Semiannual Technical Summary

1 October 1996-31 March 1997

Kjeller, May 1997

Abstract

(cont.) The NORSAR Detection Processing system has been operated throughout the period with an average uptime of 99.89%. A total of 1886 seismic events have been reported in the NORSAR monthly seismic bulletin for October 1996-March 1997. The performance of the continuous alarm system and the automatic bulletin transfer to AFTAC has been satisfactory. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

This Semiannual Report also presents statistics from operation of the Regional Monitoring System (RMS). The RMS has been operated in a limited capacity, with continuous automatic detection and location and with analyst review of selected events of interest for GSETT-3. Data sources for the RMS have comprised all the regional arrays processed at NORSAR. The Generalized Beamforming (GBF) program is now used as a pre-processor to RMS.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, as well as the Hagfors array in Sweden, have also been recorded and processed. Monthly processing statistics for the arrays as well as results of the RMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved repair of defective electronic equipment after thunderstorms in the array area, cable splicing and work in connection with the small-aperture array in Spitsbergen.

Summaries of five scientific contributions are presented in Chapter 7 of this report.
Section 7.1 summarizes the activities related to the GSETT-3 experiment and experience gained at the Norwegian NDC during the period 1 October 1996-31 March 1997. Norway has been contributing primary station data from three arrays: ARCESS, NORESS and NORSAR. NORESS has been a temporary substitute for the large-aperture NORSAR array, awaiting full integration of the NORSAR data in the IDC processing. Norway's NDC is also acting as a regional data center, forwarding data to the IDC from GSETT-3 primary stations in several countries. These currently include FINESS (Finland), GERESS (Germany), and Sonseca (Spain). In addition, communications for the GSETT-3 auxiliary station at Nilore, Pakistan, are provided through a VSAT satellite link between Norway's NDC and Pakistan's NDC in Nilore. Data from the Hagfors array in Sweden, a GSETT-3 auxiliary station, are also provided through Norway's NDC.

The work at the Norwegian NDC has continued to focus on operational aspects, like stable forwarding of data using the Alpha protocol, proper handling of outgoing and incoming messages, improvement to routines for dealing with failure of critical components, as well as implementation of other measures to ensure maximum reliability and robustness in providing data to the IDC. We will continue the efforts towards improvements and hardening of all critical data acquisition and data forwarding hardware and software components, so that requirements now

established by the PrepCom related to operation of IMS stations can be met to the maximum extent possible.

Section 7.2 describes our initial plans for implementing IMS stations in Norway. Six such stations are located on Norwegian territory: Two primary seismic stations (NORSAR and ARCESS), two auxiliary seismic stations (Spitsbergen and Jan Mayen), one planned infrasound array (Karasjok) and one planned radionuclide monitoring station (Spitsbergen).

The four seismic stations listed above are currently operating, and, with the exception of Jan Mayen, are already contributing data to the prototype IDC. The paper specifies the necessary upgrades (mostly of a minor nature) necessary to meet IMS specifications for these stations. NORSAR will function as a Norwegian National Data Center for all the six IMS stations, and will coordinate the necessary upgrades and new establishments with the CTBTO Provisional Technical Secretariat.

Section 7.3 describes the current status of NORSAR large array operation at the IDC testbed, and gives a comparison of results obtained at the IDC with those obtained during local data processing at NORSAR. It appears that the current DFX processing at the IDC is close to satisfactory, although some improvements are needed to correct a problem with some missed detections. Azimuths computed by the DFX algorithm are excellent. Only one process ("Beamer") now remains to be modified at the IDC to handle large-array data. When this is done, everything will be ready for implementing NORSAR large-array processing at the prototype IDC.

Section 7.4 discusses event magnitudes, capability maps and magnitude thresholds. We have developed an algorithm for obtaining short-term average (STA) based magnitude estimates for all Alpha stations in the current GSETT-3 network. This has been done through analysis of a large event data base, where individual relations between A/T and STA were found for each station. Preliminary results show that the STA-based event magnitudes are in close agreement with the event magnitudes provided by the IDC, and that the STA-based station magnitudes have a lower standard deviation than the A/T-based IDC station magnitudes.

By calculating continuous station magnitudes (noise magnitudes), we have developed a simplified algorithm for assessing the three-station network detection capability. During noise conditions these results are in excellent agreement with traditional estimates of the detection capability of the GSETT-3 Alpha network. But unlike the traditional approach, our approach is able to immediately accommodate variations in detection capability caused by "unusual" conditions like station outages, large earthquakes and aftershock sequences, which may cause the network detection capability to deteriorate for hours.

Along the same lines, we use the continuous station magnitudes to compute so-called magnitude threshold maps (threshold monitoring, TM), and we have compared the TM results with those obtained above. During normal noise conditions we find that for the region north of 30 degrees N, the GSETT-3 Alpha network will generally be unable to detect events below $\mathrm{m}_{\mathrm{b}} 3.5$. On the other hand, the TM map tells us that if there was an event in this region, it would need to have a magnitude below 3.0. In somewhat simplified terms, we could say that the TM approach is able to "monitor" and area at an m_{b} level 0.5 units lower than the conventional "detection-
based" approach. During the occurrence of large earthquakes, we show that this difference in monitoring performance can become even larger.

Section 7.5 contains a study of seismic travel-time models for the Barents region. As is well known, accurate location of seismic events with a regional network requires detailed knowledge of the propagation characteristics of seismic waves in the region. For Fennoscandia, an excellent velocity model (the NORSAR model) has previously been developed. In this study, we have applied the NORSAR model to the general Barents region, including western Russia, and compared it with the IASPEI-91 model, which is currently used by the prototype IDC.

We have selected six well-recorded events in the region and recomputed the locations using available stations in the GSETT-3 network, the Kola network and the IRIS network. In order to minimize the effect of unknown velocity structure, we have used only P-readings in the relocation procedure. This method is less sensitive to regional variations than using a combination of P and S, because a shift in P-velocities will cause a shift in origin time, without influencing significantly the epicentral estimate. In fact, the IASPEI-91 model and the NORSAR model give almost identical location estimates when using P-waves only.

After locating the events, we have compared predicted and actual P and S wave travel times, using both models. Our approach has been, for each model, to use the estimated epicenter and origin time based on the P-data for that model, and then compare the predicted and observed Sarrivals. It turns out that the IASPEI-91 model gives S-wave velocities that are consistently too low compared to the observed data. On the other hand, the NORSAR model shows excellent fit between the predicted and observed arrivals.

We conclude that the NORSAR model is appropriate not only for Fennoscandia, but for the entire Barents region from Spitsbergen to Novaya Zemlya, and also for northwestern Russia. Use of this model would be expected to improve location accuracy considerably compared to use of IASPEI-91, especially when both P and S phases are used in the location procedure. Nevertheless, we find that in many cases a location estimate based on regional P phases alone is more precise than that obtained using both P and S phases. It thus appears that the timing accuracy of IDC S phases needs to be further investigated.

Frode Ringdal

AFTAC Project Authorization	$:$	T/6141/NORSAR
ARPA Order No.	$:$	4138 AMD \# 53
Program Code No.	$:$	0 F10
Name of Contractor	$:$	The Norwegian Research Council (NFR)
Effective Date of Contract	$:$	1 Oct 1995
Contract Expiration Date	$:$	30 Sep 1997
Project Manager	$:$	Frode Ringdal +4763805900
Title of Work	$:$	The Norwegian Seismic Array
(NORSAR) Phase 3		
Amount of Contract	$:$	$\$ 2,458,528$
Contract Period Covered by Report	$:$	1 October 1996-31 March 1997

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, the Air Force Technical Applications Center or the U.S. Government.

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by AFTAC, Patrick AFB, FL32925, under contract no. F08650-96-C-0001.

Table of Contents

1 Summary 1
2 NORSAR Operation 4
2.1 Detection Processor (DP) operation 4
2.2 Array Communications 8
2.3 NORSAR Event Detection operation 15
3 Operation of Regional Arrays 20
3.1 Recording of NORESS data at NDPC, Kjeller 20
3.2 Recording of ARCESS data at NDPC, Kjeller 23
3.3 Recording of FINESS data at NDPC, Kjeller 26
3.4 Recording of Spitsbergen data at NDPC, Kjeller 29
3.5 Event detection operation 35
3.6 Regional Monitoring System operation 63
4 Improvements and Modifications 65
4.1 NORSAR 65
5 Maintenance Activities 67
6 Documentation Developed 72
7 Summary of Technical Reports / Papers Published 73
7.1 Status Report: Norway's participation in GSETT-3 73
7.2 Initial plans for implementing IMS stations in Norway 81
7.3 NORSAR Large Array Processing at the IDC testbed 86
7.4 Threshold magnitudes 90
7.5 Study of seismic travel-time models for the Barents region 102

1 Summary

This Semiannual Technical Summary describes the operation, maintenance and research activities at the Norwegian Seismic Array (NORSAR), the Norwegian Regional Seismic Array (NORESS), the Arctic Regional Seismic Array (ARCESS) and the Spitsbergen Regional Array for the period 1 October 1996-31 March 1997. Statistics are also presented for additional seismic stations, which through cooperative agreements with institutions in the host countries provide continuous data to the NORSAR Data Processing Center (NPDC). These stations comprise the Finnish Regional Seismic Array (FINESS), the German Regional Seismic Array (GERESS), the Hagfors array in Sweden and the regional seismic array in Apatity, Russia.

The NORSAR Detection Processing system has been operated throughout the period with an average uptime of 99.89%. A total of 1886 seismic events have been reported in the NORSAR monthly seismic bulletin for October 1996-March 1997. The performance of the continuous alarm system and the automatic bulletin transfer to AFTAC has been satisfactory. Processing of requests for full NORSAR and regional array data on magnetic tapes has progressed according to established schedules.

This Semiannual Report also presents statistics from operation of the Regional Monitoring System (RMS). The RMS has been operated in a limited capacity, with continuous automatic detection and location and with analyst review of selected events of interest for GSETT-3. Data sources for the RMS have comprised all the regional arrays processed at NORSAR. The Generalized Beamforming (GBF) program is now used as a pre-processor to RMS.

On-line detection processing and data recording at the NORSAR Data Processing Center (NDPC) of NORESS, ARCESS, FINESS and GERESS data have been conducted throughout the period. Data from two small-aperture arrays at sites in Spitsbergen and Apatity, Kola Peninsula, as well as the Hagfors array in Sweden, have also been recorded and processed. Monthly processing statistics for the arrays as well as results of the RMS analysis for the reporting period are given.

Maintenance activities in the period comprise preventive/corrective maintenance in connection with all the NORSAR subarrays, NORESS and ARCESS. Other activities have involved repair of defective electronic equipment after thunderstorms in the array area, cable splicing and work in connection with the small-aperture array in Spitsbergen.

Summaries of five scientific contributions are presented in Chapter 7 of this report.
Section 7.1 summarizes the activities related to the GSETT-3 experiment and experience gained at the Norwegian NDC during the period 1 October 1996-31 March 1997. Norway has been contributing primary station data from three arrays: ARCESS, NORESS and NORSAR. NORESS has been a temporary substitute for the large-aperture NORSAR array, awaiting full integration of the NORSAR data in the IDC processing. Norway's NDC is also acting as a regional data center, forwarding data to the IDC from GSETT-3 primary stations in several countries. These currently include FINESS (Finland), GERESS (Germany), and Sonseca (Spain). In addition, communications for the GSETT-3 auxiliary station at Nilore, Pakistan, are provided through a VSAT satellite link between Norway's NDC and Pakistan's NDC in Nilore.

Data from the Hagfors array in Sweden, a GSETT-3 auxiliary station, are also provided through Norway's NDC.

The work at the Norwegian NDC has continued to focus on operational aspects, like stable forwarding of data using the Alpha protocol, proper handling of outgoing and incoming messages, improvement to routines for dealing with failure of critical components, as well as implementation of other measures to ensure maximum reliability and robustness in providing data to the IDC. We will continue the efforts towards improvements and hardening of all critical data acquisition and data forwarding hardware and software components, so that requirements now established by the PrepCom related to operation of IMS stations can be met to the maximum extent possible.

Section 7.2 describes our initial plans for implementing IMS stations in Norway. Six such stations are located on Norwegian territory: Two primary seismic stations (NORSAR and ARCESS), two auxiliary seismic stations (Spitsbergen and Jan Mayen), one planned infrasound array (Karasjok) and one planned radionuclide monitoring station (Spitsbergen).

The four seismic stations listed above are currently operating, and, with the exception of Jan Mayen, are already contributing data to the prototype IDC. The paper specifies the necessary upgrades (mostly of a minor nature) necessary to meet IMS specifications for these stations. NORSAR will function as a Norwegian National Data Center for all the six IMS stations, and will coordinate the necessary upgrades and new establishments with the CTBTO Provisional Technical Secretariat.

Section 7.3 describes the current status of NORSAR large array operation at the IDC testbed, and gives a comparison of results obtained at the IDC with those obtained during local data processing at NORSAR. It appears that the current DFX processing at the IDC is close to satisfactory, although some improvements are needed to correct a problem with some missed detections. Azimuths computed by the DFX algorithm are excellent. Only one process ("Beamer") now remains to be modified at the IDC to handle large-array data. When this is done, everything will be ready for implementing NORSAR large-array processing at the prototype IDC.

Section 7.4 discusses event magnitudes, capability maps and magnitude thresholds. We have developed an algorithm for obtaining short-term average (STA) based magnitude estimates for all Alpha stations in the current GSETT-3 network. This has been done through analysis of a large event data base, where individual relations between A/T and STA were found for each station. Preliminary results show that the STA-based event magnitudes are in close agreement with the event magnitudes provided by the IDC, and that the STA-based station magnitudes have a lower standard deviation than the A/T-based IDC station magnitudes.

By calculating continuous station magnitudes (noise magnitudes), we have developed a simplified algorithm for assessing the three-station network detection capability. During noise conditions these results are in excellent agreement with traditional estimates of the detection capability of the GSETT-3 Alpha network. But unlike the traditional approach, our approach is able to immediately accommodate variations in detection capability caused by "unusual" conditions like station outages, large earthquakes and aftershock sequences, which may cause the network detection capability to deteriorate for hours.

Along the same lines, we use the continuous station magnitudes to compute so-called magnitude threshold maps (threshold monitoring, TM), and we have compared the TM results with those obtained above. During normal noise conditions we find that for the region north of 30 degrees N , the GSETT-3 Alpha network will generally be unable to detect events below $\mathrm{m}_{\mathrm{b}} 3.5$. On the other hand, the TM map tells us that if there was an event in this region, it would need to have a magnitude below 3.0. In somewhat simplified terms, we could say that the TM approach is able to "monitor" and area at an m_{b} level 0.5 units lower than the conventional "detection-based" approach. During the occurrence of large earthquakes, we show that this difference in monitoring performance can become even larger.

Section 7.5 contains a study of seismic travel-time models for the Barents region. As is well known, accurate location of seismic events with a regional network requires detailed knowledge of the propagation characteristics of seismic waves in the region. For Fennoscandia, an excellent velocity model (the NORSAR model) has previously been developed. In this study, we have applied the NORSAR model to the general Barents region, including western Russia, and compared it with the IASPEI-91 model, which is currently used by the prototype IDC.

We have selected six well-recorded events in the region and recomputed the locations using available stations in the GSETT-3 network, the Kola network and the IRIS network. In order to minimize the effect of unknown velocity structure, we have used only P-readings in the relocation procedure. This method is less sensitive to regional variations than using a combination of P and S , because a shift in P -velocities will cause a shift in origin time, without influencing significantly the epicentral estimate. In fact, the IASPEI-91 model and the NORSAR model give almost identical location estimates when using P-waves only.

After locating the events, we have compared predicted and actual P and S wave travel times, using both models. Our approach has been, for each model, to use the estimated epicenter and origin time based on the P-data for that model, and then compare the predicted and observed Sarrivals. It turns out that the IASPEI-91 model gives S-wave velocities that are consistently too low compared to the observed data. On the other hand, the NORSAR model shows excellent fit between the predicted and observed arrivals.

We conclude that the NORSAR model is appropriate not only for Fennoscandia, but for the entire Barents region from Spitsbergen to Novaya Zemlya, and also for northwestern Russia. Use of this model would be expected to improve location accuracy considerably compared to use of IASPEI-91, especially when both P and S phases are used in the location procedure. Nevertheless, we find that in many cases a location estimate based on regional P phases alone is more precise than that obtained using both P and S phases. It thus appears that the timing accuracy of IDC S phases needs to be further investigated.

Frode Ringdal

2 NORSAR Operation

2.1 Detection Processor (DP) operation

There have been 4 breaks in the otherwise continuous operation of the NORSAR online system within the current 6 -month reporting interval. The uptime percentage for the period is 99.89 .

Fig. 2.1.1 and the accompanying Table 2.1.1 both show the daily DP downtime for the days between 1 October 1996 and 31 March 1997 The monthly recording times and percentages are given in Table 2.1.2.

The breaks can be grouped as follows:
a) Hardware failure 0
b) Stops related to program work or error 0
c) Hardware maintenance stops 0
d) Power jumps and breaks 0
e) TOD error correction 0
f) Communication lines 4

The total downtime for the period was 4 hours and 57 minutes.
J. Torstveit

Fig. 2.1.1. Detection Processor uptime for October (top), November (middle) and December (bottom) 1996.

Fig. 2.1.1. Detection Processor uptime for January (top), February (middle) and March (bottom) 1997.

Date	Time	Cause
06 Nov	$1513-1644$	Transmission line failure
11 Nov	$1912-2043$	Transmission line failure
12 Nov	$1608-1624$	Transmission line failure
15 Nov	$0849-1030$	Transmission line failure

Table 2.1.1. The major downtimes in the period 1 October 1996-31 March 1997.

Month	DP Uptime Hours	DP Uptime $\%$	No. of DP Breaks	No. of Days with Breaks	DP MTBF* (days)
Oct 96	744.00	100	0	0	31.0
Nov 96	715.03	99.31	4	4	6.0
Dec 96	744.00	100	0	0	31.0
Jan 97	744.00	100	0	0	31.0
Feb 97	672.00	100	0	0	28.0
Mar 97	744.00	100	0	0	31.0

*Mean-time-between-failures $=$ total uptime/no. of up intervals.
Table 2.1.2. Online system performance, 1 October 1996-31 March 1997.

2.2 Array Communications

After completion of the NORSAR refurbishment project, the operation of the subarray communication lines has proceeded normally.

For a complete description of the NORSAR refurbishment project, reference is made to Section 4.1 of the NORSAR Semiannual Technical Summary, 1 April- 30 September 1995.

From October 1996 through March 1997, there were no significant communications outages at any of the NORSAR subarrays.

A simplified daily summary of the communications performance for the seven individual subarray lines is summarized, on a month-by-month basis, in Table 2.2.1.

