
17	10.22.16	44N	21E	3.3					
17	11.35 .10	36N	22E	3.3					
17	11.37 .35	44N	21E	4.2	11.36 .45	40N	22E	10	
17	12.17.25	42N	21 E	3.0					
17	15.51 .51	45N	22E	3.3					
17	16.04.04	44N	22E	3.4					
17	17.00.34	43N	20E	3.6					
17	17.10.38	37N	22E	3.3					
17	17.31.58	41N	19E	3.3					
17	22.51 .53	40N	139E	3.7					
18	07.21 .51	44N	21E	3.7					
18	12.40.04	43N	20E	3.4					
19	08.21 .17	36N	23E	3.6					
19	19.00.19	44N	21E	3.5					
20	20.21 .46	44N	22E	3.2					
21	08.43.52	45N	26E	3.1					
21	17.03.29	29S	172W	3.5					
22	00.25 .53	32N	145E	3.7					
22	03.46.28	43N	20E	3.5					
22	19.05.42	34N	65E	3.6					
22	20.54.35	36N	22E	3.4					
24	06.18 .40	44N	21E	3.7					
24	06.30 .30	41N	20E	3.2					
24	08.57.41	41N	20E	3.3					
24	09.14.41	43N	17E	2.7					
24	10.34.49	43N	19E	3.1					

	WORSME				PVe				
Watek	Oqim Tine. an,	lay	l/an	M\%.	Onimenk	\}		Defly	${ }_{\text {M }}^{\text {M }}$
24	10.46.16	43N	20E	3.4					
24	11.43 .20	37N	24E	3.5					
24	15.08.22	43N	17E	2.7					
24	15.58 .40	38N	23E	3.2					
24	16.19.29	43N	21 E	2.9					
24	19.29 .39	43N	20E	3.0					
24	20.20 .12	46N	148E	3.8					
25	01.41 .13	44N	22E	3.2					
25	04.34.55	38N	17 E	3.1					
25	21.37 .42	42N	20E	3.3					
25	23.12 .31	41N	20E	3.2					
26	08.56.50	30N	137E	3.7					
26	11.31 .24	41N	21E	2.9					
26	22.55 .52	33N	133E						
27	06.21 .45	28 S	173W	3.6					
27	09.33 .48	32 N	72E	3.7					
28	03.02.43	57 N	145E	3.6					
28	03.35 .18	32S	179W	3.2					
28	09.58.18	25N	123E	4.0					
28	19.05.09	25S	178E	3.7					
29	01.28.09	21 N	99E	3.9					
30	05.39 .49	34 N	68E	3.7					
30	10.54.13	45N	146E	3.9					
30	14.27.51	26S	175 E	3.5					
June									
03	09.21 .31	34N	68E	3.8					
05	18.33.18	44 N	26E	3.2					
06	01.13.39	43N	145 E	3.9					
11	17.20.17	41N	25E	3.6	17.20.11	40N	22E	10	
12	05.28 .06	41 N	21E	3.3					
12	12.49.18	41 N	21 E	3.0					

MOHSMA					Origil गune				
Mate				M					
13	10.06.01	27N	129E	4.0					
14	09.43 .17	44N	21 E	3.6					
15	01.11.55	36S	180E	3.9					
15	01.15 .25	45N	21 E	3.3					
16	01.32.11	30N	142E	3.8					
16	16.40 .50	41N	21E	3.0	16.39.21	34N	25E	10	
17	07.05.45	45N	148E	3.7					
18	01.48.24	45N	150E	3.6					
19	05.03.57	48N	151E	4.0					
26	10.55.45	45N	148E	3.9					
27	06.34 .27	43N	22E	3.1	06.33.54	40N	21E	5	3.7
28	00.25.27	14N	93W	4.0					
30	09.18.22	51 N	153E	3.7					
July									
01	22.41 .35	59N	144E	3.7					
02	08.48 .58	36N	145E	3.8					
04	06.59.25	48N	147E	3.8					
08	07.38 .57	40N	143E	3.8					
08	08.04.51	41N	144E	3.8					
08	08.53 .40	42N	144E	3.8					
09	20.57 .37	7 N	64E	3.7					
10	09.38 .36	33N	71E	3.7					
10	11.34.27	37N	76E	3.4					
10	13.52.48	20N	99E	3.7					
10	14.11.54	42N	21E	3.3					
11	04.53.25	34N	77E	3.6					
11	22.21 .41	21 N	100E	3.9					
11	22.32.08	25S	179W	3.3					
11	23.18.39	20N	99E	3.8					
12	00.03.12	22N	99E	3.8					
12	00.07.47	32N	74E	3.5					

MOHSA1					P1)				
			UOH	M			\#\%ñ		M\%
12	00.51 .17	22N	100E	3.6					
12	01.51.56	21N	100E	3.9					
12	22.15.14	14S	17W	3.6					
17	23.44.59	44N	19E	3.2					
21	07.16.04	43N	149E	3.8					
22	05.12.12	28N	133E	4.3					
23	15.11.26	29N	141E	4.1					
26	09.20 .08	48N	170W	4.1					
27	08.26.31	46N	148E	3.9					
28	19.57 .31	44N	21E	3.4	19.56.41	40N	21E	10	3.8
29	14.05.16	25S	175W	3.6					
29	16.16.16	47N	149E	3.7					
30	22.47.47	39N	26E	3.0					
31	04.35.42	44N	23E	3.1					
August									
01	12.35 .38	12N	143E	4.7					
01	13.47 .19	33N	143E	3.6					
03	22.27.56	29N	45W	3.6					
06	19.28.32	45N	150E	4.0					
07	15.01.20	OS	25W	4.0					
08	18.20.11	44N	22E	3.2					
09	05.01.57	39N	145E	4.0					
12	01.10.11	35N	64E	3.5					
15	00.47.18	6 N	74W	4.0					
17	04.38 .03	40N	22E	3.2	04.38.15	42N	23E	10	
17	18.13.34	5S	153E	4.3					
17	20.23 .41	37N	72E	3.6					
18	02.03.38	25S	176W	3.5					
18	09.21.49	46N	30E	3.3					
20	01.06.10	27N	134E	3.9					
28	07.26.04	45N	149E	3.9					

Fig. 7.2.1. This figure shows 207 events in the NORSAR bulletin for the period January - August 1995 for which there are no corresponding events in the REB of the GSETT-3 IDC.

Fig. 7.2.2. This figure shows the GSETT-3 primary station network as of 26 August 1995. Array stations and 3-C stations are marked as circles and triangles, respectively. The figure is taken from the IDC Performance Report for the period 13-26 August 1995.

Fig. 7.2.3. The map shows the estimated detection capability of the GSETT-3 primary station network shown in Fig. 7.2.2. The contours show the detection capability in terms of 90% probability for P-wave detections on three GSETT-3 primary stations. The solid circle, plus signs and asterisks denote events found in the QED, but not in the REB (see the IDC Performance Report for the period 13-26 August 1995, from which this figure is reproduced, for further details).

7.3 Development of improved NORSAR time delay corrections

Introduction

The large aperture NORSAR array began operation in 1970, and comprised initially a configuration of 22 subarrays distributed over a diameter of 100 km . After six years of experimental operation, the array was modified on 1 October 1976 to a reduced configuration which was more suitable for an automated, operational system, and the 7 best subarrays (in the NE part of the original array) were selected for this purpose. This configuration is still in operation today, with each subarray comprising 6 SP and one 3-component BB seismometer over an area 8 km in diameter. The total aperture of NORSAR is now 60 km (Fig. 7.3.1).

A complete technical refurbishment of the NORSAR array was carried out during 19921995, and the array will in 1996 be ready for participation in the GSETT-3 experiment. However, in order to take full advantage of the NORSAR capabilities, it is desirable to update the beam deployment and revise the time delay anomalies taking into account the improved precision made possible from the increased sampling rate (40 Hz against previously 20 Hz) and the accumulated data base of reference events. This paper gives a progress report on the work carried out until now and should be seen in connection with previous reports on this subject (Fyen, 1995a, 1995b).

Procedure

The main points of revising the NORSAR beam deployment, as described in more detail in Fyen (1995a) are summarized as follows:

Data base development

We are compiling a data base of several hundred well-recorded and well-located events, dating back to the initial NORSAR establishment in 1970. Emphasis is on obtaining a good geographical distribution of epicenters. Among the events of special interest here will of course be the known nuclear explosions, especially the large number of PNEs in the former Soviet Union.

Reference locations

We have primarily made use of ISC or PDE location estimates for reference purposes. In cases where more accurate locations have been published (e.g., in recent literature or in local bulletins), these locations will be used. Additionally, location of recent events calculated by the GSETT-3 IDC is a helpful supplement.

Channel correlation

The reference events are systematically analyzed using a semi-automated channel correlation procedure, and verified by an experienced analyst. The correlation is based on the first cycle(s) of the P -signal, in an optimum filter band. A resampling procedure is applied before the correlation in order to improve the timing resolution.

Consistency checking of the delay anomalies

By using several reference events from nearby locations, it will be possible to make a systematic search for outliers. This procedure ensures that the data are consistent to the extent possible.

Interpolation in inverse velocity space

As originally done by IBM in the LASA/NORSAR development (Berteussen, 1974), the data base of time delay anomalies will, if necessary, be subjected to two-dimensional interpolation in inverse velocity space, to obtain anomaly estimates for regions in which no events have been recorded. For many regions, we expect the coverage to be dense enough so that interpolation is unnecessary.

Beam deployment

A revised beam deployment for NORSAR is being developed on the basis of the results of this study. The beamforming gain at various frequencies has been compared to the previous beams, so as to quantify the improvements achieved by this project.

