The Research Council of Norway (NFR)

NORSAR Scientific Report No. 1-95/96

Semiannual Technical Summary

1 April - 30 September 1995

Kjeller, November 1995

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

7.6 Magnitude estimation at the IDC — a case study

Introduction

Several recent papers have addressed the shortcomings of the currently available magnitude scales for the purposes of GSETT-3. Harjes (1995) has suggested that a "unified" magnitude scale should be developed for operational use at the IDC. Such a magnitude scale should have the following general characteristics:

- Consistent with current teleseismic m_b
- Applicable to "all" distance ranges
- Computed automatically
- Valid over large magnitude range (at least 2.0-6.5)

The primary purpose would be to develop a "generic" magnitude scale that could be used as a first estimate of m_b . Subsequent refinements would then be possible by introducing station/region-specific correction factors in areas where adequate data are available.

In the NORSAR Semiannual Technical Summary 1 October 94 - 31 March 95 Kværna and Ringdal (1995) described a possible approach to developing a unified magnitude scale, by using the IDC Threshold Monitoring system.

By analyzing selected IDC-reported events in detail, they found that the TM approach offers a consistent, automatically computed data set that is directly applicable to m_b estimation. Since upper limits on all non-detecting stations are provided, the method is easily expandable to include maximum-likelihood magnitude estimates. It was also pointed out that a similar approach can be used to estimate M_S , with upper 90% M_S limits provided automatically for events for which no surface waves are detected.

In this paper we follow up the general question of IDC magnitude estimation by analyzing a recent earthquake sequence in Greece during May-June 1995. This includes comparisons of IDC magnitudes in the Reviewed Event Bulletins to those of NORSAR and NEIC, with special view to network bias, recurrence statistics and detectability.

The Greece earthquake sequence May/June 1995

Several hundred earthquakes from the Greece area were recorded at the NORSAR array during May/June 1995. An example of a 12-hour period from the NORSAR monthly bulletin is given in Fig. 7.6.1. Many of these events were also listed in the IDC Reviewed Event Bulletin, using mostly the arrays in central/northern Europe as key stations in the location procedure. Fig. 7.6.2 shows epicenters for a two-week period as given in the biweekly IDC Performance Reports.

As can be seen from Fig. 7.6.1, the majority of the earthquakes were around $m_b = 4.0$ and lower, thus giving a good basis both for a detectability study and to investigate possible

magnitude bias effects. As is well known (e.g., Ringdal, 1976), a network magnitude bias can be expected at low magnitudes unless maximum-likelihood techniques are applied.

Magnitude comparisons

Fig. 7.6.3 compares reported magnitudes from the three sources: NORSAR bulletin, IDC REB and NEIC PDE. The following observations are made:

- From plot a) we note that NORSAR and PDE magnitudes are consistent for the larger events, but there is a significant positive "network bias" in the PDE magnitudes for the smaller events. Once the NORSAR magnitude goes below 4.0, the PDE magnitude stays between 4.0 and 4.5, thus reflecting that only those stations with the highest amplitudes contribute to the average m_b.
- From plot b) we note that there is a bias also in the IDC magnitudes for the smaller events, although this plot has much more scatter than plot a).
- From plot c) we note that IDC magnitudes have a negative bias relative to PDE magnitudes. This is not surprising, and has been documented in many IDC Performance Reports. One possible reason is the dominance of high-frequency arrays in the IDC network. However, the large scatter between IDC and PDE magnitudes is a source of concern, and must be due to other reasons as well. It appears that the automatic algorithm at the IDC for magnitude computation needs significant improvement.

Recurrence statistics

Fig. 7.6.4 shows cumulative recurrence statistics for NORSAR and REB for the Greece sequence. The slope of the NORSAR plot is close to 1.0, whereas the REB slope is much steeper. The tendency of REB recurrence curves to show a slope significantly steeper than 1.0 has been observed in many IDC Performance Reports (see e.g. Fig. 7.6.5), and again we prescribe this to a network bias.