F. Ringdal

Table 2.2.1
NORSAR Communication Status Report Month: October 1996

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	A	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
Total hours normal operation	744	744	744	744	744	744	744
\% normal operation	100	100	100	100	100	100	100

Legend:

X : Normal operations
A : All channels masked for more than 12 hours that day
B : All SP channels masked for more than 12 hours that day
C : All LP channels masked for more than 12 hours that day
I : Communication outage for more than 12 hours

Table 2.2.1 (cont.)
NORSAR Communication Status Report Month: November 1996

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	A	X	X	X	X
03	X	X	A	X	X	X	X
04	X	X	A	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31							
Total hours normal operation	716	716	643.33	716	716	716	716
\% normal operation	99.31	99.31	89.35	99.31	99.31	99.31	99.31

Legend:

[^0]Table 2.2.1 (cont.)
NORSAR Communication Status Report
Month: December 1996

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
Total hours normal operation	744	744	744	744	744	744	744
\% normal operation	100	100	1000	100	100	100	100

Legend:

X	:	Normal operations
A	$:$	All channels masked for more than 12 hours that day
B	$:$	All SP channels masked for more than 12 hours that day
C	$:$	All LP channels masked for more than 12 hours that day
I	$:$ Communication outage for more than 12 hours	

Table 2.2.1 (cont.)
NORSAR Communication Status Report
Month: January 1997

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
Total hours normal operation	742.92	742.92	742.92	742.92	742.92	742.92	742.92
\% normal operation	99.85	99.85	99.85	99.85	99.85	99.85	99.85

Legend:

[^1]Table 2.2.1 (cont.)
NORSAR Communication Status Report
Month: February 1997

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	X	X	X	X	X	X
02	X	X	X	X	X	X	X
03	X	X	X	X	X	X	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	A	X	X	A	A	X
28	X	A	X	X	A	A	X
29							
30							
31							
Total hours normal operation	672	634	672	672	633.64	631.50	672
\% normal operation	100	94.35	100	100	94.29	93.97	100

Legend:

X	$:$	Normal operations
A	$:$	All channels masked for more than 12 hours that day
B	$:$	All SP channels masked for more than 12 hours that day
C	\vdots	All LP channels masked for more than 12 hours that day
I	$:$	Communication outage for more than 12 hours

Table 2.2.1 (cont.)
NORSAR Communication Status Report Month: March 1997

Day	Subarray						
	01A	01B	02B	02C	03C	04C	06C
01	X	A	X	X	A	A	X
02	X	A	X	X	A	A	X
03	X	A	X	X	A	A	X
04	X	X	X	X	X	X	X
05	X	X	X	X	X	X	X
06	X	X	X	X	X	X	X
07	X	X	X	X	X	X	X
08	X	X	X	X	X	X	X
09	X	X	X	X	X	X	X
10	X	X	X	X	X	X	X
11	X	X	X	X	X	X	X
12	X	X	X	X	X	X	X
13	X	X	X	X	X	X	X
14	X	X	X	X	X	X	X
15	X	X	X	X	X	X	X
16	X	X	X	X	X	X	X
17	X	X	X	X	X	X	X
18	X	X	X	X	X	X	X
19	X	X	X	X	X	X	X
20	X	X	X	X	X	X	X
21	X	X	X	X	X	X	X
22	X	X	X	X	X	X	X
23	X	X	X	X	X	X	X
24	X	X	X	X	X	X	X
25	X	X	X	X	X	X	X
26	X	X	X	X	X	X	X
27	X	X	X	X	X	X	X
28	X	X	X	X	X	X	X
29	X	X	X	X	X	X	X
30	X	X	X	X	X	X	X
31	X	X	X	X	X	X	X
Total hours normal operation	744	683	744	744	683	683	744
\% normal operation	100	91.80	100	100	91.80	91.80	100

Legend:

X	:	Normal operations
A	All channels masked for more than 12 hours that day	
B	$:$	All SP channels masked for more than 12 hours that day
C	All LP channels masked for more than 12 hours that day	
I	:	Communication outage for more than 12 hours

2.3 NORSAR Event Detection operation

In Table 2.3.1 some monthly statistics of the Detection and Event Processor operation are given. The table lists the total number of detections (DPX) triggered by the on-line detector, the total number of detections processed by the automatic event processor (EPX) and the total number of events accepted after analyst review (teleseismic phases, core phases and total).

	Total DPX	Total EPX	Accepted events		Sum	Daily
			P-phases	Core Phases		
Oct 96	9025	769	305	53	358	11.5
Nov 96	10854	855	319	49	368	12.3
Dec 96	10349	645	254	50	304	9.8
Jan 97	10783	1091	207	57	264	8.5
Feb 97	10346	810	185	37	222	7.9
Mar 97	10138	931	297	73	370	11.9
			1567	319	1886	10.3

Table 2.3.1. Detection and Event Processor statistics, 1 October 1996-31 March 1997.

NORSAR Detections

The number of detections (phases) reported by the NORSAR detector during day 275, 1996, through day 090, 1997, was 68,435 , giving an average of 378 detections per processed day (181 days processed). Table 2.3 .2 shows daily and hourly distribution of detections for NORSAR.

B. Paulsen

NOA .DPX Hourly distribution of detections
Day

275	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Oct	Tuesday
276	11	11	15	7	11	9	2	1	5	11	1.8	16	10	7	13	6	26	14	12	6	18	9	21	11	270	Oct 02	Fednesday
277	10	10	11	11	11	8	3	2	2	2	5	8	9	22	22	8	13	15	19	14	20	14	4	10	253	Oct 03	Thursday
278	12	10	9	8	5	6	7	4	3	7	6	4	10	7	16	26	14	12	1.4	11	5	12	15	14	237	Oct 04	Friday
279	19	16	19	10	14.	18	18	23	12	14	12	11	8	17	13	8	17	16	15	15	18	15	19	17	364	Oct 05	Saturd
280	22	17	31	22	18	28	22	15	21	21	14	12	12	22	18	15	11	14	17	15	14	21	17	19	438	Oct 06	Sunday
281	25	13	19	11	9	7	12	14	4	10	4	23	9	7	17	10	12	6	15	8	21	19	11	12	298	Oct 07	Monday
282	14	14	13	15	10	4	6	4	5	4	7	12	2	7	11	6	6	5	14	7	14	10	10	6	206	Oct 08	Tuesday
283	10	8	17	16	6	9	7	10	5	15	8	6	6	18	22	17	14	18	12	23	23	13	14	14	311	Oct 09	Wednesday
284	21	22	13	11	16	12	5	3	11	10	11	14	19	17	16	22	17	23	16	15	16	17	22	20	369	Oct 10	Thursday
285	22	26	20	15	21	9	5	6	11	5	1	9	12	9	12	15	10	20	10	16	17	18	9	23	321	ct 11	Friday
286	12	13	17	20	18	19	19	17	9	14	15	22	6	8	11	17	15	21	21	14	11	22	13	10	364	Oct 12	Saturd
287	17	18	18	13	18	15	17	20	12	10	9	16	11	9	8	7	13	13	11	9	11	21	24	17	337	Oct 13	Sunday
288	18	18	23	18	11	5	4	3	1.	8	5	18	15	6	10	9	4	6	9	12	8	12	11	22	256	Oct 14	Monday
289	11	17	18	6	9	3	0	1	20	8	15	23	14	5	20	22	7	2	7	9	13	9	13	22	274	ct 15	Tuesday
290	12	13	9	11	9	12	0	20	39	8	24	2	6	8	14	3	0	6	11	11	6	8	8	7	247	Oct 16	Wednesday
291	12	8	12	15	6	5	0	3	10	6	9	8	10	1	4	18	20	9	6	2	6	4	8	4	186	Oct 17	Thursday
292	8	4	5	3	8	5	9	2	1	15	1	23	9	3	14	5	13	8	5	19	19	7	10	15	211	ct 18	Friday
293	14	24	13	23	16	17	15	15	17	18	14	11	13	11	30	29	14	16	24	26	19	22	15	20	436	Oct 19	Saturday
294	23	10	16	18	20	18	13	9	16	10	6	1	10	9	5	9	6	14	3	16	9	6	7	18	272	t 20	Sunday
295	18	15	20	25	9	8	8	5	4	2	11	16	6	4	19	8	14	4	1	10	6	8	10	12	243	Oct 21	Monday
296	9	12	7	13	5	5	13	11	2	1	12	31	8	21	15	8	6	3	1	11	3	14	18	13	242	Oct 22	Tuesday
297	11	20	24	14	17	7	2	0	6	9	10	22	19	7	12	16	8	11	17	23	14	22	18	21	330	Oct 23	Wednesday
298	15	22	24	32	18	3	3	6	5	8	14	12	1	5	12	23	18	18	9	22	11	15	20	12	328	ct 24	Thursday
299	21	14	18	24	8	12	5	7	3	4	16	24	9	8	13	13	12	20	14	16	27	11	9	15	323	Oct 25	Friday
300	15	24	21	17	29	24	9	19	21	17	8	13	17	13	15	17	27	18	20	12	30	11	16	17	430	Oct 26	Saturday
301	12	13	9	2	9	7	9	6	6	3	7	2	1	3	8	12	17	18	19	5	5	3	10	11	197	Oct 27	Sunday
302	6	3	0	3	1	1	2	4	0	14	0	0	4	9	8	10	12	2	8	8	12	8	20	17	152	ct 28	Monday
303	4	15	15	15	14	16	1	7	2	1	7	2	4	3	12	15	7	8	19	17	24	15	15	11	249	Oct 29	Tuesday
304	18	20	19	19	25	10	8	9	7	19	1.2	2	9	10	8	13	11	7	12	19	8	11	13	17	306	Oct 30	Wednesday
305	12	9	15	14	21	10	8	3	1	7	7	7	36	7	12	3	8	19	35	16	8	15	18	23	314	ct 31	Thursday
305	16	20	24	18	20	15	9	12	7	12	12	3	17	8	9	16	13	13	13	20	35	15	18	18	363	Nov 01	Friday
307	24	14	19	15	26	14	12	21	19	16	19	16	18	17	15	12	21	23	11	23	15	18	21	14	423	Nov 02	Saturday
308	14	18	15	14	26	26	19	16	15	16	18	11	11	7	9	16	28	16	12	18	17	19	21	32	414	Nov 03	Sunday
309	15	20	18	12	14	29	14	6	3	2	5	3	9	27	5	15	7	24	12	16	24	10	23	30	343	Nov 04	Monday
310	21	12	16	14	18	25	14	6	3	7	16	5	23	19	9	14	14	14	11	16	19	20	15	18	349	Nov 05	Tuesday
311	22	10	11	19	13	7	16	9	8	11	18	12	13	9	5	2	4	14	10	40	65	60	95	58	532	Nov 06	Wednesday
312	35	41	29	35	32	29	58	34	19	20	19	3	19	6	9	21	25	20	15	21	20	23	21	30	584	Nov 07	Thursday
313	19	22	22	20	27	24	7	11	4	14	2	4	13	11	33	14	24	15	19	17	13	12	24	19	390	Nov 08	Friday
314	19	24	27	33	21	17	17	20	24	24	17	24	20	22	24	24	21	32	25	19	19	17	12	20	522	Nov 09	Saturday
315	14	17	19	18	19	21	35	16	15	15	16	21	19	16	18	16	26	12	19	11	17	8	11	21	420	Nov 10	Sunday
316	13	22	17	18	18	19	8	0	4	8	7	2	6	1	15	9	18	9	5	0	14	7	9	15	244	Nov 11	Monday
317	10	13	15	11	9	7	2	10	2	1	14	5	13	16	11	15	21	28	7	9	11	9	16	9	264	Nov 12	Tuesday
318	17	12	18	23	21	13	6	8	9	8	3	7	4	11	6	12	5	5	11	17	9	16	9	10	260	Nov 13	Wednesday
319	19	14	19	18	16	13	13	2	10	9	5	6	13	11	24	6	15	13	7	11	12	16	14	19	305	Nov 14	Thursday
320	16	14	17	24	15	16	9	5	6	11	25	1	10	5	12	10	13	16	9	13	15	13	15	19	309	Nov 15	Friday
321	12	28	20	16	16	21	16	9	9	19	10	12	18	4	12	17	14	17	15	22	20	29	18	31	405	Nov 16	Saturday
322	20	19	19	20	11	12	18	16	10	11	16	14	13	20	16	21	7	18	21	19	17	23	13	16	390	Nov 17	Sunday
323	16	12	21	8	11	7	4	2	5	2	6	3	11	12	9	2	5	7	7	7	4	4	7	10	182	Nov 18	Monday
324	15	12	6	4	9	4	1	2	3	2	10	3	10	14	14	17	21	12	11	11	16	12	7	6	222	Nov 19	Tuesday
325	28	12	22	8	12	12	7	1	1	11	11	6	17	18	12	24	6	3	14	13	16	24	11	23	312	Nov 20	Wednesday
326	13	19	19	12	9	10	13	8	3	1	1	26	6	29	10	43	13	12	18	14	13	21	18	6	337	Nov 21	Thursday
327	10	21	12	30	13	13	8	4	4	12	8	3	10	23	13	15	12	16	17	11	28	21	23	22	349	Nov 22	Friday
328	16	23	36	17	21	33	22	16	25	18	24	15	22	20	18	23	17	17	15	16	23	17	27	18	499	Nov 23	Saturday
329	16	21	22	21	18	12	20	15	5	17	18	11	15	15	15	19	14	13	10	10	11	20	11	12	361	Nov 24	Sunday
330	19	24	13	13	18	8	4	1	2	6	4	0	17	10	4	6	9	6	10	8	16	16	10	11	235	Nov 25	Monday

Table 2.3.2 (Page 1 of 4)

NOA .DPX Hourly distribution of detections

	11	1	9	5	12	7	4	2	1.2		9	5	15	7	14		6			9	11		9	13	204	Nov 26	Tuesday
332	14	15	11	9	17	9	2	7	2	4	13	6	23	24	14	3	7	8	9		10	9	9	12	242	- 27	Hednesday
333	16	13	13	11	14	13	6	12	3	2	7	8	7	15	20	9	2	3	6	9	4	13	10	13	229	ov 28	Thursday
334	14	24	1	15	14	16	8	6	7	6	18	6	16	8	21	10	12	14	10	12	12	13	9	13	297	OV 29	Friday
335	15	16	18	16	19	15	14	15	18	14	5	16	14	10	20	12	12	15	10	12	8	5	8	5	312	30	Saturd
336	9	7	7	11	12	12	14	16	20	20	20	12	11	19	19	13	29	18	16	20	14	20	20	19	378	c 01	-
337	24	17	11	19	14	11	6	8	7	8	9	15	6	10	9	3	5	10	12	5	12	13	19	10	263	02	y
338	12	10	10	15	10	9	5		2	8		1	12	19		10	16	7	6	9		17	15	14	227	03	Tuesday
339	7	5	42	9	18	11	15	6		10	5	11	8	11	8	6	13	12	15	13	5	15	18	9	278	04	Wednesday
34	21	19	12	11	14	8	6	12	5	8	14	11	8	7	17	15	12	4	9	8	12	9	5	12	259	c 05	+day
34	2	17	1	19	12	8	6	3	8	8	3	2	10	8	8	9	7	8	9	4	11	20	10	15	218	6	
342	9	12	14	12	18	18	17	18	13	12	15	21	16	16	18	17	19	15	16	22	22	17	22	20	399	07	Saturday
343	26	14	2	25	25	22	32	30	30	15	33	20	27	18	21	27	22	26	19	18	15	22	23	19	552	08	y
344	24	16	2	19	43	12	7	12	11		12	12	5	16	11	14		13	10	10	16	12	9	11	334	09	Monday
345	14	13	14	13	13	4	7	1			14	2	20	18	3	0		10	2	3	11	6		3	18	10	Tuesday
346	4	5	15	7	15	5	0		3		12		32	9	17	12	7	5	8	12	5	8	7	18		c 11	Wednesday
347	13	14	7	11	20	11	8	7	6	6	10	6	11	15	10	15	11	16	14	14	15	15	14	20	289	12	Y
348	9	17	25	25	30	12	17	15	10	5	7	11	10	14	17	11	16	15	6	15	16	13	11	21	348	13	Friday
349	15	9	13	11	13	10	6	7	8	18		7	14	9	14	14	21	16	17	19	7	16	18	13	31	14	rda
350	14	17	6	15	10	7	5	9	14	8	19	12	11	14	14	15	19	13	25	17	23	20	14	20	341	15	ay
351	16	18	17	12	20	14	12	12	8	10		2	8	10	18	8	6	14	9	17		8	9	6	269	16	Monday
352	16		14	12	12								8	17	13	8	7	3	13	6		5	9	5	191	17	Tuesday
353	15		1	13	1								5	6	3	12	7	9	17			10	12		204	18	day
354	13	6	18	17	14	8		2		8	6		18	9	6	7	4	6	2	8	2	8	9	8	196	Dec 19	ursday
35	15	18	16	16	11	17	9	15	7	12	17	7	15	20	17	7	12	12	19	12	15	11	13	11	324	20	
35	21	23	23	15	10	15	13	14	23	14	15	17	14	14	22	16		21	25	21	18	7	16	17	403	21	da
35	13	19	19	16	15	11		12	14	11		11	7	19	14	12	12	2	8	12	10	12	13	10	285	2	Y
358	12	12	8	7	12	18	8		2	8	7		10	22	13	12	18	17	16	16	28	18	7	17	303	23	Monday
35	11	13	11	19	12	15	15	17	15	19	14	17	14	10	19	12	14	9	17	13	14	18	10	21	349	24	Tuesday
36	12	10	15	9	17	19	14	19	1	16	2	22	19	12	21	26	13	28	22	22	17	18	23	18	31	25	Wednesday
36	23	20	25	18	18	21	22	23	27	2	22	2	29	24	29	24	28	33	17	24	26	27	27	25	58	26	day
36	37	26	24	18	22	18	31	24	29	15	15	20	24	15	11	18	16	11	24	10	15	22	13	20	47	27	Friday
363	14	17	9	9	15	17	21	22	12	17	14	26	15	29	9	14	17	25	11	23	19	31	19	18	423	ec 28	Saturday
364	22	17	18	28	36	18	1	13	12	12	14	12	19	22	21	18	14	13	19	13	21	25	21	15	439	29	Sunday
365	19	18	17	17	10	1	12	13	19	15	24	10	11	9	8	15	18	18	10	19	11	15	14	13	351	30	
366	12	15	18	41	23	17	21	8	9	16	15	20	28	20	13	16	34	14	20	35	17	23	27	27	489	31	Tuesday
1	24	2	2	22	36	21	16	29	9	18	23	34	5	12	11	18	18	5	18	16	21	10	18	13	455	ก 01	ednesday
2	25	10	1	18	19	9	8	3	1	3	4	22	11	4	4	13	5	8	14	8	7	11	12	14		n 02	da
3	17	28	18	19	24	31	23	16	9	4	12	23	15	11	19	64	35	42	61	69	44	55	74	77	790	3	lay
4	58	54	61	57	41	54	53	51	27	6	15	21	13	8	17	11	23	26	37	31	39	25	41	45	81	ת 04	rday
5	50	54	59	65	34	34	24	33	37	16	23	6	14	8	18	11	11	5	16	16	11	15	10	10	590	05	Sunday
6	10	17	10	13	7	50	19	35	23	22	6	16	3	29	20	42	8	35	47	39	62	41	34	44		n 06	Monday
7	45	23	24	16	23	27	19	12	15	17	5		18	13	19	30	20	33	35	49	57	38	34	48		07	Tuesday
8	99	54	38	15	19	10	19	7	2	18	27	0	3	37	31	17	26	15	12	18	7	18	10	48	550	08	Wednesday
9	28	50	60	77	73	63	31	14	27		4	17	12	21	24	24	11	14	21	20	14	20	17	16	665	09	Thursday
10	14	21	18	28	9	18	5	2	19	5	13	5	23	30	12	10	18	2	11	26	33	15	13	1	362	10	Friday
11	17	12	25	8	21	14	23	9	14	11	10	19	4	38	25	9	16	10	26	23	28	28	26	19	435	II	aturday
12	26	22	20	18	32	23	34	21	19	19	15	24	28	18	23	25	31	26	28	16	41	24	19	17	569	n 12	Sunday
13	5	13	7	14	13	12	14	18	6	6	34	23	12	32	15	25	18	21	21	26	12	10	12	20	389	13	Monday
14	25	24	11	28	13	17	21	1	26	32	24	16	24	29	21	8	11	9	20	34	26	17	31	26	495	14	Iuesday
15	30	25	12	15	24	15		9	3	5	12	22	18	10	15	6	3	7	6	2	10	7	4	13	282	15	conesday
16	10	29	14	18	10	4	4	10	7	17	4	5	8	7	11	10	14	20	18	19	22	37	38	30	366	an 16	Thursday
17	28	26	24	19	36	25	8	9	8	8	6	49	29	43	24	16	30	14	23	21	29	40	29	22	566	an 17	Friday
18	17	9	20	27	35	35	23	21	19	47	8	24	8	27	28	21	19	32	20	33	15	38	24	11	561	18	Saturday
19	31	21	45	18	32	45	24	24	10	12	15	27	14	18	18	34	17	14	11	18	I	23	7	5	492	19	unday
20	11	10	10	32	13.	11	9	2	16	4		17	14	32	29	10	15	18	14	22	21	7	10	18	353	n 20	Monday

Table 2.3.2. (Page 2 of 4)