Use of single-sensor anomalies

In contrast to the original time delay anomalies for NORSAR, which were developed only for subarray beams, the new set of delays are compiled as far as possible on an individual seismometer basis. This implies that even detection at the subarray level should be significantly improved, especially at high frequencies. However, in some regions the SNRs of the reference events are insufficient for single sensor analysis, and subarray beams are used in these cases.

For further details on NORSAR detection processing, slowness estimation and measurement of time delay anomalies, reference is made to Fyen (1995a).

Data analysis

Data base

The data base analyzed so far comprises 55 reference events, as listed in Table 7.3.1. The events are distributed globally, but for some areas several close events have been analyzed in order to compare the consistency of the results.

Correlation procedure

For each event, an interactive correlation procedure was carried out, as described by Fyen (1995a) and illustrated in Figs. 7.3.2 and 7.3.3. The first of these figures illustrates time picks within one subarray, whereas the second figure shows time-aligned traces from the entire array after automatic waveform correlation. It is seen that the correlation is excellent for the first two cycles, whereas scattering effects cause the remainder of the wavetrain to be far less coherent across the array.

Location anomalies

For each event, a plane wave was fitted by least squares, using the final time picks. This enabled us to calculate an "uncalibrated" location based on observed azimuth and velocity (using IASPEI tables to convert velocity to distance). Fig. 7.3.4 compares these uncalibrated locations with the "true" location of the reference events. Not unexpectedly, the azimuth is relatively more reliable than the distance, but even the azimuth needs correction in some cases. The location errors are generally quite consistent over limited areas, implying that consistent correction will be possible to apply.

SNR gains

We expect that the SNR gains achieved by the new time delay corrections will be significant for events of dominant high frequencies. The new time delays will make full array processing feasible in a filter band as high as $2-4 \mathrm{~Hz}$, as compared to the current 1.23.2 Hz filter. Fig. 7.3.5 shows the relative SNR on the array beam for the 55 reference events using 2-4 Hz filter with the new corrections and $1.2-3.2 \mathrm{~Hz}$ for the old corrections. In some cases, a gain by a factor of $5\left(0.7 \mathrm{~m}_{\mathrm{b}}\right.$ units) is observed. It is also seen that for some events (with low-frequency signal content) the 1.2-3.2 filter is still better than 2-4 Hz . This shows that it will be necessary to apply a set of narrow band filters for optimum detectability, similar to what is done for the NORESS-type arrays.

The new time delays are in general not expected to give large gains in the $1.2-3.2 \mathrm{~Hz}$ band for areas where the old calibration data base is well developed. For example, Fig. 7.3.6 shows array beam (new and old time delays) for a scaled-down signal (a factor of 200) from a Lop Nor explosion. The SNR for the new set is slightly better, but not by a large amount. Nevertheless, the new time delays should give significant gain in the $1.2-3.2 \mathrm{~Hz}$ band for areas where the old data base is less well established, and this will be investigated further.

Future plans

The data base will be extended to comprise several hundred well-recorded events, using the same analysis procedures as described above. This is expected to provide significantly more accurate azimuth/velocity estimates for detected events world wide, and would also contribute to improved detectability by enabling full NORSAR array processing in additional high-frequency filter bands.

J. Fyen
F. Ringdal
B. Paulsen

References

Berteussen, K.-A. (1974): NORSAR location calibrations and time delay corrections, NORSAR Sci. Rep. 2-73/74, Kjeller, Norway.

Fyen. J. (1995a): Time delay measurements and NORSAR large array processing, NORSAR Technical Report, June 1995, Kjeller, Norway.

Fyen, J. (1995b): NORSAR large array processing and time delay measurements. NORSAR Semiannual Tech. Summary 1 October 94-31 March 95, NORSAR Sci. Rep. 2-94/95, Kjeller, Norway.

Event	Year	Doy	hh	mm	sec	Lat	Lon	Vel	Azi
nao71157b	1971	157	04	02	57.3	49.98	77.74	13.14	76.11
nao71310	1971	310	22	00	00.1	51.47	179.11	17.53	8.17
na072265	1972	265	15	30	00.2	37.08	-116.04	18.79	318.32
nao73137	1973	137	16	00	00.0	39.79	-108.37	17.69	313.80
nao73157	1973	157	13	00	00.1	37.25	-116.35	18.78	318.63
nao73172	1973	172	14	44	59.3	37.08	-115.99	18.79	318.29
nao74138	1974	138	02	34	55.4	26.99	71.80	14.99	102.01
nao75051	1975	051	05	32	57.6	49.76	78.09	13.16	76.00
nao75070	1975	070	05	42	57.6	49.76	78.23	13.17	75.92
na075117	1975	117	05	36	57.3	49.94	79.02	13.19	75.15
nao75159	1975	159	03	26	57.6	49.75	78.08	13.17	76.06
nao75170	1975	170	13	00	00.1	37.35	-116.32	18.76	318.65
nao75181	1975	181	03	26	57.3	49.98	78.92	13.19	75.13
nao75224	1975	224.	15	00	00.0	70.76	127.12	13.50	26.95
nao75302	1975	302	04	46	57.3	49.92	78.91	13.19	75.16
nao76015	1976	015	04	46	57.3	49.80	78.25	13.17	75.82
nao76080	1976	080	04	34	00.0	41.76	88.67	14.45	76.04
nao76211	1976	211	04	59	58.0	47.81	48.10	12.20	105.43
nao76310	1976	310	03	59	56.9	61.52	112.73	13.83	42.60
nao77132	1977	132	11	17	50.0	39.29	117.71	16.81	56.14
nao77161	1977	161	00	40	58.9	39.62	117.99	16.77	55.79
nao77170	1977	170	11	47	23.9	47.12	151.09	17.53	28.45
nao77222	1977	222	22	00	02.0	50.95	110.78	14.80	53.11
nao77330	1977	330	22	46	52.0	39.47	117.99	16.80	55.86
nao77347	1977	347	01	14	20.5	17.33	-54.91	16.76	257.46
nao78066a	1978	066	02	48	39.1	31.92	137.62	19.88	44.45
nao78066b	1978	066	02	48	47.6	31.99	137.61	19.88	44.45
nao78102	1978	102	03	42	03.7	56.52	-152.61	16.54	349.97
nao78143	1978	143	07	50	28.3	31.07	130.10	19.41	50.81

Event	Year	Doy	hh	mm	sec	Lat	Lon	Vel	Azi
nao78204	1978	204	14	42	39.5	22.19	121.42	20.58	61.88
nao78205	1978	205	08	06	17.0	26.61	-88.82	18.42	291.83
nao78221	1978	221	17	59	58.1	63.65	125.34	14.10	34.36
nao78264	1978	264	14	59	57.6	66.53	86.26	12.65	47.40
nao78290c	1978	290	13	59	58.0	63.21	63.26	12.16	62.06
nao78357	1978	357	11	23	13.7	23.17	122	20.40	60.96
nao79017	1979	017	07	59	55.8	47.87	48.06	12.20	105.25
nao79059	1979	059	21	27	06.6	60.74	-141.56	15.64	344.40
nao79082	1979	082	19	32	30.9	18.02	-69.04	18.01	270.53
nao79236	1979	236	16	59	28.9	41.16	108.13	15.84	62.01
nao79237	1979	237	08	44	04.5	10.72	-41.68	16.73	241.38
nao79277	1979	277	15	59	58.0	60.66	71.44	12.47	63.78
nao79297	1979	297	05	59	56.7	47.79	48.11	12.20	105.34
nao79327	1979	327	23	40	29.7	4.81	-76.20	22.03	270.09
nao80084	1980	084	03	59	50.3	52.94	-167.70	17.32	359.28
nao80124	1980	124	03	30	54.5	9.95	43.16	15.52	141.15
nao81306	1981	306	21	10	25.5	12.18	92.87	19.32	91.30
nao82001	1982	001	18	51	02.6	26.84	142.74	21.83	42.41
na082098	1982	098	02	41	16.9	18.51	86.31	17.40	93.75
nao82100	1982	100	16	25	34.5	17.45	-83.47	19.79	282.62
nao82172	1982	171	23	52	30.2	-20.40	40.57	24.40	145.75
nao82182	1982	182	07	41	53.7	51.39	-179.94	17.56	7.57
na083093	1983	093	02	50	02.8	8.80	-83.11	22.01	278.00
nao83094	1983	094	02	51	34.5	5.71	94.72	21.13	92.90
nao83102	1983	102	12	07	54.4	-4.84	-78.09	24.27	267.06
nao83274	1983	274	12	57	59.5	45.50	150.78	17.80	29.27
nao84004	1984	004	22	40	41.8	45.40	151.31	17.87	28.84

Table 7.3.1. List of events used in this study.

Fig. 7.3.1. Configuration of the large aperture array NORSAR and small aperture array NORESS. The NORESS array is co-located with the NORSAR subarray 06C. The diameter of NORSAR is about 60 km and the diameter of NORESS is about 3 km . Each instrument site is marked with a circle and a cross.

Fig. 7.3.2. NORSAR interactive tool for time picks. A trace-cursor containing the reference trace with reference arrivaltime mark is available to the user, but not visible on this figure. Using this cursor, the analyst can easily correlate the signals to find best arrival time pick.

Fig. 7.3.3. NORSAR single sensors filtered 1.2-3.2 Hz and shifted with time delays picked by automatic correlation. Traces are plotted on top of each other in the same amplitude scale. The resulting least squares plane-wave fit gives: Observed velocity 16.44, azimuth 79.73; Calibrated velocity 17.37, azimuth 77.80; IASPEI velocity 14.48, azimuth 76.13.

Fig. 7.3.4. Map of reference events used in analysis. The circles correspond to ISC/PDE locations. The triangles show locations corresponding to slownesses estimated by least squares fit to observed time delays.

SNR 2.0-4.0 Hz relative to SNR(old) $1.2-3.2 \mathrm{~Hz}$

Fig. 7.3.5. Relative SNR between best beam using filter 2.0-4.0 Hz and new time delays and best beam using filter $1.2-3.2 \mathrm{~Hz}$ and old time delays.