It might be noted that under the assumptions of a normal magnitude distribution and an exponential magnitude-frequency relationship (log N=a b*m), a single station or array will provide an unbiased estimate of the b-value (Ringdal, 1975). On the other hand, the a-value from a single-station or array will be biased due to station bias and station scatter. Therefore the b-value of approximately 1.0 inferred from the NORSAR plot should be close to the "real" b-value for this earthquake sequence. When maximum-likelihood magnitudes are implemented at the IDC, we would thus expect the recurrence slopes to become close to 1.0.

Detectability

Fig. 7.6.6 shows the estimated incremental detectability of the REB using NORSAR as a reference for the area and time period mentioned. Since NORSAR is currently not participating in GSETT-3, it can reasonably be used as an independent reference system for such

an estimation. The 90% threshold is close to 4.2, which is in fact quite similar to the estimate inferred from the theoretical capability plots in the IDC Performance Reports. This consistency is encouraging.

F. Ringdal

References

- Harjes, H.-P., (1995): Calibrating an IMS at regional distances, *in* Proceedings, CTBT Monitoring Technologies Conference 1995, ARPA, Arlington, VA.
- Kværna, T. & F. Ringdal (1995): Magnitude estimation using the IDC Threshold Monitoring System, Semiannual Technical Summary, 1 October 1994 - 31 March 1995, NORSAR Sci. Rep. no. 1-94/95, Kjeller, Norway.
- Ringdal, F. (1975): On the estimation of seismic detection thresholds, Bull. Seism. Soc. Am., 65, 1631-1642.
- Ringdal, F. (1976): Maximum likelihood estimation of seismic magnitude, Bull. Seism. Soc. Am., 66, 789-802.