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Sum	Date	
21	14	55	23	12	5	11	4	2	5	5	3	12	13	7	1	7	11	9	8	2	31	27	23	13	348	Jan 21	
22	17	26	13	19	21	11	15	9	19	4	8	35	18	22	14	27	12	9	69	11	6	8	12	12	417	Jan 22	Wednesday
23	10	10	42	10	13	9	5	4	14	0	37	24	14	14	23	19	8	10	15	17	5	16	11	12	342	an 23	Thursday
24	15	17	13	19	24	30	19	12	9	23	10	30	21	18	4	29	9	17	26	14	27	31	27	15	459	Jan 24	Friday
25	37	24	29	34	17	32	19	20	22	19	13	29	14	22	25	33	29	20	21	21	30	24	29	27	590	Jan 25	Saturday
26	45	25	11	16	13	9	16	43	30	16	3	11	17	24	31	30	29	21	19	20	20	14	14	16	493	Jan 26	Sunday
27	22	28	19	10	16	11	7	3	17	6	8	11	10	2	4	4	8	4	2	0	9	11	7	9	228	an 27	Monday
28	11	7	12	7	7	4	3	7	6	6	15	37	12	29	27	11	14	18	12	61	64	17	20	20	427	an 28	Tuesday
29	16	18	16	28	25	13	7	4	13	7	18	4	10	27	19	11	2	6	18	16	15	16	23	26	358	Jan 29	Wednesday
30	16	22	14	26	16	22	12	12	10	5	25	13	26	15	14	15	4	8	4	12	13	40	18	24	386	Jan 30	Thursday
31	16	12	10	22	26	6	7	5	6	8	18	13	12	10	8	18	22	26	26	15	31	15	23	24	379	an 31	Friday
32	12	30	23	15	17	27	13	12	23	15	20	14	15	13	16	13	16	18	18	26	25	29	15	22	447	Feb 01	Saturday
33	27	38	17	33	24	19	26	32	39	16	17	39	28	33	29	28	24	23	30	17	34	36	29	25	663	Feb 02	Sunday
34	28	19	20	21	12	33	11	8	24	6	7	6	6	30	11	6	11	23	8	6	16	8	10	4	334	Feb 03	Monday
35	10	6	34	15	26	15	14	10	11	12	68	10	16	11	17	11	12	17	7	12	17	22	13	18	404	Feb 04	Tuesday
36	11	18	23	16	29	19	18	10	38	15	35	12	4	16	14	16	25	8	10	17	14	18	26	19	431	Feb 05	Wedresday
37	28	38	31	28	18	6	17	6		8	5	10	15	38	9	19	-	14	17	16	9	17	15	15	391	Feb 06	Thursday
38	13	17	28	15	21	15	14	9	5	18	14	30	15	33	26	30	17	25	15	31	9	6	8	1	415	Feb 07	Friday
39	3	2	10	0	0	2	10	7	2	3	8	11	20	11	21	26	24	35	27	20	18	32	27	35	354	Feb 08	Saturday
40	17	19	27	23	40	20	29	25	37	30	22	29	37	31	28	15	29	30	27	46	13	44	22	25	665	Feb 09	Sunday
41	35	26	26	19	30	19	6	12	7	13	13	11	14	21	18	23	18	23	17	46	20	15	29	25	486	Feb 10	Monday
42	17	10	20	17	20	13	4	12	14	13	21	8	13	21	12	10	13	16	21	21	37	38	23	22	416	Feb 11	Tuesday
43	31	17	9	20	17	39	9	9	8	9	14	13	12	33	15	4	2	10	2	11	16	15	14	32	361	Feb 12	Wednesday
44	22	30	22	18	26	16	24	3	7	9	35	21	36	33	15	17	28	13	15	17	14	9	21	23	474	Feb 13	Thursday
45	13	17	13	27	18	20	18	8	15	20	8	17	19	26	13	19	21	44	22	45	31	41	55	56	586	Feb 14	Friday
46	35	31	30	43	56	58	38	31	33	20	18	23	29	10	23	27	23	22	22	43	14	41	49	41	760	Feb 15	Saturday
47	52	55	57	31	47	53	45	54	41	30	24	40	22	17	17	20	17	18	12	12	25	29	30	41	789	Feb 16	Sunday
48	46	34	22	47	34	7	16	5	7	23	18	18	9	6	12	10	11	7	15	9	10	8	13	34	421	Feb 17	Monday
49	21	13	14	17	16	22	20	15	6	10	10	4	13	25	27	28	8	13	23	7	24	25	17	38	417	Feb 18	Tuesday
50	20	46	19	35	25	36	6	8	9	5	8	7	6	15	15	13	11	,	23	4	26	15	9	10	373	Feb 19	Wedresday
51	23	15	18	18	23	26	12	6	19	5	3	2	6	3	2	12	11	6	9	17	8	17	15	21	297	Feb 20	Thursday
52	20	16	34	30	27	35	20	19	28	20	14	14	30	26	17	21	19	20	33	13	18	36	16	41	567	Feb 21	Friday
53	19	21	20	28	20	28	20	15	14	19	22	17	19	19	15	8	12	14	18	22	16	20	17	29	452	Feb 22	Saturday
54	32	28	20	24	20	17	18	21	18	20	20	11	10	19	15	9	7	15	10	16	28	27	13	14	432	Feb 23	Sunday
55	27	10	20	17	33	15	14	20	15	7	10	7	5	13	25	23	13	20	31	39	57	26	20	21	488	Feb 24	Monday
56	24	41	15	24	28	20	12	9	9	2	9	10	18	15	9	18	13	31	7	25	24	26	13	20	422	Feb 25	Tuesday
57	11	4	3	4	11	7	5	2	6	4	16	15	8	33	14	31	28	17	26	36	17	24	19	17	358	Feb 26	Wednesday
58	23	16	11	18	32	11	5	11	10	7	15	9	8	16	29	14	14	10	1.6	32	14	45	56	29	451	Feb 27	Thursday
59	51	54	62	46	46	25	22	19	20	13	19	19	12	24	28	34	33	33	12	29	35	16	30	22	704	Feb 28	Friday
60	22	35	19	25	18	19	37	25	13	16	12	18	6	10	15	21	12	10	20	12	11	9	6	13	404	Mar 01	Saturday
61	13	14	8	7	15	23	23	17	12	14	11	13	11	11	10	11	17	15	21	11		4	8	5	297	Mar 02	Sunday
62	11	17	12	18	24	22	22	14	12	11	13	21	12	20	17	26	16	17	13	17	16	20	20	12	403	Mar 03	Monday
63	21	14	20	20	27	12	12	14	8	9	10	10	3	23	13	15	5	2	7	9	12	16	9	20	311	Mar 04	Tuesday
64	16	19	17	19	8	8	10	7	14	11	10	7	6	16	11	21	5	20	7	16	8	8	10	10	284	Mar 05	Wednesday
65	16	17	16	12	17	11	10	9	9	8	15	8	2	7	18	12	5	7	7	13	10	10	16	4	259	Mar 06	Thursday
66	11	18	10	17	15	7	3	6	10	8	8	6	8	9	9	12	14	26	20	17	4	8	13	11	270	Mar 07	Friday
67	10	13	13	12	10	16	20	12	13	13	9	12	5	11	7	20	18	18	16	13	17	14	16	12	320	Mar 08	saturday
68	12	14	9	12	7	18	10	10	8	9	10	16	11	6	12	6	11	12	6	12	9	8	10	11	249	Mar 09	Sunday
69	15	13	20	11	10	9	9	4	8	6	12	4	9	4	12	12	2	1	9	6	6	15	15	10	222	Mar 10	Monday
70	14	13	12	12	12	11	11	9	5	7	1	10	7	2	13	2	2	8	-	31	6	8	8	9	222	Mar 11	Tuesday
71	9	16	9	15	10	7	7	5	7	14	11	12	10	9	4	14	7	12	15	3	11	13	13	22	255	Mar 12	Wednesday
72	29	15	24	25	15	11	7	7	3	311	6	13	7	10	11	14	12	14	19	9	13	18	11	17	321	Mar 13	Thursday
73	15	14	11	15	10	3	4	8	0	0	4	6	21	5	4	7	6	5	13	16	6	13	15	9	210	Mar 14	Friday
74	16	23	16	14	22	18	20	11	17	16	13	13	13	25	13	12	16	27	19	17	16	20	12	22	411	Mar 15	Saturday
75	24	18	23	25	26	17	28	16	16	16	16	17	9	13	9	12	10	4	4	8	9	18	11	5	354	Mar 16	Sunday
76	7	7	1	13	6	15	4	8	23	7	3	8	6	10	10	4	10	1	1	4	7	5	5	10	175	Mar 17	Monday

Table 2.3.2. (Page 3 of 4)

Table 2.3.2. Daily and hourly distribution of NORSAR detections. For each day is shown number of detections within each hour of the day and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day. (Page 4 of 4)

3 Operation of Regional Arrays

3.1 Recording of NORESS data at NDPC, Kjeller

The average recording time was 99.54% as compared to 89.67% during the previous reporting period.

Table 3.1.1 lists the main outage times and reasons.

Date	Time	
Cause		
12 Nov	$1912-2043$	Transmission line failure
14 Nov	$0849-1030$	Transmission line failure
31 Dec	$0000-1131$	Problems with leap year
11 Feb	$1319-1349$	Hardware maintenance
12 Feb	$1300-1453$	Hardware failure

Table 3.1.1. Interruptions in recording of NORESS data at NDPC, 1 October 1996-31 March 1997.

Monthly uptimes for the NORESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

October 96	$:$	99.89
November	$:$	99.40
December	$:$	98.89
January 97	$:$	99.99
February	$:$	99.59
March	$:$	99.97

Fig. 3.1.1 shows the uptime for the data recording task, or equivalently, the availability of NORESS data in our tape archive, on a day-by-day basis, for the reporting period.

Fig. 3.1.1. NORESS data recording uptime for October (top), November (middle) and December (bottom) 1996.

Fig. 3.1.1. (cont.) NORESS data recording uptime for January (top), February (middle) and March (bottom) 1997.

3.2 Recording of ARCESS data at NDPC, Kjeller

The average recording time was 99.02% as compared to 98.42% for the previous reporting period.

Table 3.2.1 lists the main outage times and reasons.

Date	Time	Cause
07 Oct	$1312-1457$	Transmission failure
21 Nov	$0838-1139$	Power break Hub
31 Dec	$0000-1139$	Problems with leap year
01 Jan	$2153-\quad$	Transmission failure
02 Jan	-0658	
10 Mar	$0232-1630$	Power break Hub

Table 3.2.1. The main interruptions in recording of ARCESS data at NDPC, 1 October 199631 March 1997.

Monthly uptimes for the ARCESS on-line data recording task, taking into account all factors (field installations, transmissions line, data center operation) affecting this task were as follows:

$$
\begin{array}{lll}
\text { October } 96 & : & 99.74 \% \\
\text { November } & : & 99.57 \% \\
\text { December } & : & 98.10 \% \\
\text { January } 97 & : & 98.76 \% \\
\text { February } & : & 99.90 \% \\
\text { March } & : & 98.07 \%
\end{array}
$$

Fig. 3.2.1. shows the uptime for the data recording task, or equivalently, the availability of ARCESS data in our tape archive, on a day-by-day basis, for the reporting period.

Fig. 3.2.1. ARCESS data recording uptime for October (top), November (middle) and December (bottom) 1996.

Fig. 3.2.1. ARCESS data recording uptime for January (top), February (middle) and March (bottom) 1997

3.3 Recording of FINESS data at NDPC, Kjeller

The average recording time was 99.49% as compared to 98.79% for the previous reporting period.

Date	Time	
Cause		
12 Oct	$1625-1705$	Stop in Helsinki
19 Nov	$0953-1054$	Stop in Helsinki
09 Feb	$0718-0804$	VSAT/LAN problems in Helsinki
09 Feb	$0950-1530$	VSAT/LAN problems in Helsinki
11 Mar	$1304-1738$	Transmission error 3.5 hours lost
13 Mar	$0850-1752$	Transmission failure in Helsinki

Table 3.3.1. The main interruptions in recording of FINESS data at NDPC, 1 October 1996 31 March 1997.

Monthly uptimes for the FINESS on-line data recording task, taking into account all factors (field installations, transmission lines, data center operation) affecting this task were as follows:

October 96	$:$	99.87%
November	$:$	99.84%
December	$:$	99.96%
January 97	$:$	99.96%
February	$:$	99.04%
March	$:$	98.29%

Fig. 3.3.1 shows the uptime for the data recording task, or equivalently, the availability of FINESS data in our tape archive, on a day-by-day basis, for the reporting period.

Fig. 3.3.1. FINESS data recording uptime for October (top), November (middle) and December (bottom) 1996.

Fig. 3.3.1. FINESS data recording uptime for January (top), February (middle) and March (bottom) 1997.

3.4 Recording of Spitsbergen data at NDPC, Kjeller

The average recording time was 98.91% as compared to 96.63% for the previous reporting period.

The main reasons for downtime follow:

Date	Time	Cause
24 Jan	$2254-$	Communication link failure
25 Jan	-0922	
25 Jan	$1802-2221$	Communication link failure
25 Jan	$2305-$	Communication link failure
26 Jan	-0906	
06 Feb	$2210-2254$	Satellite software maintenance
13 Feb	$0321-0806$	Satellite software maintenance
14 Feb	$0819-0846$	Hardware maintenance
14 Feb	$0858-0913$	Hardware maintenance
28 Mar	$0032-0237$	Communication link failure

Table 3.4.1. The main interruptions in recording of Spitsbergen data at NDPC, 1 October 1996 - 31 March 1997.

Monthly uptimes for the Spitsbergen online data recording task, taking into account all factors (field installations, transmission line, data center operation) affecting this task were as follows:

October 96	$:$	99.96%
November	$:$	100.00%
December	$:$	100.00%
January 97	$:$	94.95%
February	$:$	99.01%
March	$:$	99.55%

Fig. 3.4.1 shows the uptime for the data recording task, or equivalently, the availability of Spitsbergen data in our tape archive, on a day-by-day basis for the reporting period.

J. Torstveit

Fig. 3.4.1. Spitsbergen data recording uptime for October (top), November (middle) and December (bottom) 1996.

Fig. 3.4.1. Spitsbergen data recording uptime for January (top), February (middle) and March (bottom) 1997.

3.5 Event detection operation

This section reports results from one-array automatic processing using signal processing recipes and "ronapp" recipes for the ep program (NORSAR Sci. Rep. No 2-8889).

Three systems are in parallel operation to associate detected phases and locate events:

1. The ep program with "ronapp" recipes is operated independently on each array to obtain simple one-array automatic solutions.
2. The Generalized Beamforming method (GBF) (see F. Ringdal and T. Kværna (1989), A mulitchannel processing approach to real time network detection, phase association and threshold monitoring, BSSA Vol 79, no 6, 1927-1940) processes the four arrays jointly and presents locations of regional events.
3. The RMS system (Regional Monitoring System; previously referred to as the IMS system (Intelligent Monitoring System) system) is operated on the same set of arrivals as ep and GBF and reports also teleseismic events in addition to regional ones.

RMS results are reported in section 3.6.

NORESS detections

The number of detections (phases) reported from day 275, 1996, through day 090, 1997, was 67,729 , giving an average of 372 detections per processed day (182 days processed).

Table 3.5 .1 shows daily and hourly distribution of detections for NORESS.

Events automatically located by NORESS

During days 275,1996 , through 090, 1997, 2998 local and regional events were located by NORESS, based on automatic association of P- and S-type arrivals. This gives an average of 16.5 events per processed day (182 days processed). 45% of these events are within 300 km , and 79% of these events are within 1000 km .

ARCESS detections

The number of detections (phases) reported during day 275,1996 , through day 090,1997 , was 94,437 , giving an average of 519 detections per processed day (182 days processed).

Table 3.5.2 shows daily and hourly distribution of detections for ARCESS.

Events automatically located by ARCESS

During days 275,1996 , through $090,1997,5434$ local and regional events were located by ARCESS, based on automatic association of P- and S-type arrivals. This gives an average of 29.9 events per processed day (182 days processed). 46% of these events are within 300 km , and 81% of these events are within 1000 km .

FINESS detections

The number of detections (phases) reported during day 275, 1996, through day 090, 1997, was 47,166 , giving an average of 259 detections per processed day (182 days processed).

Table 3.5.3 shows daily and hourly distribution of detections for FINESS.

Events automatically located by FINESS

During days 275, 1996, through 090, 1997, 2424 local and regional events were located by FINESS, based on automatic association of P- and S-type arrivals. This gives an average of 13.3 events per processed day (182 days processed). 80% of these events are within 300 km , and 92% of these events are within 1000 km .

GERESS detections

The number of detections (phases) reported from day 275, 1996, through day 090, 1997, was 33,545 , giving an average of 185 detections per processed day (181 days processed).

Table 3.5 .4 shows daily and hourly distribution of detections for GERESS.

Events automatically located by GERESS

During days 275, 1996, through 090, 1997, 3706 local and regional events were located by GERESS, based on automatic association of P- and S-type arrivals. This gives an average of 20.6 events per processed day (180 days processed). 71% of these events are within 300 km , and 89% of these events are within 1000 km .

Apatity array detections

The number of detections (phases) reported from day 275, 1996, through day 090, 1997, was 46,758 , giving an average of 257 detections per processed day (182 days processed).

As described in earlier reports, the data from the Apatity array are transferred by one-way (simplex) radio links to Apatity city. The transmission suffers from radio disturbances that occasionally result in a large number of small data gaps and spikes in the data. In order for the communication protocol to correct such errors by requesting retransmission of data, a two-way radio link would be needed (duplex radio). However, it should be noted that noise from cultural activities and from the nearby lakes cause most of the unwanted detections. These unwanted detections are "filtered" in the signal processing, as they give seismic velocities that are outside accepted limits for regional and teleseismic phase velocities.

Table 3.5.5 shows daily and hourly distribution of detections for the Apatity array.

Events automatically located by the Apatity array

During days 275,1996 , through 090, 1997, 913 local and regional events were located by the Apatity array, based on automatic association of P- and S-type arrivals. This gives an average
of 5.0 events per processed day (182 days processed). 45% of these events are within 300 km , and 71% of these events are within 1000 km .

Spitsbergen array detections

The number of detections (phases) reported from day 275, 1996, through day 090, 1997, was 131,713, giving an average of 724 detections per processed day (182 days processed).

Table 3.5.6 shows daily and hourly distribution of detections for the Spitsbergen array.

Events automatically located by the Spitsbergen array

During days 275,1996 , through $090,1997,10,117$ local and regional events were located by the Spitsbergen array, based on automatic association of P- and S-type arrivals. This gives an average of 55.6 events per processed day (182 days processed). 50% of these events are within 300 km , and 75% of these events are within 1000 km .

Hagfors array detections

The number of detections (phases) reported from day 275, 1996, through day 090, 1997, was 75,343 , giving an average of 414 detections per processed day (182 days processed).