Fig. 7.3.6. NORSAR signal from the 15 May 1995 Lop Nor explosion scaled down by factor of 200 and added to noise preceding main onset. The upper trace shows resulting beam after beampacking using filter 1.2-3.2 and old time delay corrections. The observed velocity and azimuth is 12.27, 73.47. The lower trace is resulting beam from beampacking using new time delay corrections. Resulting observed velocity and azimuth is 14.84, 77.57. IASPEI theoretical values are 14.48, 76.13.

7.4 Automatic onset time estimation based on autoregressive processing

Introduction

In order to support the developments at the GSETT-3 IDC, we have during this reporting period been experimenting with the use of an autoregressive method for automatic onset time estimation, denoted AR-AIC. This method has for several years been operational in the processing of data from the Japanese national seismic network, and the software has been provided to us by scientists from the Japanese NDC.

In this paper we have adapted the Japanese method for application to GSETT-3 data, with emphasis on developing an automated procedure that includes new features such as multiple narrow-band filters, the concept of "usable bandwidth" and a quality measure of the estimated onset time.

IDC onset time estimation

We have investigated the automatic phase picking at the GSETT-3 IDC, and found that the automatic picks are consistently late compared to the onset times determined by the analysts. Fig. 7.4.1 shows some characteristic examples where the automatic onsets, denoted \mathbf{S}, are all late. In order to quantify the bias of the automatic phase picking procedure at the IDC, we have in Fig. 7.4.2 plotted the time difference between manual and automatic onsets for all P-phases with SNR > 50 for the time period January-September 1995. We see that the automatic onsets are usually late for the entire time interval, and this behavior becomes even more pronounced during the last 3 months of the period.

A new signal processing package which is scheduled to be installed at the GSETT-3 IDC will hopefully take care of the deficiencies of the current procedure used for onset time estimation. It should be noted that the current onset estimation procedure has been adapted from the algorithm used for automatic arrival time picking at NORSAR (Mykkeltveit \& Bungum, 1984), and also that our experience is that the implementation at NORSAR does not provide such delayed onsets.

Autoregressive method

We will first give a brief description of the Japanese autoregressive method for onset time estimation, and for details we refer to Kamigaichi (1994), GSE/JAPAN/40 (1992), Yokota et al (1981) and Maeda (1985).

Generally speaking, autoregressive (AR) models are employed to represent the seismic waves, and Akaike's Information Criterion (AIC) is used to determine the AR order and to estimate the arrival times of the seismic signals.

Fig. 7.4.3 illustrates the basic concepts of the method:

- An initial onset is given, either from the time of the declared STA/LTA-based signal detection or from another onset time estimator. The original data is shown in the lower panel of Fig. 7.4.3.
- AR coefficients are computed from data in two windows, one located in the noise preceding the initial onset (F -window) and another located within the signal (S -window).
- The data are filtered with two prediction error filters, derived from the AR coefficients of the F- and S-windows, respectively (see 2nd and 3rd panel of Fig. 7.4.3).
- Finally, the Akaike Information Criterion (AIC) (see upper panel) is applied as a criterion to estimate the optimal division point of the time series. This division point will be the minimum of the AIC-curve, and is taken to be the onset of the seismic signal.

The F-window was in this study defined to start 7 s ahead of the initial onset, whereas the S -window started 1 s after the initial onset. Both windows had a length of 4 s . As seen from Fig. 7.4.3, the AIC was computed for a 12 s interval, starting 7 s ahead of the initial onset. This parameterization can, of course, be adjusted to accommodate different types of applications of the method.

We will in the following discuss the AIC onset time estimation utilizing the AR-coefficients of both F- and S-windows. There is also an option for utilizing the AR-coefficients of the F-window only. This option will in the text be referred to as AIC $_{F}$ or AR-AIC ${ }_{F}$

Performance for high SNR teleseismic signals

As a first evaluation of AR-AIC, we analyzed teleseismic GSETT-3 data with high SNR, primarily P-phases from the Chinese nuclear test on 17 August 1995. First, we picked the phase onsets manually on the raw unfiltered waveforms using the NORSAR analysis tool, EP, with high resolution graphics (Fyen, 1989). Secondly, we ran the AR-AIC method on the same data set, using the automatic onsets from the IDC processing as the initial start time. The results are shown is shown in Fig. 7.4.4, and we see that there is an excellent correspondence between the manual and AR-AIC onset estimates for these high SNR teleseismic signals. The mean time difference is less than 2 milliseconds and the standard deviation is 0.04 s . As a result of this close correspondence, we will in the following use these AR-AIC onsets as the reference. The reason for this change of reference is purely due to convenience, as we in this way avoided retyping the manual onsets.

In Fig. 7.4.5, we show the time difference between the AR-AIC onsets and the automatic (SigPro) time picks at the IDC. As expected from the results given in Fig. 7.4.2, the automatic onsets are consistently late, with a mean time difference of 0.45 s .

Similarly, we compared the analyst reviewed IDC picks with the AR-AIC onset (and indirectly also the manual picks using the EP program). The results are shown in Fig. 7.4.6, and we see that for this data set the manual picks at the IDC are often early, with a mean of about 0.2 s . We also see from the figure that there is a sub-set of the data which is in quite close agreement, whereas another sub-set is about 0.3 s early. We do not know the reason
for this time difference, but there are two factors that can be of importance. One is the limited time the IDC analysts are able to spend on refining the time picks due to the daily workload. Another possible source of error is the compensation for the group delay of the bandpass filters used prior to the phase picking. This is a topic that should be revisited, as the current procedure for time adjustment due to the group delay of the bandpass filters clearly has deficiencies.

Implementation of AR-AIC for processing of GSETT-3 data

From applying the AR-AIC method to signals with various frequency contents, signal-to-noise ratios and complexities, we found that some preprocessing was necessary to ensure stable performance of AR-AIC. In particular, an assessment of the usable bandwidth of the signal, followed by bandpass filtering and decimation was necessary when processing low SNR signals, especially at low frequencies. Once the onset time was estimated, we found it helpful to calculate an accompanying quality measure. The idea behind this quality measure was to have a tool that could be used to automatically distinguish between "good" and "bad" onsets, and possibly also to get an associated uncertainty. The flowchart for automatic operation of AR-AIC is given in Fig. 7.4.7. We will in the following describe in more detail the procedures for the assessment of the usable signal bandwidth and the quality of the AR-AIC onset.

Usable bandwidth

The estimation of the usable bandwidth of the signal was done by filtering the signal with a set of relatively narrow bandpass filters, and then for each of these filters we computed the maximum SNR (STA/LTA) within a time interval around the initial onset. The usable bandwidth was then estimated from a comparison between the maximum SNR's of the different filter bands. Specifically,

- We estimated the maximum SNR within the time interval ($s-2, s+3$) sec. for a set of narrow bandpass filers, where s is the initial onset time. The 3rd order Butterworth filters used in this study were (in Hz): 0.5-1.5, 0.8-1.8, 1.0-2.0, 1.5-3.0, 2.0-4.0, 3.0-5.0, 4.06.0, 6.0-8.0, $8.0-10.0,10.0-16.0,14.0-20.0$. The high end of the filter bands were limited by the Nyquist frequency.
- We then found the filter band providing the highest SNR, called SNR $_{\text {max }}$. If the neighboring filters had SNRs within a factor 5 of $S_{\max }$ and at the same time had $S N R>4.5$, then the usable bandwidth was extended to include these neighboring filter bands.

An example illustrating the algorithm is given in Table 7.4.1. It should be noticed that no rigorous testing has been conducted to come up with the parameters of this algorithm, but they are derived from experiments with limited data sets and from our experience with processing of seismological data.

After having estimated the usable bandwidth of the signal, we filtered the data with a 2 nd order Butterworth filter for this bandwidth, and then decimated the data in accordance with the high cutoff frequency of the bandpass filter. The necessity of doing filtering and decimation for processing of low SNR signals is illustrated in Fig. 7.4.8. This signal does only have a usable SNR in the filter band $1.0-2.0 \mathrm{~Hz}$, as shown in the lower panel. The result from applying AR-AIC to the unfiltered data is shown in the upper panel, where \mathbf{S} is the initial onset time and \mathbf{A} is the

AR-AIC onset. The second panel shows the result after filtering, but without decimation, and, finally, the third panel shows the result after both filtering and decimation. Obviously, the AR-AlC onset after filtering and decimation gives the best result.

We have also made some preliminary tests on how the application of this 2nd order causal Butterworth filter for the usable bandwidth influenced the arrival time estimates. The high SNR P-phases that were previously analyzed as shown in Fig. 7.4.4, were bandpass filtered and decimated prior to AR-AIC processing. The time differences between AR-AIC computed on unfiltered data and data filtered in the usable bandwidth are shown in Fig. 7.4.9. For this data set we can see that there is no need to introduce any corrections for the filter. But before drawing any definite conclusions on the filter effects on the onset time estimates, we need to investigate more thoroughly the effect of varying SNR, bandwidth, filter order and signal frequency content.

Quality of the onset time estimates

The uncertainty of manually determined phase onsets is obviously dependent on the SNR of the signal. In addition, manual phase picks are often accompanied with a flag indicating the instantaneous or emergent nature of the arrival.

We have during our work with the AR-AIC method found that it would be very valuable to attach to the automatically determined onsets some additional parameters that can subsequently be used to derive associated picking uncertainties. In addition, we would like to know the degree of success of the estimation procedure, e.g. in terms of a flag indicating whether the algorithm truly succeeded or possibly failed.