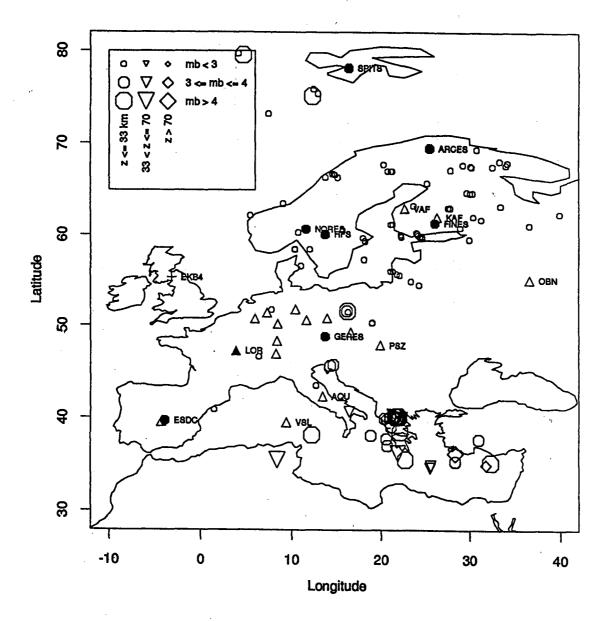
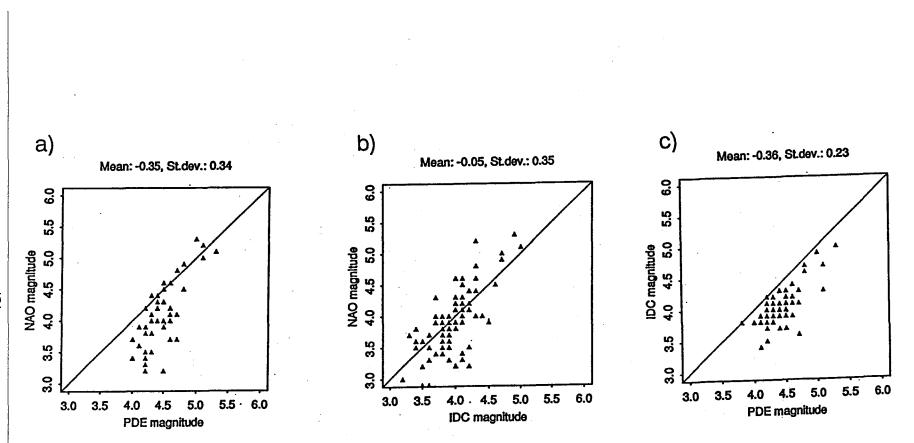
Jun 8 13:39 1995	nor	sar.bulletin P	age 5								
13 May 11.15.23.9	NB2	P 0.8	0.5	10	157	19 11.11.04	43N	21E	3.2	383	YUGOSLAVIA
13 May 11.16.13.5				13	123	38 11.09.02	32N	48E	3.7		WESTERN IRAN
13 May 11.19.47.1	NB2	P 1.1	0.6	10	158	19 11.15.31	43N	21E	3.3		YUGOSLAVIA
3 May 11.30.20.8	NB2			12	157	25 11.25.00	37N	23E	3.4		SOUTHERN GREECE
3 May 11.36.11.1				10	145	19 11.31.51	44N	26E	3.4		ROMANIA
3 May 11.43.08.1				9	140	18 11.39.01	46N	28E	3.2		ROMANIA
3 May 11.48.22.1				9	157	18 11.44.10	44N	21E	5.1		YUGOSLAVIA
3 May 11.57.46.3				10	160	21 11.53.09	41N	20E	3.2		ALBANIA GREECE
3 May 12.00.15.2				12	157 91	24 11.55.03 83 11.57.04	38N 5N	23E 97E	3.2 3.9		NORTHERN SUMATERA
3 May 12.09.28.5				22 9	156	18 12.28.55	44N	21E	3.3		NORTHWESTERN BALKAN REGION
3 May 12.33.00.6 3 May 12.55.45.9				12	167	24 12.50.35	37N	18E	3.4		IONIAN SEA
May 13.09.57.5				12	159	26 13.04.25	36N	22E	3.5		MEDITERRANEAN SEA
May 13.36.58.8				10	158	19 13.32.43	43N	21E	3.3		YUGOSLAVIA
May 13.39.09.9				20	42	79 13.27.07		141E	4.2		SOUTH OF HONSHU, JAPAN
May 13.46.41.8				10	161	19 13.42.25	43N	19E	3.3		NORTHWESTERN BALKAN REGION
May 13.54.39.7				12	159	26 13.49.07	36N	22E	3.5	400	MEDITERRANEAN SEA
May 13.57.50.0				9	146	18 13.53.45	45N	25E	3.3		ROMANIA
May 14.13.47.0				10	158	20 14.09.21	4 2 N	21E	3.3	383	YUGOSLAVIA
May 14.21.21.2			0.8	9	157	18 14.17.09	44N	21E	4.3		YUGOSLAVIA
May 14.24.30.0	NB2	P 0.9		9	146	18 14.20.21	45N	26E	3.3		ROMANIA
May 14.30.54.5				12	159	26 14.25.21	36N	23E	4.0		MEDITERRANEAN SEA
May 15.03.15.4	NB2	P 0.7		10	157	20 14.58.47	42N	22E	3.0		NORTHWESTERN BALKAN REGION
May 15.09.43.7				9	157	18 15.05.31	44N	21E	3.4		YUGOSLAVIA
May 15.19.42.0				10	159	20 15.15.11	42N	21E	3.1		ALBANIA
May 15.30.33.8				10	158	19 15.26.14	43N	21E	3.8		NORTHWESTERN BALKAN REGION
May 15.34.57.9				12	159 22	28 15.29.10 153 15.23.58	34N	23E 179E	4.4		MEDITERRANEAN SEA SOUTH OF KERMADEC ISLANDS
3 May 15.44.02.4				27 9	147	17 15.53.54	46N	25E	3.1		ROMANIA