Table 3.5.7 shows daily and hourly distribution of detections for the Hagfors array

Events automatically located by the Hagfors array

During days 275,1996 , through 090, 1997, 2818 local and regional events were located by the Hagfors array, based on automatic association of P - and S -type arrivals. This gives an average of 15.5 events per processed day (183 days processed). 27% of these events are within 300 km , and 74% of these events are within 1000 km
U. Baadshaug

NRS . FKX Hourly distribution of detections

275	8	13	5	5	6	3	1		8	7	6	7	14	6	11	17	8	12	12	11	4	3	2	7	184	Oct 01	Tuesday
276	8	5	8	8	3	6	1	0	2	11	14	17	13	12	9	4	9	12	7	6	6	6	10	7	184	Oct 02	Wednesday
277	2	12	4	3	3	5	0	7	1	5	9	7	15	17	34	4	9	6	17	3	1	1	3	5	173	Oct 03	Thursday
278	6	9	1	6	2	12	7	6	11	8	5	5	0	5	4	7	8	8	13	18	18	13	17	17	206	Oct 04	Friday
279	12	19	34	24	261	10	7	11	8	10	4	6	8	4	2	2	7	2	0	3	4	1	2	5	211	Oct 05	Saturday
280	3	7	7	6	3	8	7	3	5	5	3	5	2	28	15	13	3	4	3	7	6	5	3	8	159	Oct 06	Sunday
281	3	11	6	6	3	1	5	3	1	5	0	7	8	10	12	4	7	1	8	4	5	0	0	2	112	Oct 07	Monday
282	3	3	2	13	7	11	6	6	13	5	13	16	8	16	11	8	12	5	9	7	8	2	0	2	186	Oct 08	Tuesday
283	2	5	17	4	3	6	1	2	3	7	15	7	17	14	23	7	10	8	8	35	14	3	6	7	224	Oct 09	Wednesday
284	9	19	3	3	2	8	1	3	4	13	6	15	28	11	12	18	10	13	4	18	6	9	3	2	220	Oct 10	Thursday
285	11	14	6	6	7	3	5	9	13	9	8	14	12	9	4	4	12	3	2	14	7	2	2	3	179	Oct 11	Friday
286	8	3	3	1	5	8	1	1	3	1	9	5	7	4	6	7	20	17	3	2	2	1	0	3	120	Oct 12	Saturday
287	1	3	2	3	4	6	5	3	5	5	4	9	3	3	3	3	11	6	2	1	5	7	8	2	104	Oct 13	Sunday
288	11	2	14	25	18	1	2	2	1	6	8	13	10	9	6	7	7	4	7	15	2	10	7	11	198	Oct 14	Monday
289	3	4	14	7	6	6	1	4	17	9	11	27	13	14	23	20	10	6	2	13	7	3	5	15	240	Oct 15	Tuesday
290	7	11	7	1	6	5	3	18	22	3	32	17	12	13	9	5	4	8	2	13	3	0	15	11	227	Oct 16	Wednesday
291	2	7	8	6	4	6	5	7	11	5	15	11	10	15	1	7	14	5	0	4	10	6	3	1	163	Oct 17	Thursday
292	1	15	7	5	3	2	4	1	2	11	1	17	6	4	15	2	11	4	17	26	10	3	6	5	178	Oct 18	Friday
293	5	11	3	4	4	7	5	5	8	6	9	5	4	7	16	16	10	6	8	12	7	12	7	6	183	Oct 19	Saturday
294	6	2	4	4	7	12	6	0	10	4	8	5	5	3	8	12	1	11	10	10	4	3	4	6	145	Oct 20	Sunday
295	3	16	1	14	6	3	5	8	5	1	11	15	14	3	19	10	16	3	8	9	1	3	5	4	183	Oct 21	Monday
296	1	2	3	2	3	4	10	5	3	5	15	19	10	19	12	12	19	4	11	2	5	4	11	3	184	Oct 22	Tuesday
297	5	9	1	11	6	3	3	4	10	4	20	25	16	10	11	15	8	6	11	8	2	2	6	8	204	ct 23	Wednesday
298	4	14	13	14	9	3	6	7	11	5	7	9	14	10	11	15	11	11	15	12	5	2	6	7	221	ct 24	Thursday
299	11	3	8	6	4	5	2	3	7	3	15	19	7	6	13	4	7	2	20	12	6	4	13	9	189	Oct 25	Friday
300	3	6	4	11	43	7	3	9	2	11	5	3	5	4	10	7	3	5	17	7	6	5	4	6	186	Oct 26	Saturday
301	4	6	5	4	8	5	3	6	11	4	11	6	4	6	6	3	9	7	1	4	7	7	8	6	141	Oct 27	Sunday
302	6	5	7	2	15	1	2	2	3	8	6	3	6	5	16	11	4	1	4	8	5	6	6	3	135	Oct 28	Monday
303	4	8	18	0	12	4	4	3	2	5	9	5	16	10	17	13	3	6	9	13	6	6	2	8	183	ct 29	Tuesday
304	6	7	24	20	20	11	6	5	6	18	13	3	16	12	7	9	1	0	2	12	4	2	1	5	210	Oct 30	Wednesday
305	2	2	1	3	4	1	2	3	2	6	7	5	29	11	7	13	5	13	11	19	3	2	3	14	168	Oct 31	Thursday
306	4	7	3	1	2	0	9	5	3	4	8	6	5	4	12	4	6	7	2	8	15	5	8	3	131	Nov 01	Friday
307	9	33	2	3	11	4	5	7	1	6	1	4	9	9	11	6	7	2	2	2	4	2	1	4	145	Nov 02	Saturday
308	4	4	3	3	2	3	5	5	3	7	9	6	4	20	8	54		4	2	4	3	1	6	σ	172	Nov 03	Sunday
309	1	6	12	4	7	12	4	2	6	2	3	5	13	19	10	10	3	16	1	2	13	3	9	11	174	Nov 04	Monday
310	6	1	5	10	5	3	4	1	2	6	-	13	13	17	7	6	7	4	2	11	7	5	1	,	146	Nov 05	Tuesday
311	5	3	19	4	3	4	7	7	2	9	9	11	8	18	16	13	7	9	5	5	13	4	2	5	188	Nov 06	Wednesday
312	1	1	10	12	9	2	12	9	5	6	8	8	24	14	12	9	6	8	1	8	4	2	6	5	182	Nov 07	Thursday
313	2	3	17	2	3	5	1	2	2	7	0	5	12	1	13	4	11	8	5	3	16	4	3	4	133	Nov 08	Friday
314	5	9	8	4	2	0	4	12	8	8	2	10	4	8	7	8	5	13	9	6	10	5	4	6	157	Nov 09	Saturday
315	7	6	10	7	4	7	12	8	4	6	5	11	11	3	1	1	5	6	10	7	11	2	3	14	161	Nov 10	Sunday
316	9	8	18	6	3210	035	550		289	0	0	0	10	6	18	6	12	9	4	3	3	1	3	5	1635	Nov 11	Monday
317	10	5	7	3	5	3	4	7	4	3	6	6	17	20	11	13	1	0	0	3	9	2	5	4	148	Nov 12	Tuesday
318	1	2	4	21	9	9	1	5	4	5	5	4	10	13	12	24	5	4	6	7	10	6	5	5	177	Nov 13	Wednesday
319	11	10	6	20	14	8	12	4	6	8	4	5	16	9	15	6	7	12	2	7	7	4	2	6	201	Nov 14	Thursday
320	5	8	14	5	7	3	5	3	4	2	13	13	6	11	11	12	7	5	4	19	7	2	7	5	178	Nov 15	Friday
321	3	6	7	4	6	6	9	4	1	4	4	4	11	3	6	7	5	6	3	6	17	13	19	3	157	Nov 16	Saturday
322	8	16	5	8	2	2	17	1	5	8	4	1	9	2	5	3	7	6	7	8	9	15	4	6	158	Nov 17	Sunday
323	9	10	25	6	3	1	4	6	10	3	3	4	13	12	11	5	5	2	6	9	4	1	4	3	159	Nov 18	Monday
324	9	9	15	4	8	1	3	7	12	4	12	10	9	16	18	14	14	1	3	13	14	1.	2	6	205	Nov 19	Tuesday
325	10	4	9	14	2	3	3	1	6	19	9	7	16	12	21	2	0	3	6	5	4	13	1	8	178	Nov 20	Wednesday
326	4	3	7	4	3	1	3	7	2	0	0	23	13	19	14	6	5	1	2	6	2	11	4	0	140	Nov 21	Thursday
327	12	12	7	25	7	8	3	0	7	7	4	14	12	21	12	7	5	9	2	2	15	2	3	3	199	Nov 22	Friday
328	4	8	11	2	5	9	5	3	4	9	1	11	11	3	4	6	7	4	7	4	11	13	9	7	158	Nov 23	Saturday
329	3	5	11	2	11	3	7	10	7	4	8	8	9	15	7	12	4	5	6	3	8	3	5	1	157	Nov 24	Sunday
330	11	8	5	6	17	6	2	2	7	9	1	4	13	13	11	3	9	2	0	2	3	9	0	3	146	Nov 25	Monday

Table 3.5.1 (Page 1 of 4)
331
332
333334
335
335
336
337337
338
340
341342
343344
345
346347
348349
350351
352
352
353
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr} & 2 & 2 & 3 & 2 & 5 & 2 & 1 & 1 & 3 & 5 & 3 & 8 & 3 & 12 & 14 & 15 & 3 & 2 & 1 & 4 & 7 & 1 & 7 & 3 \\ 35 & 9 & 0 & 3 & 7 & 1 & 5 & 1 & 1 & 2 & 7 & 3 & 9 & 13 & 17 & 18 & 22 & 8 & 6 & 9 & 31 & 22 & 10 & 18 & 19\end{array}$

$\begin{array}{lrrrrrrrrrrrrrrrrrrrrrrrrrr}358 & 7 & 9 & 18 & 10 & 14 & 14 & 5 & 3 & 2 & 8 & 11 & 0 & 11 & 14 & 11 & 3 & 5 & 7 & 22 & 7 & 8 & 6 & 4 & 11 \\ 359 & 3 & 8 & 3 & 7 & 5 & 2 & 4 & 8 & 36 & 46 & 43 & 5 & 3 & 3 & 6 & 3 & 8 & 4 & 3 & 8 & 1 & 7 & 17 & 42\end{array}$

 $\begin{array}{rlllrrrrrrrrrrrrrrrrrrrrr}21 & 12 & 12 & 16 & 8 & 9 & 15 & 32 & 25 & 12 & 38 & 45 & 25 & 55 & 15 & 7 & 10 & 7 & 10 & 35 & 31 & 18 & 26 & 20 \\ 31 & 22 & 42 & 40 & 28 & 41 & 42 & 50 & 33 & 49 & 44 & 55 & 39 & 33 & 14 & 20 & 22 & 26 & 19 & 17 & 18 & 23 & 21 & 22\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}27 & 29 & 31 & 41 & 37 & 33 & 31 & 27 & 23 & 24 & 33 & 37 & 36 & 23 & 30 & 32 & 19 & 11 & 19 & 36 & 35 & 28 & 25 & 22\end{array}$ $\begin{array}{llllllllllllllllllllllllll}31 & 25 & 37 & 38 & 31 & 32 & 32 & 40 & 73 & 26 & 14 & 28 & 14 & 22 & 19 & 24 & 46 & 37 & 57 & 64 & 65 & 61 & 45 & 56\end{array}$

 8588608210013912010581971048086821041411471231491621191421621612719 Jan 02 Thursday $\begin{array}{llllllllllllllllllllll}3 & 159147129122109146115109125118119120 & 93 & 34 & 39 & 36 & 32 & 43 & 38 & 43 & 44 & 44 & 38 & 48 & 2050 \text { Jan } 03 \text { Friday }\end{array}$

 $\begin{array}{lllllllllllllllllllll}25 & 13 & 30 & 20 & 4 & 5 & 2 & 14 & 14 & 4 & 7 & 8 & 15 & 18 & 8 & 17 & 13 & 7 & 3 & 10 & 21 \\ 12116 & 64\end{array}$
 16415713

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}5 & 4 & 8 & 16 & 8 & 3 & 4 & 3 & 4 & 11 & 11 & 8 & 10 & 11 & 15 & 2 & 2 & 4 & 12 & 6 & 14 & 0 & 2 & 2 \\ 2 & 6 & 2 & 15 & 3 & 5 & 2 & 3 & 2 & 6 & 4 & 7 & 12 & 7 & 6 & 5 & 10 & 3 & 6 & 0 & 7 & 4 & 2 & 0\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}0 & 6 & 4 & 14 & 5 & 2 & 5 & 2 & 7 & 8 & 1 & 3 & 7 & 11 & 13 & 8 & 14 & 10 & 8 & 17 & 15 & 33 & 31 & 35\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr}19 & 12 & 15 & 12 & 5 & 5 & 1 & 2 & 5 & 1 & 4 & 14 & 12 & 18 & 8 & 10 & 10 & 7 & 7 & 3 & 20 & 9 & 7 & 14\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}5 & 1 & 13 & 3 & 13 & 6 & 9 & 6 & 18 & 19 & 10 & 17 & 16 & 11 & 26 & 15 & 10 & 9 & 5 & 11 & 12 & 10 & 18 & 24\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}21 & 12 & 8 & 6 & 8 & 12 & 11 & 13 & 18 & 22 & 29 & 28 & 11 & 17 & 15 & 21 & 6 & 4 & 3 & 12 & 4 & 11 & 3 & 6 \\ 20 & 26 & 33 & 55 & 34 & 39 & 17 & 7 & 16 & 9 & 5 & 14 & 11 & 15 & 12 & 6 & 18 & 14 & 6 & 7 & 17 & 13 & 2 & 1\end{array}$

681 Jan 09 Thursday
450 Jan 10 Friday

165 Jan 14 Tuesday
119 Jan 15 Hednesday
259 Jan 16 Thursday
220 Jan 17 Friday
287 Jan 18 Saturday

Table 3.5.1 (Page 2 of 4)

NRS . FKX Hourly distribution of detections
Day 00

21	4	14	7	9	6	8	2	3	2	9	5	8	8	9	14	4	11	11	11	24	39	36	28	15	297	21	Tuesday
22	56	151	06	62	71	99	72	69	63		107	90	78	92	74	92	92	73	41	76		1251		7	1941	22	Wednesday
23	1341	1910	0310	100	651	58	93	96	79	94	11	911	1011	103	77	31	76	68	4211	10	75	84		107	2188	23	Thursday
24	105			001	14	96		2	00	94	52	63	76	73	76	88	99	11110	06	81	12	97		12	2310	24	Friday
25	142				271	1101	0	02	92	85	86	78	131	14	37	1501				37	87	31	48	91	2687	25	Saturday
26	129	851	01	32	29	22	41	14	10	20	24	36	28	21	20	13	5	5	30	17	+ 5	0	10	12	672	n 26	Sunday
27	24	51	52	46	23	17	8	2	3	3	8	13	5	5	11	9	13	9	71	10	14	5	2	3	343	27	Monday
28	5	2	3	7	13	13	2	0	3	9	11	17	9	10	17	12	7	9	51	13	13	2	7	4	193	28	tuesday
29	5	3	4	19	9	12	11	8	6	11	5	8	8	17	24	18	9	12	11	7	14	4	9	22	256	29	Wednesday
30	7	12	9	18	20	13	2	5	7	4	12	10	17	19	11	11	9	8	2	2	3	7	3	1	212	30	Thursday
31	1	3	0	8	8	9	5	2	5	5	7	11	7	9	3	7	11	10	6	7	19	8	12	18	181	31	Friday
32	5	23	18	13	17	32	28	24	30	17	15	12	7	10	10	5	7	11	25	34	47	34	47	56	537	b 01	day
33	47	51	40	64	64	37	32	17	4	9	11	9	10	11	11	13	4	5	6	12	10	9	9	16	501	b 02	day
34	9	4	0	22	4	6	5	3	8	4	7	5	8	18	12	7	5	13	5	3	10	9	5	2	174	b 03	Monday
35		1	6	6	9	1	3	3	5	5	33	3	5	10	10	5	3	12	51	10	10	18	7	14	288	b 04	Tuesday
36	5	10	9	26	20	9	3	9	14	3	11	15	17	14	5	10	10	4	5	9	17	4	6	6	241	b 05	-
37	5	4	3	15	4	1	6	2	5	4	7	10	18	28	10	16		7	10	5	16	2	4	5	191	b 06	day
38	4	6	2	6	5	8	3	4	8	5	6	8	9	6	5	9	3	8	6	7	16	5	8	1	148	eb 07	Friday
39	1	3	2	2	1	1	1	2	6	6	2	3	14	5	5	4	4	9	17	8	9	11	11	2	129	b 08	Saturday
40	9	8	7	10	9	8	4	3	2	5	3	6	11	7	2	5	4	8	6	6	6	14	4	3	150	eb 09	Sunday
41	7	9	4	1	8	2	1	5	3	2	1	15	4	21	10	18	11	6	6	4	8	6	2	7	162	b 10	Monday
42	3	3	3	14	4	4	4	4	0	5	2	11	4	6	10	7	15	3	9	5	18	24	10	7	175	b 11	muesday
43	14	5	8	22	16	10	3	10	4	9	3	8	16	8	0	14	12	10	6	13	29	13	11	14	258	b 12	Wednesday
44	21	22	12	20	24	13	14	10	8	3	14	15	17	16	13	15	10	4	9	7	15	6	15	10	313	b 13	Thursday
45	15	5	19	30	21	15	8	9	5	17	14	18	14	21	8	5	18	20	35	73	48	69	74	76	637	b 14	Friday
46	98		03				7	92	69	36	11	14	9	8	13	3	6	6	16	31	59	861	161	31	1479	b 15	Saturday
47	147	44						28	85	43	14	30	10		10	13	14	9	12	25	16	18	28	10	1435	b 16	Sunday
48	48	47	59	69	51	19	34	12	12	12	8	11	10	15	12	12	9	6	6	4	12	12	2	13	495	17	Monday
49	17	3	12	9	7	7	2	7	5	3	3	9	7	21	10	12	3	0	6	6	5	14	11	13	192	b 18	Tuesday
50	7	28	9	14	8	21	5	4	3	2	3	10	3	9	7	10	6	13	16	5	9	11	7	3	213	b 19	Wednesday
51	4	2	0	14	2	3	4	3	8	9	3	2	29	52	12	38	6	5	2	3	7	7	1	5	221	b 20	Thursday
52	7	6	4	10	15	6	1	1	12	9	5	6	14	9	8	2	2			3	11	2	2	9	15	b 21	Friday
53	1	8	1	6	2	6	11	11	6	4	14	13	8	13	11	2	6	3	2	6	15	4	3	8	164	b 22	Saturday
54	5	2	3	0	6	7	9	9	7	1	7	8	3	6	4	3	4	7	2	1	5	4	1	3	107	b 23	Sunday
55	2	1	2	1	9	2	2	3	4	2	3	2	8	13	6	13	4	9	10	8	11	0	5	2	12	24	Monday
56	2	4	3	13	2	3	2	2	4	1	8	4	9	20	5	17	8	7	3	3	11	3	4	2	140	25	Tuesday
57	5	5	0	5	5	4	3	4	14	4	2	12	10	24	14	14	13	7	2	2	13	1	4	9	176	eb 26	Wednesday
58	1	14	35	21	15	4	5	2	3	11	8	4	10	14	24	8	15	10	11	15	5	39	24	16	314	Feb 27	Thursday
59	20	17	14	17	7	4	7	7	8	8	6	10	6	22	13	15	22	14	7	12	2	29	9	24	300	eb 28	Friday
60	14	10	7	3	14	5	15	18	17	33	19	7	25	21	11	5	7	10	4	7	6	4	8	2	272	ar 01	Saturday
61	4	13	7	1	12	8	2	5	13	5	8	2	11	6	7	16	5	8	6	3	${ }^{1}$	3	10	5	16	ar 02	Sunday
62	4	6	8	9	6	18	7	11	5	4	6	6	18	17	6	15	10	8	9	11	5	21	33	19	262	Mar 03	Monday
63	29	44	42	25	20	11	14	7	5	7	8	9	1	22	10	11	8	6	0	4	7	4	0	3	297	Mar 04	Tuesday
64	8	5	4	21	62	573	3651	18	4	7	8	9	16	13	11	19	11	16	7	17	7	12	11	11	819	Mar 05	Wednesday
65	7	9	6	11	20	2	9	7	2	4	4	19	7	13	19	22	8	13	7	8	8	6	15	24	250	Mar 06	Thursday
66	15	15	11	25	18	7	4	8	3	7	10	13	12	2	11	7	14	9	10	4	5	3	2	6	22	ar 07	Friday
67	10	3	3	4	2	6	6	11	3	11	13	11	4	2	26	12	10	8	9	6	9	26	7	14	216	Mar 08	Saturday
68	6	15	8	8	9	3	15	12	25	25	4	16	27	27	27	28	10	6	7	8	5	8	11	20	330	Mar 09	Sunday
69	22	17	31	19	21	27	17	10	8	10	12	34	25	20	15	13	10	5	7	7	15	14	11	7	377	Mar 10	Monday
70	17	26	32	35	27	22	-	12	12	16	7	14	13	12	14	27	6	20	11	20	11	6	10	3	379	Mar 11	Iuesday
71	12	9	37	19	22	25	9	4	5	15	5	20	24	17	11	15	14	8	0	2	9	5	9	14	310	Mar 12	Wednesday
72	21	18	18	26	16	14	5	10	9	11	10	16	15	15	8	10	2	15	7	7	18	20	24	15	330	Max 13	Thursday
73	9	9	14	6	4	13	8	8	8	7	6	10	18	8	9	8	8	12	8	18	19	3	7	6	226	Mar 14	Friday
74	12	17	32	43	35	21	33	36	19	10	7	16	6	18	12	9	10	9	10	13	7	16	12	13	416	Mar 15	Saturday
75	16	23	30	44	37	40	34	23	13	8	3	10	4	4	9	5	8	0	8	3	12	12	10	-	365	Mar 16	Sunday
76	12	10	14	21	28	11	6	8	13	8	14	10	13	20	8	4	19	13	7	9	12	5	6	16	287	Mar 17	Monday

Table 3.5.1 (Page 3 of 4)

```
NRS .FRX Hourly distribution of detections
Day 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 Sum Date
```



```
79 14 25 26 36 64 41 27 10 11 14 7 7 12 16 19 10 12 % 6 8 10 10 14 9 2 2 11 15 419 Mar 20 Thursday
80
```



```
82
84
85
86
87
88
```



```
    2936
182 16 16 18 18 18 17 18 16 14 12 1% 13 15 16 16 17 16 14 14 13 12 15 15 14 16 18 372 Total average
```