The human observation of a seismic phase is attributed to an amplitude increase and/or a change in the frequency content of the data. If the trace is properly filtered, an amplitude increase should be observable. In this study, we have therefore decided to derive additional signal parameters from the time domain data, filtered in the band that provides the highest SNR. To analyze the amplitude increase we found it convenient to create the envelope of the data from the bandpass filtered trace and its Hilbert transformed counterpart. The Hilbert envelope was gently smoothed with a lowpass filter. This procedure is illustrated in Fig. 7.4.10.

We defined the following set of measurements to be made on the envelope:

- NOISE $_{\text {max }}$ was taken to be the maximum of the envelope within a 3 second interval preceding the automatically estimated onset.
- $\mathrm{AMP}_{0.5}, \mathrm{AMP}_{1.0}, \mathrm{AMP}_{2.0}, \mathrm{AMP}_{3.0}$ and $\mathrm{AMP}_{5.0}$ were the maximum of the envelope within $0.5,1.0,2.0,3.0$ and 5.0 seconds after the onset, respectively. The corresponding (quality) signal-to-noise ratios $\operatorname{QSNR}_{0.5, \ldots, 5.0}$ were defined to be $\mathrm{AMP}_{0.5, \ldots, 5.0}$ NOISE $_{\text {max. }}$
- $\mathrm{T}_{\mathrm{QSNR1.5}}$ was the time from the onset to the point where QSNR exceeded 1.5. $\mathrm{QSNR}_{\mathrm{fp}}$ was the signal to noise ratio of the first local peak of the Hilbert envelope in an interval from $T_{\text {QSNR1.5 }}$ to 5 seconds after the onset. T_{fp} were the time from the onset to the first local peak, and $\mathrm{T}_{\text {max }}$ were the time from the onset to the point where the maximum QSNR was found (within 5 seconds of the onset).

When searching for the best frequency band for bandpass filtering, we searched among the same filters as those used for determining the usable bandwidth, but we did now use $\mathrm{QSNR}_{3.0}$ as the criterion for determining the best filter.

In order to get an idea on how to use the envelope measurements to quantify the quality of the automatic AR-AIC onsets, we analyzed a limited data set of 122 phases associated to events in the IDC Reviewed Event Bulletin (REB). The onsets of all phases were manually picked by using the EP program to get a reference for comparing the automatic onsets. Fig. 7.4.11 shows the difference between the AR-AIC, hereafter also denoted AR-AIC F_{+}, onsets and the manual picks as a function of $\mathrm{QSNR}_{2.0}$. The data points labelled \mathbf{F} represent phases that we were unable to pick manually in a confident way, primarily due to low SNR. We see from the figure that for QSNR $_{2.0}$ lower than 5, the scatter increases significantly, as the algorithm had a tendency to make an early trigger. An interesting observation during our testing was that the AR-AIC ${ }_{F}$ method, utilizing only the autoregressive coefficients of the preceding noise window, often gave the correct onset in the cases where $\mathrm{AR}-\mathrm{AIC}_{\mathrm{F}+\mathrm{S}}$ made the wrong decision. For this data set, we found that by using the time difference between the two types of AR-AIC onsets together with the quality measurements $\mathrm{QSNR}_{0.5}, \mathrm{~T}_{\mathrm{QSNR} 1.5}$ and $\mathrm{SNR}_{\text {max }}$, we were able to obtain a rule for identifying the cases where we should use the AR-AIC F_{F} onset instead of $A R-A I C_{F+S}$. The results are given in Fig. 7.4.12, and we clearly see that the scatter at low SNR is significantly reduced (except for the low quality \mathbf{F} onsets).

In automatic operation of AR-AIC it is important to identify the cases where the method failed as well as the cases where the phase onsets are very uncertain. First of all, the phases that we were unable. to pick manually, labelled \mathbf{F}, should be identified as a low quality onset. From utilizing the quality measurements $\mathrm{T}_{\mathrm{QSNR} 1.5}$, QSNR $_{5.0}$ and the time difference between the initial onset and the AR-AIC onset, we were able to categorize as low quality 20 out of 22 F onsets, while retaining 90 out of 100 acceptable onsets. The results are shown in Figs. 7.4.13 and 7.4.14. As expected, we see from Fig. 7.4.13 that the time difference between the manual and the automatic onsets decreases with increasing $\mathrm{QSNR}_{2.0}$. As an illustration, we separated the data into two populations based on a QSNR 2.0 of 6 , and found that the standard deviation was 0.15 s for the high SNR population and 0.5 s for the low SNR population.

We have with this example shown that it is possible to use the envelope quality measurements to indicate how well the automatic AR-AIC onsets match the manual picks, as well as a tool to identify low quality onsets. In addition, the envelope quality measurements were used to decide between the use of $A R-A I C_{F 4 S}$ and $A R-A I C_{F}$ A next step will be to analyze a larger data set that also contains detections that are unassociated to seismic events. In this way we can get a better picture of the operational performance of AR-AIC and the associated quality measurements.

Conclusions

We have in this study shown that by including processes like determination of usable bandwidth, filtering, decimation and quality assessments, the AR-AIC method for onset time estimation can be adapted to work on a wide range of seismic signals. In particular, we have found it convenient to be able to distinguish between reliable and unreliable
onsets. In this way, we can avoid using erroneous arrival time data in the subsequent event location procedures, and thus being able to improve the location precision of the automatic processing system.

It is also our goal to be able to give more weight to the most reliable phase onsets. In the location procedure at the IDC this is done by associating the arrival times with a given uncertainty, currently being only a function of phase type. In order to investigate how the uncertainty of the AR-AIC onsets depends on the envelope quality measurements described above, it is necessary to analyze events for which ground truth information is available, e.g. in terms of accurate locations provided by local networks. During the next reporting period we plan to conduct such a study for a set of events located in the Japan area, with high quality locations provided by the Japanese National Seismic Network.

T. Kværna

References

Fyen, J. (1989): Event Processor program package. Semiannual Technical Summary, 1 October 1988-31 March 1989, NORSAR Sci. Rep. No 2-88/89, Kjeller, Norway.

GSE/JAPAN/40 (1992): A Fully Automated Method for Determining the Arrival Times of Seismic Waves and its Application to an on-line Processing System. Paper tabled in the 34th GSE session in Geneva, July 1992.

Kamigaichi, O. (1994): Automated identification of arrival time, etc. using AR-model. Paper presented at the GSE workshop in Tokyo, Japan, 14-16 March 1994.

Maeda, N. (1985): A method for reading and checking phase time in auto-processing system of seismic wave data (in japanese with English abstract), J. Seismol. Soc. Jpn., 38, 365-379.

Mykkeltveit, S. and H. Bungum (1984): Processing of seismic events using data from small-aperture arrays. Bull. Seism. Soc. Am. 74, 2313-2333.

Yokota, T., S. Zhou, M. Mizoue and I. Nakamura (1981): An automatic measurement of arrival time of seismic waves and its application to an on-line processing system (in Japanese with English abstract), Bull. Earthquake Res. Inst. Univ. Tokyo, 55, 449484.

Table 7.4.1. Example illustrating the use of multiple narrow-band filters to arrive at a "usable bandwidth", as described in the text. In this case, the usable bandwidth is $\mathbf{1 . 5 - 5 . 0 ~ H z}$

Band	SNR	Comment
$1.0-2.0 \mathrm{~Hz}$	4.4	Below 4.5 and below a factor 5
$1.5-3.0 \mathrm{~Hz}$	5.0	OK
$2.0-4.0 \mathrm{~Hz}$	24.3	Maximum
$3.0-5.0 \mathrm{~Hz}$	6.1	OK
$4.0-6.0 \mathrm{~Hz}$	4.6	Below a factor 5

S - Automatic onsets (SigPro) R - Analyst-reviewed onsets

Fig. 7.4.1. Characteristic examples of automatic (S) and manual (R) onset time estimation at the IDC.

Fig. 7.4.2. Time difference between manually reviewed and automatic picks at the IDC for P phases with SNR > 50 for the time period January-September 1995.

S - Initial onset

A - Onset from AR-AIC
Fig. 7.4.3. Illustration of the basic concepts of onset time estimation using the AR-AIC method.
The lower panel shows the data with a seismic signal.
The third panel from the top shows the data filtered by a prediction error filter derived from the $A R$-coefficients of the 4 sec S-window positioned within the signal.
The second panel from the top shows the data filtered by a prediction error filter derived from the AR-coefficients of the $4 \mathrm{sec} F$-window positioned in the noise preceding the signal. The upper panel shows the AIC used to estimate the optimal division of the time series. The minimum is taken to be onset of the seismic signal.

Fig. 7.4.4. Time difference between AR-AIC onsets estimated on unfiltered data and manually picked onsets (EP) for a set of high SNR teleseismic signals. The dashed lines indicate a distance of two standard deviations from the mean.

Fig. 7.4.5. Time difference between AR-AIC onsets estimated on unfiltered data and the automatic onsets provided by the signal processing at the IDC (SigPro). The data set is the same as in Fig. 7.4.4. Notice that the SigPro onsets are consistently late. The dashed lines indicate a distance of two standard deviations from the mean.

Fig. 7.4.6.Time difference between AR-AIC onsets estimated on unfiltered data and the analystreviewed picks at the IDC. The data set is the same as in Fig. 7.4.4. Notice that the analystreviewed picks at the IDC are often early. The dashed lines indicate a distance of two standard deviations from the mean.

Fig. 7.4.7. Flowchart showing the different steps involved in the automatic operation of AR-AIC

AR-AIC No filtering No decimation

AR-AIC
Filtered
Decimated

Filtered data 1-2 Hz

Fig. 7.4.8. Illustration of the necessity of doing filtering and decimation prior to onset time estimation by the AR-AIC method. \boldsymbol{S} is the initial onset, and A represents the AR-AIC onset. The lower trace shows the data bandpass filtered in the usable bandwidth of $1-2 \mathrm{~Hz}$. The top panel shows the AIC-curve after processing the raw data. The second panel shows the AIC-curve after processing the filtered data and the third panel shows the AIC-curve after processing the filtered and dec: wted data. Notice that both filtering and decimation were necessary to get the correct $0^{\prime \cdots} \cdot$

ARAIC - ARAIC filtered time picks

2. order Butterworth filter

Fig. 7.4.9. Time difference between AR-AIC onsets estimated an high-SNR unfiltered data and the AR-AIC onsets estimated on data filtered in the usable frequency band. Notice the very small systematic bias. Although filtering introduces some scatter in the estimates, it is important to be aware that filtering is essential for processing low-SNR signals. The data set is the same as in Fig. 7.4.4. The dashed lines indicate a distance of two standard deviations from the mean.

