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7.1 Global seismic threshold monitoring and automated network
processing

Paper presented at the ARPA CTBT Monitoring Technologies Conference 1995

Abstract

The overall objective of the research conducted at NORSAR is to develop, test and dem-
onstrate advanced automated processing techniques for use in a global seismic CTBT
monitoring system, and to implement and integrate these techniques into the processing at
the International Data Center. A global system for continuous seismic threshold monitor-
ing has been developed and implemented at the IDC. Other advances include improved
automatic onset time estimation of signal arrivals, special post-processing procedures for
improving automatic event location accuracies and on-line regional generalized beam-
forming for reliable phase association of detected seismic events.

Background

Over the past several years, major advances have been made in automated processing of
seismic data for regional and global monitoring. These range from automated array and 3-
component station detection processing and parameter extraction using techniques such as
frequency-wavenumber analysis to automated, expert-system processing at both the sin-
gle-station and network level. Advances have also been made in regional and global phase
association techniques. Nevertheless, the current IDC processing requires a high degree of
analyst interaction before the final bulletin is produced. While the current interactive anal-
ysis tools at the IDC are both sophisticated and effective, the need for further automation
of the analyst functions is clearly present. Such added automation would also contribute to
enabling the analysts to focus on events of special interest, rather than spending the major-
ity of their time on routine events.

Global threshold monitoring

Our main emphasis has been on developing and implementing a system for global contin-
uous threshold monitoring at the IDC. Continuous seismic threshold monitoring (CSTM)
is a technique that has been developed over the past few years to monitor a geographical

area continuously in time. Data from a network of arrays and single stations are combined
and “steered” toward a specific area to provide an on-going assessment of the upper mag-
nitude of seismic events that might have occurred in that area.

The main purpose of the technique is to highlight instances when a given threshold magni-
tude is exceeded, thereby helping the analyst to focus on those events truly of interest in a
monitoring situation. The analyst can then apply traditional tools in detecting, locating and
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identifying the source of the disturbance. Thus, the CSTM technique is designed to sup-
plement, not to supplant, traditional techniques.

Approaches to CSTM include:

 Site-specific monitoring: A seismic network is focused on a small area, such as a
known test site. This narrow focusing enables a high degree of optimization, using site-
station specific calibration parameters and sharply focused array beams.

» Regional monitoring: Using a dense geographical grid, and applying site-specific mon-
itoring to each grid point, threshold contours for an extended region are computed
through interpolation. In contrast to the site-specific approach, it is usually necessary to
apply generic attenuation relations, and the monitoring capability will therefore not be
quite as optimized.

* Global monitoring: This is similar to regional monitoring, but the global grid system is
much less dense, and the threshold parameters are most often determined from teleseis-
mic (rather than regional) phases. This approach is expected to be particularly useful at
the IDC in a monitoring system,

The CSTM approach has an advantage over standard capability maps in the following
respects:

» The threshold levels represent the actual noise conditions at any point in time, and do
not depend upon an assumed noise distribution.

» After alarge earthquake, the ensuing increase in global threshold levels is accurately
represented.

These features are illustrated in Figs. 7.1.1-7.1.4.

Generalized beamforming

Another area of activity has been the development and fine-tuning of regional generalized
beamforming (GBF) for the Fennoscandian area. Based upon statistics accumulated over
the past several years, it is found that this technique is very effective in providing reliable
phase association and initial location estimates, for use in subsequent processing by the
Intelligent Monitoring System (IMS). The results from the GBF process are now available
on-line on the Internet (finger quake@ugle.norsar.no).

The following specific results have been obtained:

« The Alpha station network in Fennoscandia (NORESS, ARCESS, FINESS, Hagfors)
detects thousands of regional events annually.

* More than 95 per cent of these events are man-made.
* Most events are confined to a small number of mining regions.
» Typical location accuracy (after analyst review) is about 10 km.

* Very few man-made events (only about 10 per year) exceed my, = 3.
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Fig. 7.1.5 illustrates the principles of regionalized GBF and the results obtained.

Automatic post-processing

An experiment has been conducted for one of the most active mining regions, located on
the Kola Peninsula. The small array in Apatity, Kola, located less than 50 km from this
area, has been used as a Beta station in an automatic processing scheme. We have also
used a 3-component station nearby. Results are as follows:

» By autoregressive techniques, and applying fixed filter bands and processing parame-
ters, an onset time accuracy comparable to analyst picks has been achieved.

» Automatic relocation of the events using the Beta stations has resulted in a significantly
improved accuracy (about 2 km) in epicenter location.

» These results have been confirmed by independent “ground truth” locations provided
by the Kola Science Centre.

The results of this experiment are illustrated in Fig. 7.1.6.

An important perspective is that suitably placed Beta stations near mining areas could be
used to obtain improved automatic location accuracy of mining events, and could reduce
analyst workload considerably. While our work has made use of a small Beta-array, a 3-
component station might be expected to provide nearly as good results when processed in
this manner.

Another important result of years of monitoring seismic events in Fennoscandia is the vir-
tual absence of mining explosions exceeding my, = 3.0. Also, very few of the events
exceed my, = 2.5. If such mining practice is typical, it might be important in reducing the
number of events of real monitoring concern.

We are currently applying the autoregressive onset estimation technique to seismic phases
on a more general basis, and investigating the quality of the results as a function of filter
setting and signal-to-noise ratio. Reliable quality indicators are the key to a successful
application of the post-processing technique in a wider context. One important consider-
ation is to obtain the appropriate weighting of the observations in the location scheme,
such that reliably determined arrival times will be given far higher weights than less reli-
able ones.

Conclusions and recommendations

The Continuous Seismic Threshold Monitoring has been demonstrated to provide a simple
and very effective tool in day-to-day monitoring of a site of particular interest, and thereby
offers a valuable supplement to traditional techniques in nuclear test ban monitoring. The
initial version of this system has now been implemented at the IDC.

The future work will concentrate on refining CSTM analysis, both site-specific and
regional, using map displays. The system will be further integrated with the IDC parame-
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ter-based processing, and the peaks on the threshold traces will be analyzed with an auto-
matic event explanation facility based on the IDC bulletin. In cases when the CSTM
results suggest that further off-line analysis should be invoked, the IDC Analyst Review
Station will be used. In support of the IDC subscription service, we will explore various
means to provide data to requesting parties, including AutoDRM and use of the WWW
map facility. |

In our view, the deployment of advanced small-aperture arrays and the associated devel-
opment and implementation of automated and increasingly powerful data processing tech-
niques represent major advances in seismic monitoring in recent years. We have
demonstrated the potential of improved event definitions at the IDC by refining the phase
arrival times and taking regional calibration data into account. Additional research along
these lines and subsequent implementation into the IDC of appropriate procedures is
needed in order to fully exploit the potential of the array network data, and will be an
important focus of our future research.

F. Ringdal

T. Kvaerna
S. Mykkeltveit
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Developing a global grid system for deploying the generalized beams
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(Global Threshold Monitoring — IDC Implementation)
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(Global Threshold Monitoring — Monitoring Examples)
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Focusing the network
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(Site-Specific Threshold MonitoringD

Monitoring Novaya Zemlya, Russia
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1. Regular operation at NORSAR since 1989
2. Covers Fennoscandia/N. Europe
3. Coarse initial beam grid, supplemented by

beampacking

4. Available on-line by

finger quake@ugle.norsar.no
5. Location accuracy typically 30 km
6. Automatic post-processing for accurate
location under implementation
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@utdmatic Post-Processing of Khibiny Events) (Improved Location Estimates)
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