Table 3.5.1. (Page 4 of 4) Daily and hourly distribution of NORESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

ARC . FKX Hourly distribution of detections

	141	17	16	13	13	14	32	26	37	44															629		
276	7	9	10	5	30	34	41	42	62	50	55	61	55	44	26	29	39	10	21	22	12	12	24	14	714	at 02	day
277	14	12	12	12	18	28	46	48	65	39	59	54	58	57	44	27	25	12	17	28	14	13	12	28	742	Oct 03	Thursday
278	15	24	8	20	15	27	29	16	30	24	35	30	18	16	21	25	27	23	18	22	7	16	30	16	12	-	
279	25	8	32	7	18	23	21	40	14	23	26	47	28	34	14	9	20	13	13	22	19	11	15	16	498	Oct 05	rd
280	11	18	6	5	10	17	5	10	5	14	16	24	9	10	14	17	14	22	15	11	25	9	25	35	347	Oet 06	y
281	17	19	4	17	10	14	34	32	25	50	40	54	35	6	0	24	10	14	13	17	17	11	19	11	493	Oct 07	Monday
82	13	14	17	7	17	8	23	20	26	11	13	14	11	11	10	13	10	18	32	21	25	24	8	26	392	ct 08	Tuesday
83	23	13	9	6	22	6	13	20	20	33	28	13	18	31	53	24	26	16	20	2	23	16	11	15	484	09	Wednesday
284	20	18	11	7	21	10	13	14	21	18	30	18	16	20	32	27	14	30	13	20	32	15	27	9	456	10	day
285	16	14	9	11	16	25	15	13	35	25	20	29	18	30	19	20	13	13	10	16	12	11	18	16	424	11	Friday
86	14	9	25	10	12	13	9	11	34	18	20	17	30	50	54	70	66	72	61	60	54	52	56	54	871	12	aturday
287	38	35	32	16	22	40	9	6	12	4	4	6	11	8	6	11	16	10	8	5	8	14	10	16	347	13	day
88	16	1.	5	6	11	11	17	16	11	15	17	8	16	17	10	29	22	25	25	13	18	6	19	24	367	14	
289	20	9	19	16	24	19	12	24	24	20	18	28	31	27	21	35	31	33	30	24	20	17	24	69	595	15	
290	70	64	51	69	77	56	19	24	27	21	32	23	26	52	17	33	28	14	14	38	32	25	27	9	848	16	Wednesday
291	13	35	43	94	85		10	45	19	23	10	22	39	28	21	32		692						33	1887	17	day
292	135	29	79	72	41	48	52	17	19	34	21	50	18	33	21	8	21	12	26	21	22	11	27	23	940	18	
293	21	19	14	15	14	6	14	16	25	36	21	15	10	22	33	37	10	20	30	22	24	32	29	24	509	t 19	Saturday
294	18	20	15	21	15	14	10	14	12	15	21	16	24	12	25	22	22	15	14	39	15	10	18	16	423	20	ay
295	9	6	9	20	26	10	22	28	1	13	29	31	26	30	23	15	18	19	32	19	13	15	18	20	465	21	Monday
296	21	13	17	9	23	25	3	25	26	23	31	25	20	21	20	18	6	24	19	14	9	17	16	11	465	22	Huesday
297	20	12	15	7	20	11	31	26	20	20	17	38	26	32	6	25	16	8	18	23	15	8	30	25	469	23	ednesday
298	10	16	22	22	12	15	17	26	29	21	24	24	19	20	36	32	15	9	14	21	18	24	25	21	492	24	Thursday
299	25	10	21	21	6	9	16	18	37	29	42	38	26	32	15	27	16	11	14	17	28	11	39	23	531	25	iday
300	51	1	16	22	13	30	25	22	30	45	12	7	18	15	6	29	15	11	11	12	17	34	49	59	514	26	Saturday
301	64	45	35	27	33	33	51	53	35	17	25	8	20	8	14	8	29	25	9	7	8	20	24	42	540	27	Sunday
302	20	63	50	85	32	15	13	15	20	27	22	30	28	33	38	22	13	13	21	14	18	20	25	35	989	28	Monday
303	28	14	19	16	23	15	22	22	12	55	41	26	19	28	35	15	10	16	11	13	8	7	15	15	486	29	Tuesday
304	22	1	24	1	21	10	17	33	16	28	22	21	30	34	9	23	15	7	14	16	24	11	17	11	451	30	Wedinesclay
305	13	1	13	11	17	14	21	10	18	22	20	16	39	24	31	15	29	17	20	25	24	20	32	23	484	31	Thursday
306	23	17	16	24	30	32	23	24	19	22	40	51	31	32	52	17	31	12	4	7	18	7	24	25	581	- 01	ciday
307	35	9	11	15	15	19	21	13	11	30	20	9	29	17	18	29	8	22	19	11	8	10	7	24	410	02	turday
308	30	19	15	23	26	12	20	29	25	19	18	19	10	33	30	14	25	30	18	35	12	12	25	38	537	ov 03	sunday
309	22	13	19	23	14	28	29	10	22	12	15	12	28	31	32	26	33	30	30	29	44	36	43	36	617	ov 04	Monday
310	35	27	30	41	45	24	18	14	24	28	29	35	41	35	32	13	24	32	8	25	29	32	29	23	673	ov 05	Tuesday
311	31	11	20	9	10	8	36	14	40	20	25	31	31	26	21	27	33	8	14	21	30	29	16	16	527	Ov 06	Nednesday
312	25	5	9	16	13	16	35	26	28	26	32	11	28	32	20	25	32	20	26	26	29	26	23	36	565	ov 07	Thursday
313	25	32	6	9	8	12	19	28	25	44	37	19	32	44	37	21	25	13	29	21	23	10	16	28	563	ov 08	Friday
314	22	23	16	11	18	9	7	19	22	19	18	9	62	28	45	28	7	13	21	16	13	35	36	25	522	OV 09	Saturday
315	91	17	23	21	15	12	10	7	7	22	33	24	14	15	9	23	22	25	22	23	25	9	21	32	440	10	day
316	29	17	10	11	22	21	9	8	15	19	21	24	27	25	25	21	13	19	26	24	16	30	26	26	484	ov 11.	Monday
317	23	14	6	25	20	9	17	16	20	22	31	20	29	24	20	17	8	47	29	26	26	15	15	31	510	ov 12	Tuesday
318	10	16	16	11	21	22	29	11	31	26	9	19	19	32	21	21	25	12	26	13	22	23	42	43	520	ov 13	Wednesday
319	45	41	34	37	44	27	21	18	26	17	28	22	24	12	14	13	16	13	17	13	15	12	14	14	537	ov 14	Thursday
320	22	9	11	7	4	13	12	9	6	18	17	15	10	10	8	11	16	13	7	20	12	17	11	19	297	ov 15	Friday
321	18	17	13	41	22	11	20	11	26	23	20	17	45	21	39	31	27	23	15	15	9	16	22	53	555	Nov 16	Saturday
322	36	16	23	41	35	20	17	56	78	86	80	61	72	72	82	81	87	57	10	22	32	58	17	99	1338	17	Sunday
323	12910	03	76	39	24	25	28	35	47				4	95	91	84	81	77	54	54	55	71	77	91	1751	ov 18	Moncay
324	85	90	76	63	90	101	96	90	111	71	59	88	1021		1391	1561	1421		76	145	701	128	35	36	2541	Nov 19	Tuesday
325	41	21	19	18	9	13	13	24	26	37	47	36	44	37	46	21	35	29	30	25	24	33	17	29	674	ov 20	Wednesday
326	29	13	33	19	19	21	16	21	7	0	0	21	25	27	30	21	28	22	15	7	23	15	14	9	435	Nov 21	Thursday
327	23	11	6	9	39	28	15	17	25	33	29	38	15	28	22	21	35	13	14	23	26	9	14	34	527	Nov 22	Friday
328	23	13	27	19	19	1.9	22	14	15	11	11	16	28	15	16	14	20	16	22	13	27	26	14	23	443	Nov 23	Saturday
329	30	7	18	28	14	13	22	20	9	11	14	12	12	15	12	18	9	4	13	30	13	13	23	20	380	Nov 24	Sunday
330	18	17	10	11	13	23	15	14	21	9	19	26	18	24	13	18	22	12	14	11	23	20	16	23	410	Nov 25	Monday

Table 3.5.2 (Page 1 of 4)

Day	00	01	02	03	04	05	06	0	08	09	10	11	12	13	14	15	16	1	18	19	20	21	22	23	Sum	ate	
331	27	17	6	14	25	19		26	26	33	19	31	33	37	22	28	34	38	34	2	47	42	27	42	662	Nov 26	
332	52	43	47	46	38	41	55	36	42	36	33	35	43	44	36	34	45	49	37	29	32	31	11	23	918	Nov 27	dnesday
333	31	31	23	19	28	32	26	39	23	15	21	38	27	32	31	39	14	21	12	41	24	27	30	46	670	Nov 28	Thursday
334	50	30	45	36	37	45	23	30	48	34	44	43	28	19	21	15	19	28	28	23	42	32	27	31	778	Nov 29	Friday
335	31	19	11	9	15	18	17	29	28	25	27	24	25	22	19	14	13	22	22	18	21	12	16	29	486	Nov 30	Saturday
336	25	13	25	9	14	9	10	18	8	22	16	8	15	19	16	17	24	12	18	22	26	19	12	33	410	Dec 01	Sunday
337	24	19	11	24	25	9	32	17	13	25	15	38	26	21	14	22	32	31	19	25	39	30	19	19	549	Dec 02	Monday
338	28	11	10	11	11	12	14	22	27	23	11	31	18	22	20	14	14	27	11	13	23	28	13	20	434	Dec 03	Tuesday
339	36	17	32	12	10	15	12	15	17	23	23	26	43	21	11	1.4	32	22	13	24	17	20	21	18	494	Dec 04	Wednesday
340	33	22	9	15	33	12	11	5	12	17	25	23	21	14	23	38	20	26	13	25	34	28	7	33	499	ec 05	Thursday
341	23	9	18	15	20	21	15	10	15	27	25	27	44	41	21	13	12	18	23	17	σ	15	20	25	481	Dec 06	Friday
342	20	25	13	8	17	17	22	16	8	14	29	18	16	9	24	19	16	10	5	8	24	8	22	37	405	Dec 07	Saturday
343	14	25	23	13	15	26	34	31	32	14	15	17	29	6	13	18	21	11	21	48	38	55	42	26	587	Dec 08	Sunday
344	41	32	52	25	25	23	28	24	22	38	26	26	8	13	8	9	4	17	14	18	11	9	7	25	505	Dec 09	Monday
345	31	12	14	17	13	5	10	18	10	12	20	16	20	15	25	14	17	19	7	11	17	17	28	42	410	ec 10	Tuesday
346	28	15	21	15	28	38	14	22	52	56	58	61	79	63	56	65	69	68	70	65	69	50	68	70	1200	Dec 11	Wednesday
347	58	58	66	54	45	43	48	52	49	63	52	74	68	66	64	67	69	60	59	75	68	71	66	88	1483	Dec 12	Thursday
348	64	52	70	63	64	67	63	58	75	69	79	70	54	38	28	36	24	31	19	23	18	1.3	21	25	1124	ec 13	Friday
349	33	14	17	17	25	12	16	31	19	12	18	19	29	9	4	9	25	20	17	10	16	26	12	16	426	Dec 14	Saturday
350	17	15	5	10	15	13	7	9	17	12	22	8	8	13	5	17	13	14	14	9	18	31	48	57	397	Dec 15	Sunday
351	50	59	58	19	27	46	67	77	75	55	39	35	28	19	18	29	47	70	60	60	35	30	30	23	1056	Dec 16	Monday
352	32	20	9	22	11	20	16	14	12	14	25	36	20	18	24	21	23	24	22	22	33	32	40	46	556	Dec 17	Tuesday
353	67	48	45	36	39	61	59	73	86	75	73	82	80	93	76	66	61	56	48	27	17	29	11	27	1335	Dec 18	Wednesday
354	24	32	19	21	29	13	16	9	16	13	19	20	23	22	13	12	12	10	13	16	30	12	21	21	436	Dec 19	Thursday
355	28	13	17	25	13	19	14	20	17	26	21	24	26	40	21	37	34	44	30	34	25	21	15	28	592	Dec 20	Friday
356	27	21	29	25	42	49	42	38	33	18	31	14	23	17	21	14	13	19	15	14	21	27	41	51	645	Dec 21	Saturday
357	49	32	30	24	32	44	34	45	49	50	58	69	71	67	72	83	52	40	32	51	57	34	30	32	1137	Dec 22	Sunday
358	14	14	5	8	21	19	22	4	14	18	21	18	19	16	21	15	21	26	10	11	28	25	13	32	415	Dec 23	Monday
359	39	15	18	18	27	24	20	14	13	10	25	33	34	58	62	61	78	56	60	64	80	75	78	72	1034	Dec 24	Tuesday
360	74	82	51	52	74	56	52	43	72	51	47	37	34	13	13	11	12	20	30	18	11	11	21	33	918	ec 25	Wednesday
361	18	21	12	31	40	1.4	18	21	37	12	14	21	25	14	24	20	14	20	26	12	14	37	8	15	488	Dec 26	Thursday
362	23	11	8	11	18	27	12	9	26	31	14	34	22	13	18	11	17	21	13	24	18	20	15	29	445	Dec 27	Friday
363	19	8	7	11	10	11	24	17	8	34	6	12	21	21	6	22	18	15	19	20	9	14	14	21	367	Dec 28	Saturday
364	33	16	8	17	18	22	14	16	4	13	16	24	23	34	13	17	25	13	28	27	16	20	29	14	460	Dec 29	Sunday
365	24	17	12	26	30	7	13	13	20	14		29	22	11	13	12	12	10	15	16	5	14	17	9	365	Dec 30	Monday
366	0	0	0	0	0	0	0	0	0	0	0	3	6	5	6	5	19	5	7	4	8	2	3	1	74	Dec 31	Tuesday
1	11	3	8	11	11.	3	2	5	6	8	15	23	12	14	19	20	9	10	9	14	13	11	16	21	274	an 01	Wednesday
2	26	11	5	15	8	15	4	16	15	14	16	25	21	11	15	13	23	21	19	14	7	14	14	13	355	Jan 02	Thursday
3	26	10	14	3	15	13	10	12	11	8	15	20	13	16	14	21	10	12	17	15	15	14	17	14	335	an 03	Friday
4	15	6	8	9	8	15	13	20	8	11	23	18	22	24	27	26	24	23	18	21	15	13	17	21	405	Jan 04	Saturday
5	17	10	13	14	7	15	15	13	10	22	23	23	39	25	17	27	20	15	16	9	17	9	8	16	401	Jan 05	Sunday
6	16	9	5	15	18	28	5	9	17	24	5	19	21	13	12	15	8	4	14	16	12	11	14	21	331	Jan 06	Monday
7	17	8	14	36	16	18	22	13	10	15	13	16	18	8	9	8	19	9	5	14	14	7	10	24	343	an 07	Tuesday
8	20	14	7	13	8	12	13	8	11	23	25	21	17	19	16	13	26	21	15	12	16	8	11	18	367	Jan 08	Wednesday
9	20	8	13	8	7	8	22	14	19	10	15	18	11	28	5	9	14	13	13	9	20	10	9	15	319	Jan 09	Thursday
10	8	10	12	4	5	6	5	6	11	10	11	8	12	12	4	10	10	6	5	9	10	12	7	19	212	an 10	Friday
11	15	7	9	21	6	6	8	11	14	26	11	7	7	14	14	13	15	12	15	22	27	42	34	47	403	Jan 11	Saturday
12	46	52	65	65	67	56	57	50	60	52	50	49	56	61	45	50	62	49	49	38	27	16	17	20	1160	an 12	Sunday
13	16	19	15	21	16	31	25	13	22	5	17	19	22	23	11	25	21	18	15	14	13	18	15	20	434	an 13	Monday
14	30	14	26	16	16	15	8	8	18	17	23	18	18	8	3	11	13	15	12	8	6	12	5	18	338	an 14	Tuesday
15	17	7	9	5	4	9	5	7	12	15	28	14	27	13	10	13	14	19	12	7	7	10	21	15	300	an 15	Wednesday
16	16	13	2	13	8	7	8	11	9	10	10	10	15	6	9	9	12	11	4	5	10	11	11	10	230	Jan 16	Thursday
17	14	9	9	9	17	13	11	11	7	25	26	29	25	28	16	16	14	13	12	15	17	27	11	26	400	Jan 17	Friday
18	28	11	13	18	28	8	3	14	14	15	17	11	14	13	16	9	11	12	16	11	2	19	13	21	337	Jan 18	Saturday
19	27	16	17	17	16	17	18	21	27	26	26	31	23	24	39	45	29	30	25	41	29	41	26	33	644	an 19	Sunday
20	38	26	12	32	27	11	21	17	12	11	16	9	16	10	21	20	8	16	16	4	19	6	11	12	391	Jan 20	Monday

Table 3.5.2 (Page 2 of 4)

ARC . FKX Hourly distribution of detections

Table 3.5.2 (Page 3 of 4)

Table 3.5.2. (Page 4 of 4) Daily and hourly distribution of ARCESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