3 May 15.57.50.5			0.6	9	140	18 16.04.53	46N	28E	3.1		ROMANIA
3 May 16.09.03.7 3 May 16.19.19.3	ND2 ND2	P 0.6		9	157	18 16.15.09	44N	21E	3.0		NORTHWESTERN BALKAN REGION
3 May 16.43.27.0	NB2	P 1.0		10	158		42N	21E	3.3		NORTHWESTERN BALKAN REGION
3 May 17.15.46.8				ĩŏ	158	19 17.11.25	43N	21E	3.7		NORTHWESTERN BALKAN REGION
May 17.54.40.0	NB2	P 0.9		Ĩĝ	155	18 17.50.35	44N	22E	3.3		YUGOSLAVIA
May 17.59.46.9	NB2	P 12.1		10	158	19 17.55.30	43N	21E	4.2	383	NORTHWESTERN BALKAN REGION
May 18.10.52.0	NB2	P 35.7	0.8	10	158	19 18.06.35	43N	21E	4.7		NORTHWESTERN BALKAN REGION
May 18.17.33.8	NB2	P 0.7	0.7	12	159	26 18.12.02	36N	22E	3.5		MEDITERRANEAN SEA
May 18.30.55.3	NB2	P 0.7		10	157	19 18.26.36	43N	21E	3.1		YUGOSLAVIA
May 18.40.30.0	NB2	P 3.2		12	156	25 18.35.12	38N	24E	4.0		SOUTHERN GREECE
May 18.44.48.2	NB2	P 0.2		9	148	17 18.40.51	46N	24E	3.0		ROMANIA
May 18.51.19.8	NB2	P 4.6		10	160	19 18.47.03	43N	20E	3.9		NORTHWESTERN BALKAN REGION
May 18.59.50.1				.9	156	18 18.55.44	44N	21E	3.8		NORTHWESTERN BALKAN REGION
May 19.01.52.1				12	161	26 18.56.25	36N	21E 21E	3.7		SOUTHERN GREECE NORTHWESTERN BALKAN REGION
May 19.05.05.4				9	156	18 19.00.59	44N 36N	21E 22E	4.1 4.7		MEDITERRANEAN SEA
3 May 19.05.40.2				12 12	160 159	26 19.00.11 26 19.28.55	36N	22E	4.7		MEDITERRANEAN SEA
May 19.34.26.8				10	158	19 19.37.42	43N	21E	4.0		NORTHWESTERN BALKAN REGION
3 May 19.42.03.0				9	155	18 21.03.08	45N	21E	3.7		YUGOSLAVIA
May 21.07.09.3 May 21.13.32.8	NB2			24	83	94 21.00.19	ON		6.0		KALIMANTAN
3 May 21.40.08.2				12	157	26 21.34.43	37N	24E	3.4		SOUTHERN GREECE
3 May 21.45.38.8				10	159	20 21.41.14	42N	21E	3.5		NORTHWESTERN BALKAN REGION
3 May 22.06.13.4				Ĩğ	142	18 22.02.11	46N	27E	3.2		ROMANIA
3 May 22.33.49.3				9	154	18 22.29.47	45N	22E	3.6		ROMANIA
				9	355	17 22.38.33	78N	4E	4.7	640	GREENLAND SEA
5 May 22.92.32.9				•	1 5 4	10 32 30 43	44N	22E	3.9	259	DOMANTA
3 May 22.42.32.4 3 May 23.32.48.3		P 4.5	0.8	9	154 156	18 23.28.42 18 23.47.41	44N	21E	4.1		ROMANIA NORTHWESTERN BALKAN REGION