Filtered data 1.0-2.0 Hz

Raw data

Fig. 7.4.10. Figure showing the raw data (lower panel), the data filtered in the best frequency band (middle panel) and the smoothed envelope (top panel) computed from the filtered time series and its Hilbert transformed counterpart. The 3 sec noise interval is indicated on the top panel.

ARAIC(F+S) - Manual

Fig. 7.4.11. Time difference between the $A R-A I C_{F+S}$ onsets and manually picked onsets shown as a function of $Q S N R_{2.0}$. The data points labelled F represent phases that we were unable to pick in a confident way, primarily due to low SNR.
[ARAIC(F+S), ARAIC(F)] - Manual

Fig. 7.4.12. Same as Fig. 7.4.11, but based on certain criteria of the quality measurements, the $A R$ $A I C_{F}$ onsets were used instead of the $A R-A I C_{F+S}$ onsets. See text for details.

Fig. 7.4.13. Same as Fig. 7.4.12, but with low quality onsets removed. Notice the difference in the scatter between the high and low QSNR $2_{2.0}$ populations. The dashed lines indicate a distance of two standard deviations from the mean.

Fig. 7.4.14. This figure shows the data identified as low quality onsets by utilizing the envelope quality measurements

7.5 Recommendation on Auxiliary Seismic Stations for the IMS Network

This contribution is a lightly edited version of a paper prepared by the GSETT-3 Working Group on Planning (WGP) in preparation for the 42nd GSE session in Geneva during 27 November - 1 December 1995. The main purpose of this GSE meeting was to make a specific recommendation for the auxiliary seismic network of the International Monitoring System (IMS), which will be installed to verify compliance with a Comprehensive Test Ban Treaty.

Introduction

In its progress report of the 41st session, the GSE decided on a work plan for the GSE meeting from 27 November through 1 December. One of the tasks contained therein is to recommend a list of auxiliary stations for the seismic component of the IMS network based on the experience in GSETT-3.

In a letter to the GSE delegates on 26 September 1995, the GSE Chairman, Ola Dahlman, informed the GSE of the Ad Hoc Committee's expressed desire that the GSE submit, as one of the results of its forthcoming session, 27 November - 1 December, sufficient technical material to enable the IMS Expert Group, which is scheduled to meet the following two weeks, to agree on a list of auxiliary stations for the IMS. This will then facilitate subsequent decisions on the network by the Ad Hoc Committee.

In the same letter the GSE Chairman asked the Working Group on Planning to start work on a list of auxiliary stations, and to provide an initial recommendation for the auxiliary network at the beginning of the 42nd session. The status of this work was addressed at a GSE Convenors' meeting in Lahti, Finland, on 14 October 1995, and was also discussed in a coordination meeting between the Working Group on Evaluation (WGE) and the WGP in Paris on 7 November 1995.

This report provides the preliminary recommendation from the WGP and is intended as a basis for discussions during this GSE session. The network designs proposed herein will be reviewed and revised during the GSE session as additional information is received from GSE participants. Material on relevant experience from GSETT-3 will also be taken into account in the process of selecting a recommended IMS auxiliary network.

Much of the basis for the work of defining an IMS auxiliary station network was provided by the agreement reached in the Seismic Experts Group meetings held in Geneva during the week following the August 1995 GSE session. As a result of this work, there is already agreement in the NTB AHC on a specific 50 -station primary seismic network for IMS (see CD/NTB/WP.269, pp. 4-9 and CD/1364, pp. 92-94). There is also agreement on the purposes of the auxiliary network, and on the basic principles/seismological procedures for selecting stations of an auxiliary seismic network to complement the IMS primary network in the best possible way (CD/NTB/WP.269, pp. 10-14).

Purposes of the Auxiliary Network

CD/NTB/WP. 269 states that there are two principal purposes for the data that will be provided by the IMS auxiliary network:

- to improve the location accuracy of seismic events detected by the primary network
- to more finely characterize the seismic sources for purposes of event identification.

CD/NTB/WP. 269 states that it is a goal to reduce the event location uncertainty to an area equivalent to less than 1,000 square kilometers, as a result of the combined use of primary and auxiliary station data at the IDC. CD/NTB/WP. 269 also states that the auxiliary stations that are used to improve the event location, plus additional ones if full azimuthal coverage is lacking, will be used in the computation of source characterization parameters.

Station Selection Criteria and Procedures

CD/NTB/WP. 269 states that

- auxiliary stations should primarily cover the seismically most active regions of the world, with emphasis on regions where earthquakes look explosion-like
- auxiliary stations should also be located in regions where there is extensive mining activity that produces large seismic signals
- auxiliary stations should further be located in areas where the azimuthal coverage of the primary station network is poor
- auxiliary stations should be selected from stations that are already available or can be adopted with a minimum of new investment.

Another factor to take into account in the selection process is the statement in CD/NTB/ WP. 269 that "stations in the auxiliary network should be able to act as a backup to stations in the primary network should an extended problem with a primary station arise". This might be interpreted to mean that some of the auxiliary network stations should be especially selected so as to have signal detection capabilities similar to those of the primary network stations, so they could be useful substitutes for one or several primary stations in the same region.

Preparatory Work by the WGP

WGP has been compiling information on stations around the world that might be candidates for the IMS auxiliary network. As part of this survey, the WGP contacted all GSE delegations and asked for information on candidate stations in the various countries. In addition, updated lists of stations of the member networks of the FDSN have been obtained from various sources.

Information on worldwide mining activity has been obtained from various sources. This material shows that world minerals production is dominated by the United States, China, Chile and Russia. We have also obtained a list of eighteen other countries with major
minerals production. Data on actual blasting practices are generally unavailable on a mine-by-mine basis. Therefore, regions having potential for large blast activity are best identified based on mine location and minerals production data. It must be noted here that we are only concerned with blasting activity that is detected and located by the primary seismic network. As an example here, this rules out some large, known shots in Canada, as it is known that these shots (of the order of 0.5 kt or more of chemical explosives) are not defined by the GSETT-3 Alpha network, and the IMS primary network will be even more sparse in the Canadian region.

The WGP has provided the WGE with four possible IMS auxiliary network designs; of 75, 100,130 and 150 stations, respectively. According to the agreed division of labor between the WGP and the WGE, the WGE has made assessments as to which of these networks would be the most adequate for IMS. The WGE has focused on assessment of the expected event location uncertainties for the various designs, using different approaches, and on azimuthal coverage, using the so-called "octant approach". Their findings are presented in GSE/WGE/14, along with discussions of assumptions and limitations associated with this kind of assessment.

Network Recommendations

To accommodate all expert views expressed in CD/NTB/WP. 269 regarding the number of stations in the IMS auxiliary seismic network, two possible designs are presented in the following (CD/NTB/WP.269, page 12: "Some experts expressed the view that up to 100 auxiliary stations would be needed, while others considered that between 100 and 150 stations would be necessary").

Table 7.5.1 lists 130 stations preliminarily proposed for the IMS auxiliary network, and in addition defines a subgroup of 100 stations, which in our view would be an optimum subset of this network. The two networks thus defined in this table are slightly revised relative to the 100 - and 130 -station networks that were provided to the WGE for their assessment, but the general capabilities of the corresponding networks are the same.

Table 7.5.1 provides details on the stations of these designs. The table gives the rationale for the inclusion of the various stations, in accordance with the station selection criteria and procedures outlined above. The meaning of the entries in the "Rationale" column of this table is as follows:

S : Station is in a seismically active region
M : Station is in an area of extensive mining
C : Station is in an area where the azimuthal coverage of the primary station network is poor

B : Station could serve as a backup for one or several primary stations (would then need to have continuous communications).

The "status" column of the table gives the operational status of the stations, with codes as follows:

ED : Existing digital station (note that communications link may not be in place)
PL : Planned digital station
PR : Proposed digital station
EA : Existing analog station
The proposed stations are shown as yellow triangles in Fig. 7.5.1, which also shows the IMS primary stations as dark blue squares. As seen in the figure, there is a distinction between the stations in the subgroup defining the 100 -station network, and the additional 30 ones that are only in the proposed 130 -station network (inverted triangles in the latter category). The stations are plotted against the background of world seismicity, here represented by 16,900 REB epicenters from 1 January 1995 through 11 November 1995.

Features of the 100-Station Design

- This design has 66 stations to cover the major seismic zones of the world. Some of these 66 stations also cover mining activity.
- 34 stations of this design are introduced to improve the overall azimuthal coverage, and/or located in regions of extensive mining activity.
- 13 out of these 100 stations have been assigned the role of providing backup for primary stations. These stations would need to have equipment for continuous transmission of data to the IDC.
- This design has a very limited coverage in ocean areas, and relies on synergy with the IMS hydroacoustic component for adequate performance in these areas.
- The location uncertainty area of this network design as simulated by the WGE is of the order of or smaller than $1,000 \mathrm{~km}^{2}$ in the interior of all large landmasses except the Antarctica, but exceeds this number in the onshore parts of continental margin areas and in the oceans. It should be noted, however, that simulated network capabilities are generally on the optimistic side, due to several underlying idealistic assumptions made, one of which is that of a fully calibrated network.
- The worldwide octant coverage for this design is between 4 and 5. The WGE considers that a number of 5 or higher indicates good azimuthal coverage.
- Due to lack of digital stations in certain regions, some of the stations proposed to cover the seismically active regions are today analog stations (code EA in the table). These stations will need to be upgraded to comply with IMS standards.