FIN .FKX Hourly distribution of detections

275	5	5	4	2	1	1	2	10	10	13	6	20	12	3	3	16	9	1	3	2	5	4	5	10	152	Oct 01	Tuesday
276	3	3	2	1	4	3	8	14	18	36	25	20	12	13	5	3	5	8	10	4	3	2	18	7	227	Oct 02	Wednesday
277	3	5	12	3	4	11	9	7	15	8	10	21	16	4	6	3.	5	6	6	0	3	4	2	3	166	oct 03	Thursday
278	6	10	1	6	1	2	8	11	5	10	21	11	3	3	15	13	22	6	5	4	1	3	1	1	169	Oct 04	Friday
279	3	2	1	7	4	4	4	14	8	6	6	2	5	10	2	3	3	0	0	6	2	2	2	1	97	cat 05	Saturday
280	2	5	1	3	3	4	3	7	2	4	3	5	2	2	4	5	1	4	2	4	10	6	0	6	88	oct 06	Sunday
281	7	2	1	1	2	0	7	3	4	18	11	15	12	11	9	1	3	3	4	5	2	3	0	1	125	Oct 07	Monday
282	2	5	6	6	3	6	9	6	6	7	12	15	3	7	4	9	4	7	5	4	7	3	3	0	139	Oct 08	Tuesday
283	4	3	10	2	3	5	3	4	6	9	25	12	10	18	19	21	12	6	10	11	9	8	3	7	220	Oct 09	Wednesday
284	15	14	11	4	11	4	1	5	13	12	17	17	19	11	11	9	11	12	5	3	11	9	11	4	240	Oct 10	Thursday
285	9	13	3	3	6	1	6	3	13	4	12	8	8	5	4	5	6	3	5	6	6	5	5	8	147	Oct 11	Friday
286	9	4	10	4	7	5	1	2	3	1	5	7	3	0	3	6	0	13	5	7	3	4	0	2	104	Oct 12	Saturday
287	2	3	0	2	9	3	5	1	7	2	7	11	4	2	9	9	19	4	4	2	2	12	6	5	130	oct 13	Sunday
288	9	8	4	3	4	5	3	7	5	8	15	12	11	10	16	12	3	7	8	7	7	10	5	14	193	Oct 14	Monday
289	10	6	9	6	2	5	4	4	10	5	18	19	11	7	12	21	6	3	6	3	10	9	4	12	202	Oct 15	Tuesday
290	6	4	11	7	3	4	3	14	22	25	30	13	10	3	7	6	2	4	3	6	2	7	5	1	198	Oct 16	Wednesday
291	6	6	6	6	8	6	3	9	10	12	10	13	4	5	10	16	9	7	4	6	6	4	8	2	176	oct 17	Thursday
292	5	4	10	2	9	4	5	5	10	18	14	18	8	7	4	2	1	3	1	6	0	3	3	2	144	Oct 18	Friday
293	1	6	1	6	0	2	5	8	16	7	11	6	5	5	9	23	2	1	5	6	11	9	3	4	152	Oct 19	Saturday
294	2	4	2	7	6	11	8	1	4	6	18	7	8	9	2	4	3	6	4	14	6	2	3	5	142	Oct 20	Sunday
295	4	5	6	6	1	1	σ	20	12	6	22	15	9	6	9	8	3	2	7	9	4	5	6	6	168	Oct 21	Monday
296	2	4	4	2	0	2	6	7	15	6	14	8	10	8	14	5	7	4	4	5	4	5	4	8	148	Oct 22	Tuesday
297	3	6	9	7	2	1	4	5	9	15	11	19	16	9	4	12	8	0	10	6	2	4	9	7	178	Oct 23	Wednesday
298	6	6	16	9	9	4	1	7	10	10	15	13	10	7	10	7	5	3	7	9	1	2	6	4	177	Oct 24	Thursday
299	5	6	4	6	1	0	4	10	14	22	11	31	18	6	1	2	2	4	3	5	8	9	6	3	181	Oct 25	Friday
300	2	4	3	6	12	6	3	3	6	7	5	8	7	8	3	1	2	4	4	2	2	3	2	2	105	oct 26	Saturday
301	1	3	1	1	8	12	1	5	2	4	4	7	2	2	3	1	6	4	3	4	4	11	4	3	96	Oct 27	Sunday
302	7	1	1	4	2	5	1	1	5	10	5	10	8	12	7	3	3	1	5	0	8	3	3	5	111	Oct 28	Monday
303	4	3	7	10	8	4	6	4	3	8	7	12	15	5	8	3	4	0	6	1	2	6	4	3	133	oct 29	Tuesday
304	5	2	6	5	9	2	1	6	3	9	8	5	4	17	12	6	7	2	4	7	2	1	5	6	134	Oct 30	Wednesday
305	4	5	3	7	3	3	0	1	4	6	14	13	27	8	11	2	7	4	13	14	6	13	7	11	186	Oct 31	Thursday
306	2	6	7	12	2	4	9	5	11	9	5	17	15	15	8	5	7	3	5	1	14	5	8	3	178	Nov 01	Friday
307	7	1	6	6	8	3	5	4	4	7	6	0	13	3	2	8	5	4	5	2	3	4	3	2	111	Nov 02	Saturday
308	0	3	7	8	8	5	9	8	30	8	7	9	23	19	5	2	8	13	2	7	1	2	9	6	199	Nov 03	Sunday
309	1	5	7	2	4	10	10	3	2	4	11	11	13	17	11	9	9	19	8	10	13	8	18	13	218	Nov 04	Monday
310	6	6	12	7	6	4	3	4	5	4	13	10	26	20	5	2	11	11	4	10	8	8	5	4	194	Nov 05	Tuesday
311	8	7	6	7	11	4	11	5	9	8	16	14	19	23	4	7	6	8	9	5	19	10	6	5	227	Nov 06	Wednesday
312	8	3	6	7	10	9	27	12	11	17	18	12	12	15	8	6	4	3	6	2	7	7	7	10	227	Nov 07	Thursday
313	5	4	7	4	4	5	4	14	10	5	23	12	12	14	13	2	9	4	12	4	8	4	7	1	187	Nov 08	Friday
314	6	10	4	8	7	8	7	7	4	6	4	11	7	9	3	5	2	8	4	7	8	5	1	5	146	Nov 09	Saturday
315	2	3	4	4	0	1	6	2	5	6	4	10	5	9	3	3	4	5	13	4	4	5	3	6	111	Nov 10	Sunday
316	4	6	8	0	6	9	1	3	5	7	10	13	13	14	17	4	14	20	3	5	14	6	3	7	192	Nov 11	Monday
317	2	5	10	6	15	0	2	7	6	13	17	17	15	24	12	6	5	22	4	3	6	9	3	4	213	Nov 1.2	Tuesday
318	4	0	2	5	5	6	6	3	5	14	6	22	26	18	6	7	4	0	2	3	5	3	5	2	159	Nov 13	Wednesday
319	4	2	6	6	0	2	15	5	16	17	18	24	13	9	17	0	2	5	1	2	4	7	7	3	185	Nov 14	Thursday
320	5	10	4	3	3	1	1	3	2	6	16	8	15	12	13	3	7	3	1	3	4	1	0	4	128	Nov 15	Friday
321	1	5	5	1	8	4		5	7	4	11	7	4	5	4	5	7	6	0	6	3	7	1	6	115	Nov 16	Saturday
322	1.	3	0	8	1	2	4	3	2	5	7	1	0	1	3	4	0	8	7	4	5	11	2	2	84	Nov 17	Sunday
323	4	3	3	10	3	0	4	5	2	10	15	7	10	10	9	7	14	4	4	1	12	11	13	5	165	Nov 18	Monday
324	7	5	10	8	6	0	3	2	4	9	6	15	12	18	13	4	9	0	4	7	9	4	3	4	162	Nov 19	Tuesday
325	18	5	10	7	3	3	6	3	5	14	16	14	16	12	12	5	4	2	7	6	14	5	7	8	202	Nov 20	Wednesday
326	2	6	11	6	2	4	4	4	4	5	6	23	17	13	9	10	5	10	6	1	5	1	3	1	158	Nov 21	Thursday
327	5	5	0	5	4	4	5	4	17	13	14	9	19	20	10	7	4	4	7	2	9	7	4	5	183	Nov 22	Friday
328	5	5	13	3	5	7	6	5	1	7	3	4	2	8	4	7	6	1	3	0	7	0	2	4	108	Nov 23	Saturday
329	2	5	2	1	8	2	2	6	3	3	1	5	3	2	7	10	1	2	1	4	9	6	7	5	97	Nov 24	Sunday
330	9	10	9	4	6	2	2	10	12	14	12	29	18	5	6	5	4	1	4	6	5	6	2	9	190	Nov 25	Monday

Table 3.5.3 (Page 1 of 4)

FIN . FKX Hourly distribution of detections

331	10	4	3	4	7	0	9	1	6	16	20	33	10	14	7	3	5	2	5	5	8	7	1	3	183	Nov 26	Tuesday
332	6	4	9	1	4	3	0	5	6	8	16	17	19	27	8	3	5	3	5	4	5	3	3	1	165	Nov 27	Wednesday
333	6	5	1	4	3	1	3	3	7	11	22	28	17	40	22	5	12	5	1	7	2	6	2	6	219	Nov 28	Thurscay
334	1	7	7	4	6	3	1	4	12	8	19	14	19	12	47	33	14	8	8	0	5	4	1	6	243	Nov 29	Friday
335	3	1	0	1	3	0	4	3	3	17	24	12	8	15	3	7	2	5	2	1	4	7	5	2	132	Nov 30	saturday
336	2	1	3	1	9	2	1	0	3	5	7	0	4	4	2	3	8	4	4	7	8	6	2	3	89	Dec 01	Sunday
337	5	3	10	8	3	3	10	8	6	11	19	14	9	17	6	3	4	3	6	5	3	5	6	3	170	Dec 02	Monday
338	2	4	3	7	4	16	4	7	3	17	11	8	14	19	13	6	4	1	8	7	3	7	4	4	176	Dec 03	Tuesday
339	2	2	12	7	4	4	2	4	5	4	13	18	16	16	13	7	4	4	2	4	2	5	0	2	152	Dec 04	Wednesday
340	6	1	1	1	6	2	0	2	1	10	12	10	11	9	1	3	3	6	3	1	2	2	0	3	96	Dec 05	Thursday
341	3	2	2	6	2	0	6	0	6	7	10	13	12	5	6	4	4	9	4	9	1	5	1	4	121	Dec 06	Friday
342	2	3	3	5	1	6	5	2	1	4	4	11	9	4	2	5	3	1	3	1	8	3	4	4	94	Dec 07	Saturday
343	0	1	2	3	2	1	6	4	8	3	3	2	1	3	1	0	3	6	3	5	2	6	5	6	76	Dec 08	Sunday
344	4	5	4	4	4	0	3	3	7	10	6	18	8	8	5	3	5	3	5	3	1	3	2	3	117	Dec 09	Monday
345	3	2	6	3	2	3	2	6	14	8	12	11	15	11	5	5	1	9	3	4	5	10	5	3	148	Dec 10	Tuesday
346	4	3	10	1	3	1	1	3	16	7	14	17	14	18	9	11	6	4	4	4	5	4	5	4	168	Dec 11	Wednesday
347	4	5	0	3	4	3	3	6	4	8	11	15	13	15	15	8	0	1	5	0	-1	3	5	0	132	Dec 12	Thursday
348	1	4	5	2	3	2	2	10	4	8	13	19	21	6	11	7	7	9	2	9	6	2	5	5	163	Dec 13	Friday
349	8	17	16	7	38	20	10	17	6	4	15	23	12	6	18	12	20	26	26	9	16	13	10	4	353	Dec 14	Saturday
350	4	13	23	55	57	29	8	18	14	12	9	22	56	58	34	47	28	80	48	15	15	75	52	51	823	Dec 15	Sunday
351	30	5	18	20	8	3	16	14	10	11	12	14	18	14	15	9	7	15	5	15	6	4	0	1	270	Dec 16	Monday
352	5	2	4	8	2	1	7	11	12	3	12	21	13	23	13	12	2	1	2	1	0	5	7	5	172	Dec 17	Tuesday
353	4	1	5	4	4	7	12	9	24	18	25	17	31	23	46	35	29	22	28	24	31	32	28	28	487	Dec 18	Wednesday
354	34	38	33	17	4	4	14	5	18	9	23	11	28	11	4	4	2	0	3	2	7	1	2	6	280	Dec 19	Thursday
355	5	2	6	3	5	2	4	6	5	15	10	16	20	19	23	26	23	22	24	22	10	2	4	5	279	Dec 20	Friday
356	4	8	13	4	4	2	10	6	10	7	15	10	21	23	53	68	51	36	7	6	11	40	7	12	428	Dec 21	Saturday
357	11	19	25	12	6	3	12	15	11	9	13	17	14	38	20	40	25	23	12	23	19	12	7	3	389	Dec 22	Sunday
358	16	13	48	43	41	13	13	9	10	11	8	7	15	36	34	19	21	17	13	9	11	6	7	4	424	Dec 23	Monday
359	6	0	4	3	8	3	14	9	16	17	4	16	27	35	26	60	74	73	53	36	21	22		01	691	ec 24	Tuesday
360	104	89	85	93	48	13	11	28	42	45	32	15	34	88	941	104	94	901	103	78	93	80	74	85	1622	Dec 25	Wednesclay
361	79	67	67	57	43	27	17	7	9	7	3	6	10	3	7	10	3	9	21	19	13	16	3	3	506	Dec 26	Thursday
362	10	3	8	5	2	0	21	9	7	10	33	57	62	41	3	7	1	3	0	4	4	4	2	2	298	Dec 27	Friday
363	1	3	2	7	5	4	19	9	9	23	49	6	45	22	5	16	0	1	5	5	0	2	2	1	241	ec 28	Saturday
364	2	3	3	8	11	11	21	65	10	19	55	31	17	16	19	7	2	4	6	3	6	4	7	3	333	Dec 29	Sunday
365	5	10	5	4	3	4	10	7	18	16	61	30	9	25	42	31	39	42	31	31	18	15	17	14	487	Dec 30	Monday
366	3	10	4	13	6	5	21	82	23	37	37	28	24	30	11	4	10	5	3	7	2	7	1	5	378	Dec 31	Tuesday
1	10	1	1	3	2	3	58	62	26	56	79	26	23	46	64	50	34	8	9	5	11	11	10	10	608	Jan 01	Wednesday
2	7	9	16	5	3	6	3	4	13	19	8	13	26	41	7	10	3	16	9	2	7	4	9	11	251	Jan 02	Thursday
3	9	14	11	7	12	13	25	10	5	62	52	35	33	23	9	13	31	7	3	7	3	34	46	31	495	Jan 03	Friday
4	31	28	49	35	29	8	13	49	93	26	28	63	75	37	18	10	17	12	3	3	2	4	2	3	638	Jan 04	Saturday
5	5	0	5	3	9	12	25	33	29	27	17	27	17	7	10	6	7	2	7	0	5	0	3	2	258	Jan 05	Sunday
6	7	7	7	2	13	19	23	31	32	20	26	18	42	20	21	11	7	3	5	4	5	4	3	10	340	Jan 06	Monday
7	8	5	10	0	2	3	5	3	2	4	6	13	13	7	3	4	2	2	6	2	7	3	1	2	113	Jan 07	Tuesday
8	2	0	8	8	0	2	2	5	6	4	11	11	14	9	8	3	2	2	1	6	4	2	8	4	122	Jan 08	Wednesday
9	3	5	4	4	5	3	5	3	12	5	3	24	6	26	22	6	3	4	3	1	3	5	6	4	165	Jan 09	Thursday
10	1	4	5	1	3	0	15	11	4	4	23	20	10	2	1	12	35	10	12	7	12	10	12	18	232	Jan 10	Friday
11	6	11	10	11	9	4	4	3	9	11	6	5	4	14	6	6	3	6	2	11	14	5	10	9	179	Jan 11	Saturday
12	10	11	6	12	8	11	2	9	4	7	6	5	5	2	3	4	4	7	3	5	10	9	8	5	156	Jan 12	Sunday
13	7	8	3	3	2	2	9	12	2	1	16	17	12	10	5	4	7	2	6	6	1	3	3	7	148	Jan 13	Monday
14	4	3	3	12	6	9	20	11	9	7	10	16	19	14	9	4	4	0	9	7	4	9	6	1	196	Jan 14	Tuesday
15	4	6	1	3	2	8	10	5	1	10	32	11	11	8	9	3	2	1	1	3	2	4	3	1	141	Jan 15	Wednesday
16	0	6	4	6	2	0	8	16	0	8	14	21	20	15	11	5	15	12	-	6	17	9	3	8	215	Jan 16	Thursday
17	7	6	2	4	2	3	19	4	4	3	17	37	25	4	0	9	17	13	5	3	4	10	5	8	211	Jan 17	Friday
18	6	1	11	5	4	5	15	19	8	5	5	2	2	11	1	2	2	7	6	3	6	2	4	4	136	Jan 18	Saturday
19	7	1	6	6	5	5	6	2	7	6	3	5	6	18	3	9	2	4	2	10	7	10		11	147	Jan 19	Sunday
20	13	14	17	27	19	34	31	16	25	43	21	9	22	25	35	20	25	17	27	15	14	8	5	5	487	Jan 20	Monday

Table 3.5.3 (Page 2 of 4)

FIN . FKX Hourly distribution of detections

1	2	8	9	5	3	6	6	7	3	10	15	20	27	39	24	5	4	7	6	2	6	8	4	3	231	n 21	Tuesday
22	2	3	5	4	5	7	25	34	4	3	32	27	21	14	23	2	4	1	10	4	3	2	3	2	240	Jan 22	Wednesday
23	2	1	15	2	1	4	3	6	2	2	35	19	13	13	3	3	4	0	2	3	0	5	5	6	149	$\tan 23$	Thursday
24	3	22	8	3	6	4	2	3	4	10	17	17	16	6	6	2	1	6	2	0	5	8	8	11	170	an 24	Friday
25	18	17	22	19	20	24	15	1.7	17.	4	7	9	12	8	4	9	19	24	9	4	5	3	0	4	290	an 25	Saturday
26	2	4	4	1	2	6	3	11	4	4	0	3	2	4	3	5	6	4	2	5	1	6	6	7	95	an 26	Sunday
27	2	2	4	7	0	4	1	2	3	6	6	11	12		3	6	3	0	3	0	2	3	5	5	96	an 27	Monday
28	6	7	4	1	1	2	6	0	5	5	4	13	10	20	11	2	1	1	1	1	6	8	11	4	130	an 28	Tuesday
29	5	16	6	21	12	6	8	3	3	5	14	15	18	13	3	1	0	0	6	4	5	3	3	9	179	an 29	Wednesday
30	3	7	1	6	0	5	1	0	6	15	17	8	17	5	15	4	3	4	5	3	2	5	4	5	141	ת 30	Thuxsday
31	8	6	4	6	4	0	3	2	6	7	13	13	18	11.	4	2	5	7	4	2	9	2	8	4	148	an 31	Friday
32	2	6	6	5	5	10	6	4	12	3	4	5	3	6	14	30	37	44	59	65	60	62	79	68	595	eb 01	Saturday
33	63	48	28	12	7	4	1	5	6	2	1	5	1	8	9	6	8	10	9	7	8	8	5	14	275	eb 02	Sunday
34	5	1	4	1	2	3	2	3	9	1	9	10	12	15	6	3	1	2	5	1	10	7	5	0	117	eb 03	Monday
35	2	3	3	6	6	2	3	5	3	7	28	8	13	6	16	1	5	4	4	0	5	3	4	2	139	eb 04	Tuesday
36	4	4	6	3	4	3	1	0	17	13	10	14	10	18	6	5	8	4	4	7	2	5	5	2	155	eb 05	Wednesday
37	10	7	4	4	8	7	8	3	10	4	14	10	14	16	8	15	24	17	22	24	42	32	42	38	383	Feb 06	Thursday
38	42	20	4	8	6	6	4	1	6	17	12	14	11	5	4	4	0	3	2	7	5	4	3	4	192	eb 07	Friday
39	6	5	7	5	2	7	2	6	4	6	2	8	4	10	2	6	5	5	6	5	4	3	2	2	114	eb 08	Saturday
40	11	30	28	23	39	37	60	15	44	36	0	0	0	0	0	29	46	61	51	37	27	18	2	4	598	Feb 09	Sunday
41	3	1	2	6	1	4	0	6	3	9	9	10	11	22	25	11	7	8	8	10	12	4	4	8	184	Feb 10	Monday
42	6	4	3	9	0	2	2	6	5	3	7	13	16	9	3		3	9	7	5	6	6	9	6	143	eb 11	Tuesday
43	7	2	5	5	2	5	4	4	2	11	1.5	12	14	10	11	8	5	9	1	4	4	5	2	4	151	eb 12	Wednesday
44	12	5	1	2	2	5	2	2	6	9	15	7	17	19	10	7	5	8	2	5	7	3	6	6	163	eb 13	Thursday
45	8	7	6	10	7	6	8	9	21	15	20	15	21	9	15	24	22	26	26	30	43	33	41	37	459	eb 14	Friday
46	36	12	19	31	31	37	34	43	43	18	11	2	4	7	5	1	4	5	3	14	8	9	6	9	392	eb 15	Saturday
47	5	2	2	8	15	8	13	15	13	9	3	9	1	3	5	2	4	8	5	3	6	6	2	8	155	b 16	Sunday
48	7	10	6	9	11	9	9	12	8	6	5	13	7	5	12	16	5	6	13	19	26	36	39	46	335	Feb 17	Monday
49	49	47	51	54	49	40	48	45	24	15	13	22	24	13	13	10	6	4	11	3	4	10	5	10	570	cb 18	Tuesday
50	5	11	6	7	10	9	6	6	10	13	19	19	11	7	9	5	3	11	10	7	13	5	4	3	209	eb 19	Wedresday
51	4	4	6	6	2	2	1	6	12	6	11	6	15	13	9	9	8	3	9	3	6	11	5	2	159	eb 20	Thursday
52	10	8	5	4	6	3	2	1	8	9	18	15	24	18	4	5	2	9	3	3	8	3	8	8	184	cb 21	Friday
53	4	6	2	9	11	3	1	2	6	7	8	11	6	9	6	6	1	2	2	5	5	1	2	1	116	Feb 22	Saturday
54	4	4	2	2	2	1	4		2	1	5	1	5	4	4	3	1	6	4	4	11	15	2	2	90	eb 23	Sunday
55	4	6	3	0	9	1	6	2	5	4	6	7	14	5	6	2	8	5	8	3	3	6	7	5	125	eb 24	Monday
56	6	7	5	2	3	3	1	4	7	1	6	14	16	15	14	9	7	12	3	4	6	5	3	3	156	eb 25	Tuesday
57	4	6	2	5	2	4	9	1	14	8	10	13	12	27	14	11	10	4	4	5	11	7	11	3	197	eb 26	Wednesday
58	6	2	5	1	7	2	2	5	3	10	8	8	18	8	18	9	4	6	3	20	58	84	58	30	375	Feb 27	Thursday
59	32	16	12	19	22	15	31	27	8	21	15	21	18	15	13	8	11	7	7	5	6	7	1	7	344	eb 28	Friday
60	5	6	20	4	5	3	11	3	2	16	5	8	4	4	5	1	7	3	5	7	6	14	5	4	153	ar 01	Saturday
61	7	4	3	3	4	8	7	1	2	5	6	2	11	5	9	7	7	12	14		5	6	4	4	144	Mar 02	Sunday
62	6	7	9	6	4	3	3	3	6	12	7	9	10	15	7	11	1	3	5	5	12	39	76	87	346	Mar 03	Monday
63	45	28	15	20	25	13	17	10	20	8	5	21	11	15	15	11	10	-	11	14	11	23	25	35	416	Mar 04	Tuesday
64	36	41	31	49	32	20	2	4	10	17	21	12	37	9	40	13	14	24		10	11	17	11	22	491	Mar 05	Hednesday
65	27	43	52	55	19	8	3	8	19	10	20	21	21	22	15	14	4	5	2	2	5	6	25	26	432	Mar 05	Thursday
66	29	26	14	32	15	7	8	8	16	18	14	17	16	12	4	5	11	13	16	4	2	5	4	7	303	ar 07	Friday
67	8	12	25	10	5	8	7	8	4	6	5	4	5	2	3	10	7	5		4	2	20			366	Mar 08	Saturday
68	1531	301	107	67	56	35	7	7	7	5	0	9	13	9	7	8	3	10	3	12	4	9	8	8	677	Max 09	Sunday
69	6	6	8	9	15	16	6	4	7	5	4	14	15	14	33	11	7	11	16	3	5	7	5	8	235	Mar 10	Monday
70	20	23	68	82	10	7	-	6	6	9	8	8	19	31	20	5	0	7	9	14	4	7	2	8	379	Mar 11	Tuesday
71	16	12	17	9	6	6	2	6	9	8	9	21	18	12	10	11	8	6	10	3	6	4	12	19	240	Mar 12	Wednesday
72	45	58	33	11	10	5	6	5	5	0	0	0	0	0	0	0	0	10	4	8	36	41	2	10	289	Mar 13	Thursday
73	5	9	13	10	7	7	2	1	11	10	9	17	14	13	8	5	14	14	23	34	34	55	59	52	426	Mar 14	Friday
74	42	69	68	74	68	25	12	4	8	12	13	4	10	2	4	5	6	3	6	8	7	8	3	4	465	Mar 15	Saturday
75	4	13	21	17	20	20	26	22	5	5	5	2	4	3	2	7	7	4	9	12	10	19	45	21	305	Mar 16	Sunday
76	17	32	41	57	50	20	7	8	8	9	3	15	12	2	10	9	9	4	7	7	4	6	5	6	348	Mar 17	Monday