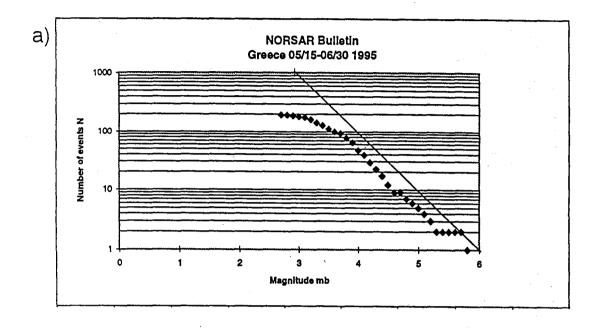
.

NORSAR Sci. Rep. 2-94/95

November 1995

Fig. 7.6.1. Excerpts from the NORSAR bulletin for a 12-hour period on 13 May 1995.


Fig. 7.6.2. REB events in Europe showing the depth and body-wave magnitudes ranges for a twoweek period during the Greece sequence. The GSETT-3 stations are indicated as filled circles and triangles. The figure is taken from one of the IDC Performance Reports.

is particularly pronounced in figure a) (NORSAR versus PDE magnitudes).

November 1995

NORSAR Sci. Rep. 2-94/95

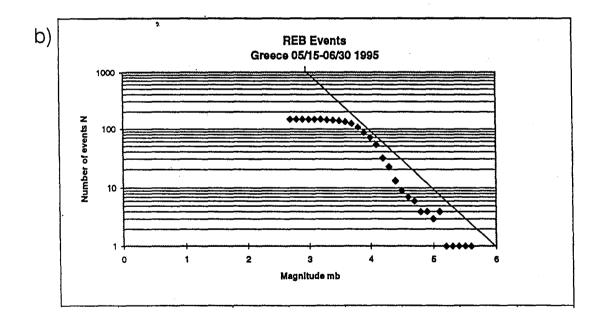


Fig. 7.6.4. Magnitude recurrence statistics for a) NORSAR and b) IDC for six weeks of the Greece earthquake sequence. The straight lines have a slope of 1.0. Note that the NORSAR slope is close to 1.0, whereas the IDC slope appears to be significantly steeper.

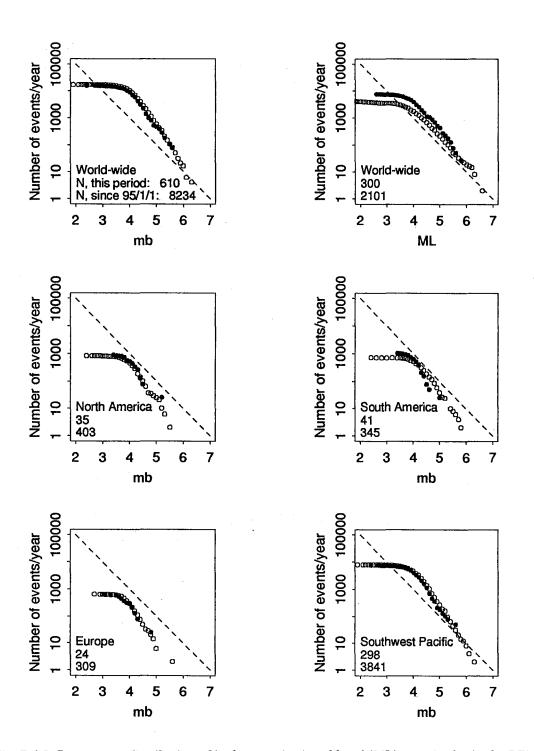


Fig. 7.6.5. Recurrence distribution of body-wave (m_b) and local (ML) magnitudes in the REB for selected regions, as taken from an IDC Performance Report. The stippled lines have a slope of 1.0. Note that the m_b recurrence curves have slopes significantly greater than 1.0 for all regions, which is ascribed to a network m_b estimation bias.

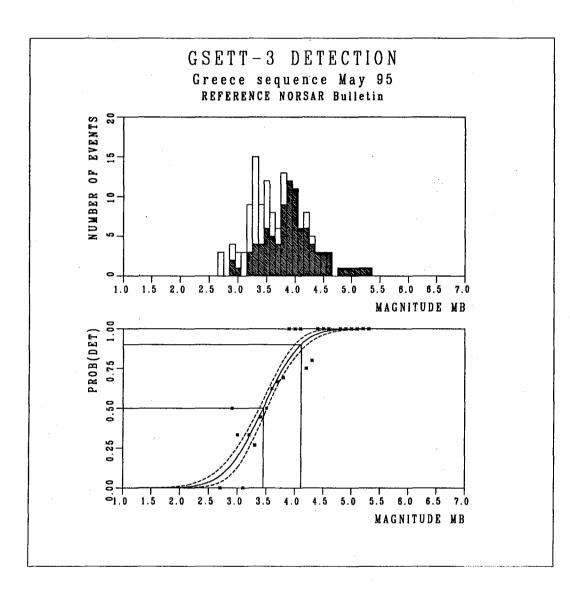


Fig. 7.6.6. Detectability estimate for the IDC REB for the Greece area using the NORSAR bulletin as a reference. The 90% detection threshold is $m_b = 4.2$, which is close to the theoretical estimate in the IDC Performance Reports.