Features of the 130-Station Design

- Relative to the 100 -station design, stations have been added to improve the azimuthal coverage, and also to further improve the coverage of the seismicity zones. The coverage is especially improved in ocean areas by the addition of island stations. Some stations have also been added for better backup, in the sense discussed earlier.
- The event location uncertainties are further reduced (relative to those of the 100 -station network), and nearly all of the landmasses are now inside the $1000 \mathrm{~km}^{2}$ location uncertainty area contours, as shown in Fig. 7.5.2. Again, due care must be exercised in interpreting the simulation results.
- The average octant coverage for this design is above 5 globally.
- The WGE work has shown that the 150 -station design has better performance than the 130 -station design, but the improvements can be termed marginal, and thus perhaps not cost-effective.

Concluding Remarks

This paper has presented two options for an IMS auxiliary seismic network. Together with material that will be presented by others, this might facilitate the discussions in the GSE.

The question of redundancy in the auxiliary station network has not been considered explicitly in our work. Such redundancy might be needed to secure high data availability from all regions of the world.

The synergy with the hydroacoustic component of IMS has not been assessed quantitatively in this paper. It is expected that such synergy effects will be addressed in the expert meetings after the GSE meeting. Joint work by seismic and hydroacoustic experts may justify omitting some of the island stations from the 130 -station design proposed in this paper.

Further work and discussion are needed to establish the exact locational capability of the networks and the operational status for the existing auxiliary stations proposed in this paper, and to check the progress of plans and proposals for the stations with status "PL" and "PR", respectively, in the table. Further work is also needed to estimate the costs related to bringing stations and communications arrangements in line with the required IMS standards.

S. Mykkeltveit

U. Kradolfer, Swiss Seismological Service, ETH, Zurich, Switzerland

Possible IMS Auxiliary Seismic Stations

Fig. 7.5.1: The map shows the 50 IMS primary stations already agreed (dark blue squares) and the 130 auxiliary stations (yellow triangles) proposed in this paper.

Simulated event location uncertainty Primary plus proposed 130 -station auxiliary network

Fig. 7.5.2. This figure shows the simulated event location uncertainty of the network composed of the 50 primary stations already agreed and the 130 auxiliary stations proposed in this paper. The map was prepared by the WGE member Peder Johansson of Sweden.

Proposed IMS Auxiliary Stations

vis.		Fatiminatimat cente	Suilial wise	lus	\ima	Ramitie	Stitis	100:
Nortilamerica								
1	Canada	Mould Bay MBC	3-C	76.242	-119.360	C	ED	x
2	Canada	Iqaluit FRB	3-C	63.747	-68.547	C	ED	x
3	Canada	Bella Bella BBB	3-C	52.185	-128.113	S	ED	x
4	Canada	Sadowa SADO	3-C	44.769	-79.142	M,C	ED	x
5	USA	Kodiac Island KDC	3-C	57.750	-152.490	S	PR	x
6	USA	Attu ATTU	3-C	52.800	172.700	S	ED	x
7	USA	Newport NEW	3-C	48.263	-117.120	S. M	ED	x
8	USA	Yreka YBH	3-C	41.730	-122.710	S	ED	x
9	USA	Elko ELK	3-C	40.745	-115.239	S,B	ED	x
10	USA	Albuquerque ALQ	3-C	34.946	-106.457	S,M	ED	x
11	USA	Ely EYMN	3-C	47.947	-91.508	M	ED	x
12	USA	Tuckaleechee Caverns TKL	3-C	35.658	-83.774	M, C	ED	x
13	Mexico	Islas Marias IMM	3-C	21.620	-106.580	S	PL	x
14	Mexico	Tepich TEYM	3-C	20.210	-88.340	C	PL	x
15	Mexico	Tuzandepeti TUVM	3-C	18.030	-94.420	S	PL	x
16	USA	San Juan SJG	3-C	18.110	-66.150	S	ED	x
17	Costa Rica	Las Juntas de Abangares JTS	3-C	10.290	-84.950	S	ED	x

ki								
18	Canada	Dease Lake DLBC	3-C	58.417	-130.060	S,B	ED	
19	Canada	Inuvik INK	3-C	68.307	-113.520	S,C	ED	
20	Canada	Wateron Lakes WALA	3-C	49.060	-113.920	S	ED	
21	Guatemala	Rabir RDG	3-C	15.010	-90.470	S	EA	
22	United Kingdom	Barbuda BWI	3-C	17.665	-61.790	S	EA	

Soulh America

23	Venezuela	Santo Domingo SDV	$3-\mathrm{C}$	8.890	-70.630	S	ED	x
24	France	Kourou KOG	3-C	5.207	-52.732	C	ED	x
25	Brazil	Pitinga PTGA	3-C	-3.060	-60.000	C	ED	x
26	Brazil	Rio Grande do Norte RGNB	3-C	-6.910	-36.950	C	PL	X
27	Peru	Cajamarca ?	3-C	-7.000	-78.000	S,M,B	New	x
28	Peru	Nana NNA	3-C	-11.990	-76.840	S,M	ED	x
29	Chile	Limon Verde LVC	3-C	-22.590	-68.930	S,M	PL	x
30	Argentina	Coronel Fontana CFA	3-C	-31.607	-68.239	S,B	ED	x
31	Venezuela	Puerto la Cruz PCRV	3-C	10.180	-64.640	S	EA	
32	Ecuador	Santa Cruz ?	3-C	-0.660	-90.230	S	PL	
33	Bolivia	San Ignacio SIV	3-C	-15.991	-61.072	S	EA	
34	Iceland	Borgarnes BORG	3-C	64.750	-21.330	S	ED	X

35	Norway	Spitsbergen SPITS	Array	78.178	16.370	S	ED	x
36	Russia	Apatity APAES	Array	67.610	32.990	M	ED	x
37	United Kingdom	Eskdalemuir EKA	Array	55.333	-3.159	C	ED	x
38	Switzerland	$\begin{aligned} & \text { Davos } \\ & ? \end{aligned}$	3-C	46.839	9.794	S,B	ED	x
39	Czech Republic	Vranov VRAC	3-C	49.308	16.594	M	ED	x
40	Russia	Michnevo MHV	3-C	54.960	37.770	M,C	ED	x
41	Romania	Muntele Rosu MLR	3-C	45.492	25.944	S	ED	x
42	Italy	L'Aquila AQU	3-C	42.354	13.405	S	ED	x
43	Greece	Anogia, Crete IDI	3-C	35.280	24.890	S	ED	x
44	Sweden	Hagfors HFS	Array	60.134	13.697	B	ED	
45	Denmark	Søndre Strømfjord SSGL	3-C	67.050	-50.300	C	PL	

Allamiegecan

46	South Georgia Island	South Georgia ?	3-C	-54.000	-36.000	S	PR	x
47	Spain	Taburiente TRT	3-C	28.680	-17.910	C	ED	
48	United Kingdom	Tristan da Cunha ?	3-C	-37.000	-12.500	S,C	PR	
49	United Kingdom	Ascencion Island ASCN	3-C	-7.950	-14.380	S,C	ED	

Aifica

50	Morocco	Mldelt MDT	$3-\mathrm{C}$	32.820	-4.610	$\mathrm{~S}, \mathrm{~B}$	ED	x
51	Egypt	Kottamya KEG	$3-\mathrm{C}$	29.930	31.830	S	ED	x

so								
52	Ethiopia	Furi FURI	3-C	8.900	38.680	S,B	PL	x
53	Djibouti	Arta tunnel ATD	3-C	11.530	42.847	S	ED	x
54	Uganda	Mbarara $?$	3-C	0.360	30.400	S	PL	x
55	Zambia	Lusaka LSZ	3-C	-15.280	28.190	S,M	ED	x
56	Namibia	Tsumeb TSUM	3-C	-19.130	17.420	C	ED	x
57	Botswana	Lobatse LBTB	3-C	-25.015	25.597	M,B	ED	x
58	South Africa	Sutherland SUR	3-C	-32.380	20.810	M	ED	x
59	Madagascar	Antananarivo TAN	3-C	-18.920	47.550	C	EA	x
60	Gabon	Bambay BAMB	3-C	-1.660	13.610	C	PL	x
61	Mali	Kowa KOWA	3-C	14.500	-4.020	C	PL	x
62	Senegal	M'Bour MBO	3-C	14.391	-16.955	C	ED	
\%			\%ூ\%					§そ\%
63	Russia	Arti ARU	3-C	56.430	58.563	M,C	ED	x
64	Armenia	Garni GNI	3-C	40.050	44.720	S	ED	x
65	Israel	Bar Giyora BGIO	3-C	31.722	35.092	S	ED	x
66	Lebanon	Bhannes BHL	3-C	33.900	35.650	S	PL	x
67	Saudi Arabia	Ab'ha ?	3-C	18.300	42.500	C	PR	\mathbf{x}
68	Oman	Wadi Sarin WRAS	3-C	23.000	58.000	S	PL	x
69	Iran	Kerman KRM	3-C	30.280	57.070	S,B	PL	x