Table 3.5.3 (Page 3 of 4)

FIN	. FXX		ourl	ly di	dis	ib	but	on	n of	E																	
Day	00	01	02	03	04	05	06	07	708	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Sum	Date	
77	6	17	10	29	19	23	20	18	814	11	9	21	21	10	5	8	8	7	2	7	13	31	28	48	385	Mar 18	Tuesday
78	32	25	25	32	34	12	3	4	49	2	12	18	20	13	16	3	12	6	13	10	9	14	6	9	339	Mar 19	Wednesday
79	9	11	21	6	6	10	13	6	69	15	7	10	23	14	13	9	6	7	11	6	13	25	35	56	341	Mar 20	Thursday
80	54	62	72	69	46	37	29	16	616	15	21	22	26	7	7	7	22	17	20	25	20	30	41	55	736	Mar 21	Friday
81	49	58	78	84	75	92	92	49	919	17	8	9	11	21	21	25	36	46	38	47	38	53	44	70	1080	Mar 22	Saturday
82	71	83	861	1221	23	78	45	45	515	14	13	21	16	16	9	12	16	16	15	21	18	27	27	25	934	Mar 23	Sunday
83	41	53	40	41	53	34	44	33	313	30	14	13	26	18	22	12	7	13	14	15	14	17	26	36	619	Mar 24	Monday
84	28	58	55	57	59	57	48	37	716	19	11	18	22	34	23	10	14	12	10	5	7	12	7	18	637	Mar 25	Tuesday
85	21	26	17	13	13	4	2	5	515	16	14	18	16	17	15	4	5	11	11	4	4	4	4	6	265	Mar 26	Wednesciay
86	7	3	1	6	7	5	2	4	44	49	18	16	12	14	9	4	5	6	7	13	4	9	6	6	177	Mar 27	Thursday
87	9	1	5	4	7	16	11		57	711	9	25	13	6	15	9	5	4	2	13	2	7	8	5	199	Mar 28	Friday
88	5	5	7	6	4	9	8		85	57	7	25	16	15	11	5	8	8	7	1	5	0	0	2	174	Mar 29	Saturday
89	0	3	5	8	6	9	8		47	74	9	8	7	13	18	10	12	7	6	9	8	6	3	11	181	Mar 30	Sunday
90	4	3	8	2	10	3	3		910	31	16	33	49	43	2	10	11	7	8	11	11	13	7	6	310	Mar 31	Monday
FIN	00	01	02	03	04	05	06	07	708	809	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Sun		103		212		502		735		1995		594		506		761		667		460		893		057			
	057		263		41		708		1805		2451		692		087		677		556		638		806		47166	Total	sum
182	11	12	12	12	11	8	9	10	010	11	13	14	15	14	11	10	9	9	9	8	9	10	10	11	259	Total	verage
124	9	10	10	10	8	6	8	8	89	911	15	16	16	14	12	8	8	8	7	7	8	9	10	11	239	Average	e workdays
58	15	15	16	16	16	12	12	12	211	110	11	10	11	12	10	12	11	12	11	10	10	12	10	12	293	Average	e weekends

Table 3.5.3. (Page 4 of 4) Daily and hourly distribution of FINESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

GER . FKX Hourly distribution of detections

275	7	6	8	5	2	19	17	13	10	26	40	38	18	8	14	13	7	0	8	9	11	5	3	3	290	Oct 01	Tuesday
276	3	2	3	18	16	4	10	5	21	36	17	26	9	20	17	10	6	6	2	10	5	7	10	4	267	Oct 02	Wednesday
277	4	6	7	6	4	5	6	7	9	28	21	21	6	9	16	18	3	9	3	4	12	8	18	3	233	Oct 03	Thursday
278	18	18	34	23	9	2	2	7	20	20	12	10	14	7	7	5	6	5	5	21	11	12	5	4	277	cet 04	Friday
279	4	2	8	7	4	4	8	6	1	6	9	16	3	5	7	3	4	6	1	9	0	6	0	3	122	Oct 05	Saturday
280	3	1	1	5	1	6	6	3	0	2	7	7	4	5	1	3	2	8	5	2	14	11	6	9	112	Oct 06	Sunday
281	5	9	6	2	32	16	10	12	29	33	21	29	19	20	13	5	11	5	2	1	1	9	7	3	300	Oct 07	Monday
282	5	8	14	7	7	11	12	17	40	28	12	39	21	23	11	4	0	2	8	6	14	3	4	8	304	Oct 08	Tuesday
283	3	6	6	9	8	12	6	13	18	22	24	17	15	27	32	29	21	10	12	18	20	13	11	16	368	Oct 09	Wednesday
284	25	20	15	8	10	6	12	11	13	34	37	23	17	14	20	15	6	5	7	12	15	8	11	6	350	Oct 10	Thursday
285	11	15	7	11	8	18	4	18	25	33	40	30	18	3	4	7	6	10	12	5	11	6	11	7	320	Oct 11	Friday
286	8	5	14	4	7	8	6	10	15	6	13	27	11	5	10	10	5	6	9	10	4	3	6	4	207	Oct 12	Saturday
287	2	6	2	1	3	5	8	5	7	1	5	5	8	5	4	5	7	2	2	1	2	3	4	9	102	Oct 13	Sunday
288	13	3	5	9	6	6	4	14	20	32	30	30	15	10	20	12	2	7	6	6	6	8	2	9	275	Oct 14	Monday
289	10	6	15	2	12	9	20	20	29	46	30	29	29	15	11	6	11	13	4	6	12	11	6	8	360	Oct 15	Tuesday
290	13	13	9	7	18	5	8	19	14	27	26	15	18	11	17	7	6	13	5	10	8	9	7	9	294	Oct 16	Wednesday
291	4	11	10	5	18	10	7	10	21	35	28	22	19	12	16	14	5	5	5	4	8	10	4	2	285	Oct 17	Thursday
292	4	7	3	10	13	11	11	8	4	38	30	35	18	15	5	8	10	12	6	11	4	13	9	13	298	Oct 18	Friday
293	2	6	10	10	6	4	3	3	8	6	9	5	13	3	14	18	6	10	5	4	4	4	0	3	156	Oct 19	Saturday
294	2	6	15	1	7	8	2	5	1	3	5	8	8	6	7	10	10	1	2	11	11	3	5	10	147	Oct 20	Sunday
295	11	7	8	15	4	5	7	10	11	26	37	17	18	14	15	20	17	36	6	10	1	1	9	2	307	Oct 21	Monday
296	11	4	4	4	19	5	10	11	14	26	23	29	27	23	13	10	14	4	3	2	11	4	7	6	284	Oct 22	Tuesday
297	5	7	9	5	11	2	6	18	22	30	29	31	29	16	18	8	2	11	19	4	2	0	3	6	293	Oct 23	Wedinesday
298	7	7	4	22	12	8	10	17	14	29	31	34	14	8	22	13	10	19	7	16	10	4	5	4	327	Oct 24	Thursday
299	4	3	6	3	7	6	14	23	14	29	47	23	19	17	14	10	8	8	7	2	10	2	7	2	285	Oct 25	Friday
300	4	2	6	7	10	4	12	6	4	1	5	13	10	2	6	3	4	5	8	2	2	1	1	2	120	Oct 26	Saturday
301	6	2	2	1	7	2	10	3	2	1	2	4	4	15	16	0	5	4	1	1	7	6	12	4	117	Oct 27	Sunday
302	4	1	5	2	12	8	8	10	15	16	16	21	25	15	19	10	4	5	2	1	8	9	1	3	220	Oct 28	Monday
303	2	3	6	6	9	18	8	8	10	7	24	28	26	9	13	9	9	2	6	5	2	0	0	0	210	Oct 29	tuesday
304	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	oct 30	Wednesday
305	0	0	0	0	0	0	0	0	0	0	0	0	0	2	19	11	5	3	8	8	10	9	11	6	92	Oct 31	Thursday
306	3	4	8	4	3	1	10	8	1	13	26	13	13	5	12	7	2	1	1	2	7	1	2	1	149	Nov 01	Friday
307	8	1	2	2	7	3	3	9	1	8	4	5	3	9	6	6	3	7	3	2	0	6	1	0	99	Nov 02	Saturday
308	1	1	2	3	1	3	4	8	4	4	4	2	4	10	5	3	4	2	1	3	3	9	15	5	101	Nov 03	Sunday
309	2	10	8	5	3	5	7	6	10	15	15	14	20	15	7	8	3	14	8	5	8	9	13	12	222	Nov 04	Monday
310	5	6	6	3	9	3	15	7	9	22	27	28	30	15	8	11	5	3	0	6	3	4	3	8	236	Nov 05	Tuesday
311	5	6	5	3	0	0	9	8	8	14	20	17	27	19	14	6	2	4	4	4	20	5	5	1	206	Nov 06	Wednesday
312	1	10	6	9	3	8	9	11	14	30	21	18	23	12	8	8	7	2	1	7	12	3	3	6	232	Nov 07	Thursday
313	1	3	4	1	3	4	4	13	10	12	24	37	16	22	15	15	2	13	3	10	6	0	1	6	225	Nov 08	Friday
314	1	3	1	5	11	11	13	16	10	9	7	10	5	7	9	5	2	5	5	4	4	0	1	3	147	Nov 09	Saturday
315	6	1	3	4	2	3	5	6	1	6	4	11	17	6	1	0	3	2	8	1	6	1	7	20	124	Nov 10	Sunday
316	1	7	6	7	2	0	9	15	18	26	21	27	29	12	19	36	3	1	7	2	3	4	3	8	266	Nov 11	Monday
317	9	6	7	9	2	1	10	5	11	15	31	22	33	6	8	22	9	16	12	4	1	2	4	11	256	Nov 12	Tuesday
318	7	1	9	6	2	5	10	4	8	21	22	24	25	14	17	17	2	6	10	6	5	11	1	0	233	Nov 13	Wednesday
319	4	7	7	7	1	1	5	9	7	17	22	33	17	15	14	17	0	4	7	6	4	4	3	11	222	Nov 14	Thursday
320	8	4	4	3	2	4	2	9	7	18	29	35	8	12	15	17	5	3	3	2	4	0	3	0	197	Nov 15	Friday
321	6	7	5	3	4	4	4	12	15	4	8	3	11	7	8	3	6	1	7	3	7	3	6	1	138	Nov 16	Saturday
322	2	2	2	2	2	5	6	6	9	2	7	1	7	3	5	6	2	7	4	9	1	8	3	10	111	Nov 17	Sunday
323	1	4	3	5	2	2	10	24	7	24	38	31	33	26	28	12	5	3	0	3	2	4	1	2	270	Nov 18	Monday
324	6	3	2	3	0	3	16	12	17	16	36	21	17	23	24	13	8	0	4	8	4	8	5	1	250	Nov 19	tuesday
325	3	9	11	4	2	1	6	12	18	13	41	31	28	12	25	22	4	3	7	6	4	4	3	8	277	Nov 20	Wednesday
326	3	2	6	21	1	5	7	14	17	12	15	26	20	14	17	15	3	6	2	d	- 5	2	3	8	230	Nov 21	Thursday
327	3	2	7	16	4	6	6	17	10	20	25	23	8	27	21	19	17	3	4	4	8	2	4	5	261	Nov 22	Friday
328	4	2	4	5	11	1	3	3	8	3	8	21	10	12	8	4	1	5	3	3	5	0	3	3	130	Nov 23	Saturday
329	5	4	1	2	3	1	3	5	3	3	6	6	15	2	3	1	6	0	4	1	3	7	5	11	100	Nov 24	Sunday
330	7	15	2	3	7	6	16	12	13	16	24	32	17	27	16	7	5	3	4	13	1	18	5	4	273	Nov 25	Monday

Table 3.5.4 (Page 1 of 4)

GER . FKX Hourly distribution of detections

331	10	2	5	4	8	2	8	4	12	20	22	24	19	9	18	18	3	5	1	1	6	6	6	2	215	Nov 26	Tuesday
332	8	4	1	0	5	3	3	8	13	14	31	16	38	31	17	14	1	1	8	12	4	2	5	3	242	Nov 27	Wednesday
333	8	6	3	15	10	5	3	11	12	12	23	24	31	25	16	6	1	3	3	1	6	7	1	3	235	Nov 28	Thursday
334	1	8	0	0	6	3	6	6	10	24	19	20	27	21	7	6	3	4	7	4	9	1	4	6	202	Nov 29	Friday
335	0	0	0	12	10	2	9	4	7	21	9	12	14	13	22	7	3	3	6	3	4	1	4	4	170	Nov 30	Saturday
336	2	1	5	0	3	2	1	12	16	22	11	1	16	4	4	4	6	8	0	4	2	5	4	8	141	Dea 01	Sunday
337	3	1	2	1	6	1	4	13	11	12	22	23	27	26	8	8	1	2	3	0	3	4	10	3	194	Dec 02	Monday
338	11	2	1	1	8	5	1	1	11	21	47	19	22	19	10	8	4	4	8	7	1	5	4	9	229	Dec 03	Tuesday
339	0	0	6	2	4	2	3	4	12	19	25	28	20	24	22	8	15	3	10	3	5	6	4	6	231	Dec 04	Wednesday
340	25	5	3	8	7	4	2	7	7	17	20	15	25	24	15	17	8	12	8	9	5	6	2	2	253	Dec 05	Thursday
341	7	9	8	6	4	1	2	2	8	6	14	13	23	23	19	6	1	14	4	7	6	10	7	6	206	Dec 06	Friday
342	5	4	23	16	3	7	7	6	5	11	11	17	23	2	7	2	4	9	1	7	12	0	1	2	185	Dec 07	Saturday
343	3	0	5	0	6	3	11	0	1.	0	1	8	2	7	5	2	2	1	1	3	0	5	2	2	70	Dec 08	Sunday
344	7	8	15	4	5	2	4	6	8	19	16	27	27	27	18	23	6	4	13	3	17	12	5	4	280	Dec 09	Monday
345	2	1	2	4	5	3	2	7	16	17	25	21	26	25	10	6	8	9	16	30	10	2	4	2	253	Dec 10	Tuesday
346	0	8	6	5	6	8	7	16	12	28	31	29	24	18	23	6	4	1	2	1	3	3	0	6	247	Dec 11	Wednesday
347	5	7	3	9	6	3	2	8	4	23	20	22	48	25	18	10	8	2	4	1	5	6	8	6	253	Dec 12	Thursday
348	7	4	5	3	4	6	5	9	12	17	7	23	30	8	8	9	3	5	5	11	7	8	5	6	207	Dec 13	Friday
349	6	6	9	5	2	7	12	6	5	5	17	19	8	12	7	2	6	10	5	13	5	5	2	5	179	Dec 14	Saturday
350	1	1	2	1	8	2	2	7	2	2	10	4	3	0	3	5	1	6	6	2	5	5	4	7	90	Dec 15	Sunday
351	0	8	0	3	2	2	2	5	9	28	16	26	12	17	8	10	3	10	3	7	5	2	2	3	183	Dec 16	Monday
352	2	2	0	4	0	6	7	6	17	21	22	33	25	23	10	5	5	6	1	8	5	2	10	7	227	Dec 17	Tuesday
353	3	1	1	4	6	2	1	4	6	12	15	28	32	11	8	14	3	5	0	8	4	6	1	6	181	Dec 18	Wednesday
354	3	1	2	5	6	15	3	5	5	10	15	21	29	24	28	11	8	1	3	6	5	5	4	10	225	Dec 19	Thursday
355	6	6	4	5	7	3	2	6	5	9	9	13	17	4	10	10	5	1	3	4	5	6	11	3	154	Dec 20	Friday
356	6	9	1	1	3	2	8	4	7	9	10	11	7	11	5	4	3	2	4	2	13	0	3	4	129	Dec 21	Saturday
357	6	4	8	7	7	2	2	0	2	3	2	10	7	7	10	15	0	4	0	2	2	1	1	4	106	Dec 22	Sunday
358	11	4	0	2	4	4	3	2	4	5	3	5	8	18	4	8	3	1	4	3	7	3	4	7	117	Dec 23	Monday
359	5	3	3	1	2	3	12	5	2	7	2	11	6	8	4	3	2	6	2	4	0	1	5	1	98	Dec 24	Tuesday
360	0	0	4	6	0	2	3	1	2	3	1	0	10	2	2	4	2	2	1	0	0	1	8	1	55	Dec 25	Wednesday
361	8	0	5	3	5	0	3	2	4	10	1	0	2	1	1	2	4	7	3	13	0	6	1	5	86	Dec 26	Thursday
362	6	1	1	3	3	6	2	11	4	2	2	8	5	6	14	3	5	0	3	1	0	5	0	1	93	Dec 27	Friday
363	1	0	0	0	2	1	2	2	3	1	0	0	5	3	5	3	1	3	3	2	4	1	1	3	46	Dec 28	Saturday
364	2	1	1	2	6	3	1	4	6	3	5	1	0	4	4	6	3	1	7	0	3	2	5	4	74	Dec 29	Sunday
365	1	7	1	2	3	1	1	3	4	2	9	7	8	0	2	0	4	3	10	9	6	4	2	2	91	Dec 30	Monday
366	5	0	2	2	1	1	6	0	1	7	1	2	7	4	6	3	0	1	2	6	4	2	2	5	70	Dec 31	Tuesday
1	3	1	5	1	4	3	1	2	0	1	3	4	2	2	13	13	0	1	3	8	12	1	3		92	Jan 01	Wednesday
2	8	2	0	10	1	2	2	1	3	2	16	7	9	4	8	8	4	1	4	0	3	0	4	0	99	Jan 02	Thursday
3	6	3	3	1	8	2	0	1	2	6	4	2	5	5	7	9	3	8	7	3	2	7	4	1	99	Jan 03	Friday
4	2	0	2	3	9	0	1	7	2	3	4	1	2	8	3	0	3	2	9	2	4	18	5	1	91	Jan 04	Saturday
5	3	1	0	0	0	0	0	0	0	5	9	5	4	6	4	0	0	0	3	3	1	1	2	0	47	Jan 05	Sunday
6	0	0	2	0	2	5	2	2	1	4	3	9	6	4	9	4	0	4	9	2	4	12	6	5	95	Jan 06	Monday
7	1	3	6	0	1	5	2	3	4	4	7	4	14	5	8	1	5	3	9	1	0	6	2	4	98	Jan 07	Tuesday
8	2	2	3	8	2	3	2	1	1	8	5	2	16	10	8	2	5	4	6	1	6	1	3	3	104	Jan 08	Wednesday
9	6	1	1	1	1	11	2	0	11	11	12	4	19	21	5	3	2	5	10	7	4	6	2	4	149	Jan 09	Thuxsday
10	1	2	11	1	7	1	3	2	5	12	28	10	19	15	14	7	5	4	3	8	12	9	1	0	180	Jan 10	Friday
11	1	0	6	5	4	2	5	1	2	4	10	3	14	14	1	5	0	0	2	3	7	3	1	2	95	Jan 11	Saturday
12	2	5	1	2	0	0	1	5	2	1	2	7	15	2	7	1	1	4	2	1	3	5	0	2	71	Jan 12	Sunday
13	3	6	1	2	0	1	1	2	9	10	23	15	13	9	11	7	8	4	9	2	3	0	8	5	152	Jan 13	Monday
14	2	2	5	4	3	2	2	1	12	8	19	19	20	8	12	8	3	2	16	5	3	4	2	2	164	Jan 14	Tuesday
15	1	6	1	5	2	22	13	4	14	1	24	17	27	8	11	6	3	5	7	4	3	5	5	1	195	Jan 15	Wednesday
16	5	6	2	5	8	1	2	0	6	14	18	16	21	19	0	8	6	5	5	2	6	2	3	4	164	Jan 16	Thursday
17	4	3	2	4	5	5	3	0	5	5	15	31	20	21	10	5	6	6	8	4	3	19	8	9	201	Jan 17	Friday
18	12	4	7	6	3	9	12	6	3	4	10	4	10	15	0	1	12	3	17	11	6	4	2	4	165	Jan 18	Saturday
19	2	6	4	5	3	6	4	4	7	3	1	4	9	5	5	7	0	3	1	7	5	5	6	10	112	Jan 19	Sunday
20	5	6	3	6	1	3	3	2	7	5	19	24	14	15	7	7	3	10	13	2	1	4	5	3	168	Jan 20	Monday