Mi.	vickimit	sitt	Silinit wy:	:at	1010.	Rallamat	Paitas	10
70	Iran	Masjed-E-Solayman MSN	3-C	31.930	49.300	S	PL	x
71	Pakistan	Quetta QUE	3-C	30.190	66.950	S	PL	x
72	Kyrghyzstan	Ala-Archa AAK	3-C	42.640	74.490	S	ED	x
73	Kazakhstan	Kurchatov KURK	Array	50.715	78.621	M,B	ED	x
74	Kazakhstan	Borovoye BRVK	3-C	53.058	70.283	M,C	ED	x
75	India	New Delhi NDI	3-C	28.690	77.220	S	PR	x
76	India	Hyderabad HYB	3-C	17.420	78.550	M	ED	x
77	India	Shillong SHIO	3-C	25.570	91.880	S,B	PR	x
78	China	Baijiatuan BJT	3-C	40.020	116.170	M,C	ED	x
79	China	$\begin{array}{\|l} \text { Kunming } \\ \text { KMI } \end{array}$	3-C	25.150	102.750	S,M	ED	x
80	China	Xi'an XAN	3-C	34.040	108.920	S,M,B	ED	x
81	China	Wulumuqi WMQ	3-C	43.820	87.700	S	ED	x
82	China	$\begin{aligned} & \text { Lhasa } \\ & \text { LSA } \end{aligned}$	3-C	29.700	91.150	S	ED	x
83	China	Wushi WUS	3-C	41.200	79.220	S	ED	x
84	Russia	Seymchan SEY	3-C	62.930	152.370	S,M	ED	x
85	Russia	Yuzhno-Sakhalinsk YSS	3-C	46.950	142.750	S,B	ED	x
86	Russia	Tiksi TIXI	3-C	71.660	128.870	C	ED	x
87	Russia	$\begin{aligned} & \text { Talaya } \\ & \text { TLY } \end{aligned}$	3-C	51.580	103.640	S,M	ED	x
88	Russia	Urgal URG	3-C	51.100	132.360	S	ED	x

ser.	8:		Stanilit mys	I.at	¢\%!	luhimilt.	Suatis.	201:
89	Japan	Aibetsu AIG	3-C	43.910	142.650	S	ED	x
90	Japan	Chichijima OGS	3-C	27.060	142.200	S	ED	x
91	Japan	Ishigakijima ISG	3-C	24.380	124.230	S	ED	x
92	Phillippines	Tagaytay TGY	3-C	14.100	120.940	S,M	ED	x
93	Phillippines	Davao DAV	3-C	7.090	125.570	S	ED	x
94	Indonesia	$\begin{array}{\|l} \hline \text { Sulawesi } \\ ? \end{array}$	3-C	-4.000	120.000	S	PR	x
95	Indonesia	Parapat PSI	3-C	2.700	98.920	S,M	ED	x
96	Indonesia	Jayapura JAY	3-C	-2.520	140.700	S	PL	x
97	Indonesia	Kupang KUG	3-C	-10.000	123.000	S	EA	x
98	Tadjikistan	$\begin{aligned} & \text { Gissar } \\ & ? \end{aligned}$	3-C	38.380	68.510	S	PR	
99	Saudi Arabia	Ar Rayn RAYN	3-C	23.600	45.600	C	PL	
100	Nepal	Everest EVN	3-C	27.960	86.820	S	ED	
101	China	Enshi ENH	3-C	30.270	109.490	S	ED	
102	Russia	Bilibino BLLL	3-C	68.040	166.270	C	ED	
103	Russia	Yakutsk YAK	3-C	62.010	129.430	S	ED	
104	Russia	$\begin{aligned} & \text { Simushir } \\ & \text { SIU } \end{aligned}$	3-C	46.850	151.867	S	EA	
105	Japan	Hachijojima HCH	3-C	33.120	139.800	S	ED	
106	Japan	Shiraki SHK	3-C	34.530	132.680	S	ED	
107	Indonesia	Kalikatan KELI	3-C	-8.220	114.490	S	EA	

108	Indonesia	Sarong SWI	3-C	0.860	131.260	S	EA	
109	France	New Amsterdam Island AIS	3-C	-37.797	77.569	C	ED	x
110	France	Port Alfred CRZF	3-C	-46.430	51.861	C	ED	
111	United Kingdom	Diego Garcia ?	3-C	-7.30	72.40	S,C	PR	
112	Antarctica	Palmer Station PMSA	3-C	-64.770	-64.070	C	ED	\mathbf{x}
113	Antarctica	Georg Neumayer Base VNA	3-C	-70.610	-8.366	C	ED	\mathbf{x}
114	Antarctica	South Pole SPA	3-C	0.00	115.000	C	ED	x
115	Papua New Guinea	Port Moresby PMG	3-C	-9.410	147.150	S	ED	x
116	Australia	Narrogin NWAO	3-C	-32.927	117.233	M, C	ED	x
117	Australia	Fitzroy Crossing FITZ	3-C	-18.103	125.643	M,C,B	ED	x
118	Australia	Charters Towers CTA	3-C	-20.088	146.254	M, C	ED	x
119	USA	Guam GUMO	3-C	13.590	144.870	S	ED	x
120	Solomon Islands	Honiara HNR	3-C	-9.430	159.950	S	ED	x
121	France	Port Laguerre NOUC	3-C	-22.101	166.303	S	ED	x
122	Fiji Islands	Monasavu MSVF	3-C	-17.750	178.050	S	ED	x
123	New Zealand	Urewera URZ	3-C	-38.260	177.110	S	ED	x
124	Kermadec Islands	Raoul Island ?	3-C	-29.150	-177.520	S	PR	X

125	Western Samoa	Afiamalu AFI	$3-\mathrm{C}$	-13.910	-171.780	S	ED	x
126	Cook Islands	Rarotonga RAR	3-C	-21.210	-159.770	C	ED	\mathbf{x}
127	USA	Kipapa KIP	3-C	21.423	-158.015	C	ED	x
128	Papua New Guinea	Bialla BIAL	3-C	-5.310	151.050	S	EA	
129	Vanuatu	Butte a Klehm BKM	3-C	-17.668	168.243	S	EA	
130	New Zealand	Rewhon EWZ	3-C	-43.512	170.853	S	ED	

Table 7.5.1. The table gives details on the 130 stations proposed for the IMS auxiliary network. The meaning of the colums "Rationale" and "Status" is explained in the text. The rightmost column labelled "100" identifies stations of an optimum 100-station subgroup of this 130station network.

7.6 Magnitude estimation at the IDC - a case study

Introduction

Several recent papers have addressed the shortcomings of the currently available magnitude scales for the purposes of GSETT-3. Harjes (1995) has suggested that a "unified" magnitude scale should be developed for operational use at the IDC. Such a magnitude scale should have the following general characteristics:

- Consistent with current teleseismic m_{b}
- Applicable to "all" distance ranges
- Computed automatically
- Valid over large magnitude range (at least 2.0-6.5)

The primary purpose would be to develop a "generic" magnitude scale that could be used as a first estimate of m_{b}. Subsequent refinements would then be possible by introducing station/region-specific correction factors in areas where adequate data are available.

In the NORSAR Semiannual Technical Summary 1 October 94-31 March 95 Kværna and Ringdal (1995) described a possible approach to developing a unified magnitude scale, by using the IDC Threshold Monitoring system.

By analyzing selected IDC-reported events in detail, they found that the TM approach offers a consistent, automatically computed data set that is directly applicable to m_{b} estimation. Since upper limits on all non-detecting stations are provided, the method is easily expandable to include maximum-likelihood magnitude estimates. It was also pointed out that a similar approach can be used to estimate M_{S}, with upper $90 \% \mathrm{M}_{\mathrm{S}}$ limits provided automatically for events for which no surface waves are detected.

In this paper we follow up the general question of IDC magnitude estimation by analyzing a recent earthquake sequence in Greece during May-June 1995. This includes comparisons of IDC magnitudes in the Reviewed Event Bulletins to those of NORSAR and NEIC, with special view to network bias, recurrence statistics and detectability.

The Greece earthquake sequence May/June 1995

Several hundred earthquakes from the Greece area were recorded at the NORSAR array during May/June 1995. An example of a 12 -hour period from the NORSAR monthly bulletin is given in Fig. 7.6.1. Many of these events were also listed in the IDC Reviewed Event Bulletin, using mostly the arrays in central/northern Europe as key stations in the location procedure. Fig. 7.6 .2 shows epicenters for a two-week period as given in the biweekly IDC Performance Reports.

As can be seen from Fig. 7.6.1, the majority of the earthquakes were around $m_{b}=4.0$ and lower, thus giving a good basis both for a detectability study and to investigate possible
magnitude bias effects. As is well known (e.g., Ringdal, 1976), a network magnitude bias can be expected at low magnitudes unless maximum-likelihood techniques are applied.

Magnitude comparisons

Fig. 7.6.3 compares reported magnitudes from the three sources: NORSAR bulletin, IDC REB and NEIC PDE. The following observations are made:

- From plot a) we note that NORSAR and PDE magnitudes are consistent for the larger events, but there is a significant positive "network bias" in the PDE magnitudes for the smaller events. Once the NORSAR magnitude goes below 4.0, the PDE magnitude stays between 4.0 and 4.5 , thus reflecting that only those stations with the highest amplitudes contribute to the average m_{b}.
- From plot b) we note that there is a bias also in the IDC magnitudes for the smaller events, although this plot has much more scatter than plot a).
- From plot c) we note that IDC magnitudes have a negative bias relative to PDE magnitudes. This is not surprising, and has been documented in many IDC Performance Reports. One possible reason is the dominance of high-frequency arrays in the IDC network. However, the large scatter between IDC and PDE magnitudes is a source of concern, and must be due to other reasons as well. It appears that the automatic algorithm at the IDC for magnitude computation needs significant improvement.

Recurrence statistics

Fig. 7.6.4 shows cumulative recurrence statistics for NORSAR and REB for the Greece sequence. The slope of the NORSAR plot is close to 1.0 , whereas the REB slope is much steeper. The tendency of REB recurrence curves to show a slope significantly steeper than 1.0 has been observed in many IDC Performance Reports (see e.g. Fig. 7.6.5), and again we prescribe this to a network bias.

It might be noted that under the assumptions of a normal magnitude distribution and an exponential magnitude-frequency relationship ($\log \mathrm{N}=a \mathrm{~b} * \mathrm{~m}$), a single station or array will provide an unbiased estimate of the b-value (Ringdal, 1975). On the other hand, the avalue from a single-station or array will be biased due to station bias and station scatter. Therefore the b-value of approximately 1.0 inferred from the NORSAR plot should be close to the "real" b-value for this earthquake sequence. When maximum-likelihood magnitudes are implemented at the IDC, we would thus expect the recurrence slopes to become close to 1.0 .

Detectability

Fig. 7.6.6 shows the estimated incremental detectability of the REB using NORSAR as a reference for the area and time period mentioned. Since NORSAR is currently not participating in GSETT-3, it can reasonably be used as an independent reference system for such
an estimation. The 90% threshold is close to 4.2 , which is in fact quite similar to the estimate inferred from the theoretical capability plots in the IDC Performance Reports. This consistency is encouraging.

F. Ringdal

References

Harjes, H.-P., (1995): Calibrating an IMS at regional distances, in Proceedings, CTBT Monitoring Technologies Conference 1995, ARPA, Arlington, VA.

Kværna, T. \& F. Ringdal (1995): Magnitude estimation using the IDC Threshold Monitoring System, Semiannual Technical Summary, 1 October 1994-31 March 1995, NORSAR Sci. Rep. no. 1-94/95, Kjeller, Norway.

Ringdal, F. (1975): On the estimation of seismic detection thresholds, Bull. Seism. Soc. Am., 65, 1631-1642.

Ringdal, F. (1976): Maximum likelihood estimation of seismic magnitude, Bull. Seism. Soc. Am., 66, 789-802.

Fig. 7.6.1. Excerpts from the NORSAR bulletin for a 12-hour period on 13 May 1995.

Fig. 7.6.2. REB events in Europe showing the depth and body-wave magnitudes ranges for a twoweek period during the Greece sequence. The GSETT-3 stations are indicated as filled circles and triangles. The figure is taken from one of the IDC Performance Reports.
a)

b)

C)

Mean:-0.36, Stdev.: 0.23

Fig. 7.6.3. Magnitude comparisons for various reporting agencies for the Greece earthquake sequence. Note the network magnitude bias, which is particularly pronounced in figure a) (NORSAR versus PDE magnitudes).
a)

b)

Fig. 7.6.4. Magnitude recurrence statistics for a) NORSAR and b) IDC for six weeks of the Greece earthquake sequence. The straight lines have a slope of 1.0. Note that the NORSAR slope is close to 1.0, whereas the IDC slope appears to be significantly steeper.

Fig. 7.6.5. Recurrence distribution of body-wave (m_{b}) and local (ML) magnitudes in the REB for selected regions, as taken from an IDC Performance Report. The stippled lines have a slope of 1.0. Note that the m_{b} recurrence curves have slopes significantly greater than 1.0 for all regions, which is ascribed to a network m_{b} estimation bias.

Fig. 7.6.6. Detectability estimate for the IDC REB for the Greece area using the NORSAR bulletin as a reference. The 90% detection threshold is $m_{b}=4.2$, which is close to the theoretical estimate in the IDC Performance Reports.

7.7 An assessment of the estimated mean mislocation vectors for small-aperture arrays

Introduction

The objective of this study was to test the applicability of the estimated mean mislocation vectors for small-aperture arrays (Schweitzer, 1994; Schweitzer \& Kværna, 1995) for use with different event-location procedures. The mean mislocation vectors were calculated in the slowness space and are now available for automatically estimated fk-results over a large range of azimuth and ray-parameter values. Additionally, mean standard deviations for the mislocation vectors could be defined as a function of the measured slowness values. All this information can now be used to increase the stability and quality of both phase association and event location based on automatically estimated fk -results.

Single-array locations

For the four arrays, ARCESS, FINESS, GERESS and NORESS, the data base of slowness correction vectors was sufficiently dense that these corrections could be applied for locating local and regional seismic events. In this way, the correction vectors could be used to improve the single-array locations.

The single-array location procedure RONAPP (Mykkeltveit \& Bungum, 1984) uses the TTAZLOC algorithm (Bratt \& Bache, 1988) and locates events with travel time and azimuth information as input data. Apparent velocities of the detected onsets are only used to identify the different seismic phases. The uncertainties of the estimated parameters (onset time, azimuth and apparent velocity) were calculated from the SNR and the quality of the fk -analysis. Therefore, correcting automatically estimated fk -results with mean mislocation vectors mainly influences the location algorithm in changing the azimuth of the observed phases. Only in some cases does correcting the apparent velocities lead to a change of the estimated phase type (and thereby also a shift to another travel-time table). The standard deviations of the mean mislocation vectors were not taken into account in this study.

To assess the mean mislocation vectors for the four arrays mentioned above, the whole data set for 1994 was reprocessed. Fig. 7.7.1 shows all 25,612 events defined and located by the four small-aperture arrays in the original single-array data analysis. The map clearly shows the concentration of the seismicity at known source regions. Additionally, we can see a more scattered distribution of events located at larger distances from the arrays. The two circles of events around NORESS and ARCESS are an unexplained artefact of the RONAPP recipes for these two arrays.

Fig. 7.7.2 shows the 24,946 relocated events after correcting the automatically estimated slowness values (phase velocity and azimuth) with the mean mislocation vectors. For the phases where a mislocation vector was unassociable, the original slowness values remained unchanged. The reduction of the number of defined and located seismic events by about 2.5% is mostly caused by a reduction of events far away from the arrays (to see
the reduced number of artificial events scattered in the background, compare with Fig. 7.7.1).

Because most of the events located by the regional arrays are due to man-made activity, this large number of relocated events cannot be compared with independent bulletins. Therefore an evaluation of the results can only be done in a more qualitative way. It is clearly seen that the concentration of events around known source regions in Europe is much higher after introducing the slowness corrections. Especially the azimuthal scatter is smaller. This clearly shows the positive effect of correcting the observed apparent velocities and azimuth values with mean mislocation vectors.

Slowness residuals in the REBs

After 10 months of operating GSETT-3, the Reviewed Event Bulletins (REBs) contain a huge amount of (automatically) estimated ray parameter and azimuth values observed for the small-aperture arrays ARCESS, FINESS, GERESS and NORESS. Although these values are not always used in the final location of seismic events, ray parameter and azimuth play an important role during the identification and association process at the IDC. It is known that the single ray parameter and azimuth observation of a small-aperture array show a relatively large scatter and additionally often a systematic mislocation. For seismic events with only a few well-defined observations, this scatter will influence the starting location of the event location procedure. In addition, the phase association process will be influenced by the systematic array mislocations. Estimating mean mislocation vectors is part of a needed calibration of all GSETT-3 stations (Harjes et al, 1994). In this study such mean mislocation vectors were tested for application at the IDC.

All REB-events (1 Jan - 31 Oct 1995) located with at least 10 defining phases were investigated for onsets of the four small-aperture arrays. These events were assumed to have a location precision that allowed for investigation of slowness residuals. The ray parameter and azimuth residuals were transformed in a slowness-error vector. Whenever this vector was smaller than $6 \mathrm{sec}{ }^{\circ}$ and the travel time residual of the onset was smaller than 6 sec , this onset was defined as a valid association and the slowness vector was corrected with the mean mislocation vector. Fig. 7.7.3 shows the results for each investigated array. The blue line always shows the distribution of the slowness errors without any correction and the red line shows the distribution of the slowness errors after applying the corrections. The two distributions are normalized relative to the maximum of the occurring slowness errors. The corrected slowness values clearly show smaller errors and should therefore be used in the data processing at the IDC (see Table 7.7.1).

J. Schweitzer, Ruhr-University Bochum

References

Bratt, S. \& T.C. Bache (1988): Locating events with a sparse network of regional arrays. Bull. Seism. Soc. Am., 78, 780-798.

Harjes, H.-P., M.L. Jost \& J. Schweitzer (1994): Preliminary calibration of candidate alpha stations in the GSETT-3 network. Ann. di Geof., 37, 382-396.

Mykkeltveit, S. \& H. Bungum (1984): Processing of regional seismic events using data from small-aperture arrays. Bull. Seism. Soc. Am., 74, 2313-2333.

Schweitzer, J. (1994): Mislocation vectors for small-aperture arrays - a first step towards calibrating GSETT-3 stations, in: Semiannual Technical Summary, 1 April 1994-30 September 1994, NORSAR Sci. Rep. 1-94/95, NORSAR, Kjeller.

Schweitzer, J. \& T. Kværna (1995): Mapping of azimuth anomalies from array observations, in: Semiannual Technical Summary, 1 October 1994-31 March 1995, NORSAR Sci. Rep. 2-94/95, Kjeller, Norway

Table 7.7.1. Some statistical parameters of observed and corrected slowness errors

Array	Number of erents	Ohserrel shmmess errors		Stowness errors atier correction	
		mean leems	median feect!	nieal sers\%	metian lsee\%!
ARCESS	7183	1.767	1.476	1.350	0.963
FINESS	7746	2.164	1.897	1.830	1.407
GERESS	5142	1.732	1.404	1.547	1.135
NORESS	5308	2.071	1.812	1.783	1.351

RONAPP locations 1994 (25,612 events), original

Fig. 7.7.1: All 25,612 events located during 1994 by ARCESS, FINESS, GERESS, and NORESS using the originally estimated apparent velocities and azimuth values.

RONAPP locations 1994 (24,946 events), corrected

Fig. 7.7.2: All 24,946 events for 1994 located after correcting the apparent velocities and azimuth values with the mean mislocation vectors of ARCESS, FINESS, GERESS, and NORESS.

Fig. 7.7.3: Slowness residuals in the REBs for each of the investigated small aperture arrays. The blue line shows the original residuals and the red line shows the remaining residuals after applying the mean mislocation vectors. All distributions were normalized for each array separately.

[^0]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

[^1]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

[^2]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

[^3]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