Table 3.5.4 (Page 2 of 4)

GER . FKX Hourly distribution of detections

21	1	6	4	8	9	4	5	1	7	6	14	12	21	14	12	1	5	5	4	2	7	6	17	2	173		Tuesday
22	1	5	7	1	9	2	3	8	5	11	21	18	27	6	8	7	2	2	15	10	6	2	4	2	182	Jan 22	Wednesday
23	2	7	12	5	1	4	1	6	4	16	21	4	25	13	10	9	13	7	12	6	6	5	1	2	192	Jan 23	Thursday
24	2	7	1	3	5	2	3	1	7	11	20	16	29	13	11	17	3	5	2	5	2	1	3	0	169	an 24	Friday
25	5	0	5	8	4	10	2	5	4	9	8	9	17	12	6	4	3	2	4	3	5	1	0	0	126	an 25	Saturday
26	2	0	0	0	0	3	1	4	0	7	2	5	6	2	8	16	1	2	2	3	5	2	2	4	77	an 26	Sunday
27	10	5	4	6	1	1	1	0	10	7	5	25	24	11	6	3	5	5	1	0	3	4	6	2	145	an 27	Monday
28	7	2	3	2	3	7	1	3	10	14	14	14	26	2	10	8	10	3	3	0	2	4	3	1	152	an 28	Tuesday
29	4	2	0	7	2	1	2	2	14	14	19	11	12	8	5	15	2	8	8	5	5	6	2	6	160	n 29	Wednesday
30	4	1	2	6	14	4	0	1	6	8	23	15	25	6	13	7	5	6	8	2	3	17	2	8	186	an 30	Thursday
31	3	8	3	4	9	4	2	2	11	5	19	25	11	3	4	6	10	4	5	9	4	6	3	6	166	an 31	Friday
32	6	9	2	2	5	1	5	8	7	5	2	8	22	5	17	6	12	2	2	3	2	4	2	5	142	eb 01	Saturday
33	2	1	0	2	2	2	0	0	3	7	5	8	1	7	5	5	1	2	4	0	4	2	1	2	66	eb 02	Sunday
34	2	2	2	4	5	6	0	3	10	6	12	16	21	2	14	10	5	8	2	0	8	1	2	3	144	eb 03	Monday
35	0	6	15	5	7	1	1	3	11	6	36	21	3	12	16	5	2	7	6	3	2	9	2	1	180	eb 04	Tuesday
36	5	2	2	7	2	3	5	1	12	9	14	22	19	6	8	2	2	11	5	12	6	7	2	7	171	eb 05	Wednesday
37	2	1	1	9	2	0	8	3	3	16	11	22	22	0	0	0	1	2	2	0	6	14	2	8	135	eb 06	Thursday
38	5	6	6	12	12	0	7	0	8	9	15	20	34	14	11	12	7	5	1	5	3	2	5	6	205	eb 07	Friday
39	2	2	5	17	15	8	5	7	5	1	2	7	7	5	20	3	4	5	6	9	6	6	1	0	148	eb 08	Saturday
40	2	0	6	2	11	3	0	2	3	4	3	6	7	4	9	8		1	4	9	4	8	2	6	108	b 09	Sunday
41	6	2	1	8	3	4	2	1	10	8	20	18	9	4	7	6	9	1	5	8	4	0	6	3	145	eb 10	Monday
42	3	4	2	8	2	3	9	4	8	5	18	12	26	10	9	7	8	4	5	2	5	3	2	1	1.60	eb 11	Tuesday
43	4	4	6	6	5	12	7	3	6	9	19	24	38	17	18	18	5	15	5	7	12	18	14	13	285	eb 12	Wednesday
44	6	6	3	3	4	7	2	3	2	13	12	11	34	7	34	8	7	6	17	11	23	13	21	9	262	eb 13	Thursday
45	16	10	12	17	14	15	12	19	8	7	17	22	12	11	0	1	3	10	0	5	6	8	2	4	231	eb 14	Friday
46	4	4	0	5	7	4	4	9	3	5	0	3	8	7	8	16	2	3	5	5	2	8	1	4	117	eb 15	Saturday
47	2	1	5	1	4	2	4	5	6	4	4	8	5	3	10	5	3	11	2	8	5	4	2	3	107	eb 16	Sunday
48	3	2	3	4	9	3	1	1	11	14	15	21	19	13	4	10	4	2	6	1	3	3	2	5	159	b 17	Monday
49	2	7	7	5	4	7	0	2	11	16	9	1.5	19	17	14	5		3	6	5	6	17	7	15	204	b 18	Tuesday
50	22	7	0	6	12	3	3	0	9	4	20	27	20	11	15	0	5	2	13	8	12	4	1	2	206	eb 19	Wednesday
51	2	8	6	10	7	1	8	7	16	4	10	5	2	23	24	13	4	6	4	5	5	1	1	4	176	eb 20	Thursday
52	0	5	5	7	5	8	3	3	12	35	22	27	24	17	14	4	11	16	5	4	10	4	6	12	259	eb 21	Friday
53	13	3	1	3	9	3	2	0		3	8	3	16	10	0	2	0	2	0	5	6	3	0	3	96	eb 22	Saturday
54	7	2	4	2	4	3	1	3	3	2	8	6	8	9	8	3	3	4	2	1	13	12	3	6	117	eb 23	Sunday
55	4	3	7	4	6	1	1	8	8	18	20	21	23	10	9	3	7	15	12	2	7	0	7	3	199	eb 24	Monday
56	0	3	3	2	4	3	8	14	12	18	25	21	31	19	20	21	9	12	14	16	23	7	9	3	297	eb 25	Tuesday
57	13	1	6	10	15	18	13	8	17	25	35	24	25	14	13	4	9	8	9	6	5	5	9	3	295	b 26	Wednesday
58	2	5	5	4	5	4	3	0	10	9	18	22	24	6	11	3	9	4	5	6	2	27	20	8	212	eb 27	Thursday
59	12	10	7	9	3	5	3	5	9	14	7	31	24	8	13	8	10	6	4	4	11	6	6	7	222	eb 28	Friday
60	9	5	5	9	5	6	10	5	7	7	12	15	20	13	6	3	3	1	5	5	1.8	6	7	4	176	ar 01	Saturday
61	2	3	2	1	5	4	3	1	6	9	6	6	6	9	2	3	6	11	10	1	3	6	1	3	106	ar 02	Sunday
62	7	7	7	4	5	1	2	9	11	16	15	23	24	20	10	8	13	2	4	7	3	1	6	2	207	Mar 03	Monday
63	2	5	13	2	12	1	3	1	11	16	22	30	19	17	8	3	10	5	2	1	1	7	4	4	199	Mar 04	Tuesday
64	4	10	2	8	4	3	1	3	11	17	27	36	24	24	16	11	9	9	4	2	4	2	2	0	233	Mar 05	Wednesday
65	9	2	4	5	3	5	3	3	12	17	19	19	32	16	13	11	3	2	5	8	5	10	7	1	214	Mar 06	Thursday
66	4	5	5	17	7	1	2	3	7	11	14	32	23	8	11	7	3	7	6	10	4	5	7	5	204	ar 07	Friday
67	2	3	3	11	5	5	3	5	12	8	0	6	6	7	10	13	3	8	11	1	2	8	2	6	140	Mar 08	Saturday
68	5	3	9	6	6	2	5	3	5	1	4	7	6	4	12	4	2	10	4	4	3	5	3	8	121	ar 09	Sunday
69	5	1	3	7	6	3	4	6	18	7	21	29	20	15	21	12	2		9	4	8	2	3	0	213	ar 10	Monday
70	1	3	4	13	4	6	6	5	7	14	25	22	28	7	14	5	7	9		22	10	7	3	3	231	ar 11	Tuesday
71	10	1	2	2	8	2	0	1	6	4	10	29	25	11	17	17	3	4	5	2	6	3	2	10	180	Mar 12	Wednesday
72	6	5	9	13	14	4	7	9	17	25	23	34	18	9	1.9	10	5	7	4	5	13	7	3	10	276	Mar 13	Thursday
73	9	3	5	5	4	3		2	8	23	19	13	19	9	5	9	6	1	4	1	7	5	4	8	178	Mar 14	Friday
74	1	7	4	4	2	5	6	4	5	8	9	7	3	5	0	1	5	3	7	9	6	22	10	10	143	Mar 15	Saturday
75	1	2	4	4	9	4	6	15	10	7	11	6	2	10	9	11	10	7	5	4	4	8	9	9	167	Mar 16	Sunday
76	19	12	12	13	14	11	5	6	13	11	17	25	19	10	9	14	6	6	3	3	3	2	9	1	243	Mar 17	Monday

Table 3.5.4 (Page 3 of 4)

Day	00	01	02	03	04	05	06	07	08	8	09	10	11	12	13	14	15	16	17	18		20		22		Sum	Date	
77	7	2	6	4	1	3	0	6	4	41	18	20	23	25	9	9	9	4	9	1	5	10	7	11	4	197	Mar 18	Tuesday
78	1	2	7	4	10	5	1	5	14	41	16	24	21	22	21	11	2	11	7	6	3	9	5	8	18	233	Mar 19	Wednesday
79	3	11	15	3	12	1	4	5	5	41	12	22	25	31	17	6	3	3	6	5	2	1	6	0	5	202	Mar 20	Thursday
80	4	5	3	5	5	2	3	10		52	20	16	26	11	12	6	2	10	14	4	4	5	5	3	4	184	Mar 21	Friday
81	7	11	6	4	15	3	5	1	1	1	1	5	10	7	4	4	0	3	1	1	3	2	3	0	0	97	Mar 22	Saturday
82	3	0	15	2	1	1	3	7	72	2	2	2	2	3	2	0	2	6	0	3	3	5	7	4	4	79	Mar 23	Sunday
83	0	2	5	8	8	0	4	9	8	81	12	18	23	18	9	10	4	3	5	2	4	7	6	3	7	175	Mar 24	Monday
84	5	5	6	4	5	1	1	4	15	51	14	20	20	23	8	16	3	10	14	5	8	4	1	5	7	204	Mar 25	Tuesday
85	2	3	16	5	4	0	2	2	12	21	14	19	28	29	12	15	12	13	3	9	7	8	6	1	7	229	Mar 26	Wednesday
86	5	6	11	16	15	16	18	10	11	1	7	25	29	22	19	12	8	9	12	11	10	15	16	8	20	331	Max 27	Thursday
87	16	13	13	10	12	10	13	21	11	11	19	11	13	13	4	14	4	7	4	3	3	3	3	10	4	234	Mar 28	Friday
88	9	7	8	6	1.	10	3	2	2	2	2	4	11	7	11	3	5	2	3	0	2	0	1	2	2	103	Mar 29	Saturday
89	0	6	1	1	9	1	4	7	76	6	0	10	9	4	6	5	3	5	3	4	5	2	2	1	2	96	Mar 30	Sunday
90	0	0	1	2	1	2	1	3	34	4	3	6	5	0	0	3	0	7	5	3	7	9	5	4	10	81	Mar 31	Monday
GER	00	01	02	03	04	05	06	07	708	80	09	10	11	12	13	14	15	15	17	18		20		22	23			
Sum		816		999		821		142		225			055		0062		436		995		962		001		905			
	904		946		069		933		1586			863		3031		966		937		966		056		835		3545	Total s	sum
181	5	5	5	6	6	5	5	6	69	91	12	16	17	17	11	11	8	5	5	5	5	6	6	5	5	185	Total a	average
123	5	5	5	6	6	5	5	7	711	11	16	20	21	21	14	13	9	6	6	6	6	6	6	5	5	214	Average	e workdays
58	4	3	3	4	4	4	5	5	55	5	5	6	8	8	7	7	5	54	4	4	4	45	5	4	5	121	Average	e weekends

Table 3.5.4. (Page 4 of 4) Daily and hourly distribution of GERESS detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

APA . FKX Hourly distribution of detections

275	12	13	12	19	14	36	31	23	52	36	42	19	13	35	27	33	20	5	3	15	3	3	1	4	471	Oct	01	Tuesday
276	11	13	10	17	40	38	26	26	40	21	24	33	22	39	12	37	27	18	10	6	6	6	3	3	488	Oct	02	Wednesday
277	2	14	19	26	23	25	36	33	25	35	27	53	20	32	9	31	22	23	5	18	0	7	3	1	489	Oct	03	Thursday
278	1	11	9	17	25	25	38	26	27	36	29	47	26	43	28	24	17	13	31	19	6	12	6	7	523	Oct	04	Friday
279	7	6	19	20	13	12	21	13	19	21	23	17	40	6	23	14	9	5	6	0	5	7	1	10	317	oct	05	Saturday
280	2	3	3	7	6	9	15	21	7	7	3	8	18	9	15	17	10	17	4	5	9	8	4	5	212	Oct	06	Sunday
281	0	9	8	33	32	34	43	27	38	29	27	42	28	32	18	20	13	9	13	17	13	9	0	6	500	Oc	07	Monday
282	6	4	21	39	31	45	44	27	48	47	48	40	57	30	28	20	32	11	12	7	16	1.9	2	0	634	Oct	08	Tuesday
283	6	12	25	17	30	40	52	33	31	39	38	36	46	42	34	31	16	9	7	21	10	3	7	7	592	Oct	09	Wednesday
284	7	11	14	25	28	48	37	47	47	23	30	32	34	27	29	32	13	10	15	11	11	6	3	8	548	Oct	10	Thursday
285	4	8	10	22	14	32	27	31	53	33	27	36	27	31	31	15	13	18	10	15	14	21	5	3	500	Oct	11	Friday
286	18	2	8	8	8	10	21	14	26	34	31	13	16	26	6	4	2	4	9	15	15	17	10	10	327	Oct	12	Saturday
287	11	19	18	16	40	28	40	22	13	35	26	24	4	8	22	9	13	18	12	10	3	3	2	6	402	Oct	13	Sunday
288	3	4	16	36	25	14	30	23	24	26	25	52	27	45	13	29	9	26	19	2	5	7	2	12	474	Oct	14	Monday
289	2	5	17	8	5	23	27	29	15	20	30	29	17	31	24	19	21	17	9	10	7	3	4	18	390	Oct	15	Tuesday
290	8	7	1	10	5	11	18	18	12	34	26	43	14	17	9	9	12	13	7	4	5	7	11	4	305	Oct	16	Hednesday
291	2	7	15	18	10	28	15	7	31	23	14	16	10	13	10	12	12	4	4	6	9	3	1	8	278	Oct	17	Thursday
292	8	10	6	12	15	21	20	22	21	34	24	40	8	32	15	8	23	8	16	6	12	8	19	5	393	Oct	18	Friday
293	12	8	12	14	8	17	11	8	10	11	12	16	6	13	27	22	11	4	9	9	3	5	4	0	252	Oct	19	Saturday
294	6	4	3	1	1	8	3	0	3	0	2	0	0	0	3	1	1	4	4	1	0	9	1	0	55	Oct	20	Sunday
295	2	5	0	5		10	11	12	8	6	6	8	10	4	1	7		2	5	3	1	0	0	3	118	Oct	21	Monday
296	1	5	2	6	0	6	9	5	7	14	15	10	7	9	4	9	5	6	2	2	5	3	3	1	136	Oct	22	Tuesday
297	1	3	9	5	7	11	4	10	2	15	4	25	8	7	4	6	5	0	2	1	4	2	0	1	136	Oct	23	Wednesday
298	3	3	9	9	5	8	8	13	4	5	2	5	7	3	0	1	0	4	0	5	0	2	5	0	101	Oct	24	Thursday
299	6	2	12	1	1	9	15	13	5	16	14	30	13	16	21	15	7		17	7	9	2	5	8	252	Oct	25	Friday
300	0	0	5	8	6	15	6	3	25	26	5	13	12	11	6	13	5	5	6	10	9	1	9	7	205	Oct	26	Saturday
301	0	6	2	6	12	10	6	10	12	11	7	14	5	8	12	13	3	9	4	8	4	6	2	16	186	Oct	27	Sunday
302	3	0	14	15	17	5	29	48	38	31	22	24	33	34	22	30	9	10	18	3	+6	0	4	6	421	Oct	28	Monday
303	3	3	10	20	34	29	43	43	56	31	40	39	36	31	42	29	17	15	7	9	5	6	3	2	553	Oct	29	Tuesday
304	6	1	6	14	24	15	57	43	40	30	27	28	36	21	45	24	26	18	24	0	8	9	14	1	517	Oct	30	Wednesday
305	0	3	9	19	39	26	38	37	42	17	27	25	42	57	29	24	17	19	26	18	11	11	12	8	556	ct	31	Thursday
306	0	2	4	15	29	9	28	49	21	36	43	48	32	24	25	23	25	16	11	9	18	5	8	11	491	Nov	01	Friday
307	3	4	7	6	12	8	6	24	9	14	23	6	18	11	9	7	17	18	7	4	3	1	1	0	218	Nov	02	Saturday
308	0	1	2	10	5	14	19	17	14	10	9	5	8	15	23	11	10	6	9	5	3	11	4	15	226	Nov	03	Sunday
309	1	1	22	20	16	41	26	33	18	31	20	17	20	41	21	17	22	18	18	3	11	12	11	4	444	Nov	04	Monday
310	5	13	19	18	15	17	33	18	36	23	21	23	29	41	29	22	20	23	7	18	14	6	3	0	453	Nov	05	Tuesday
311	2	5	11	11	21	18	43	35	31	28	43	44	28	38	17	14	15	11	13	12	10	7	2	3	462	Nov	06	Wednesday
312	6	7	4	11	10	15	34	20	20	25	19	6	20	7	12	14	0	11	7	6	13	2	2	7	278	Nov	07	Thursday
313	0	3	9	7	1	11	14	12	12	8	7	32	6	11	17	7	23	7	13	0	4	5	4	3	216	Nov	08	Friday
314	6	2	6	7	6	5	14	12	26	18	11	12	22	7	8	12	15	11	8	6	5	2	0	0	221	Nov	09	Saturday
315	2	1	11	6	9	5	19	11	17	14	14	18	12	13	13	8	6	2	10	14	4	6	1	2	218	Nov	10	Sunday
316	6	10	4	8	6	6	3	11	8	10	5	10	21	6	0	4	1	0	0	0	0	0	3		125	Nov	11	Monday
317	0	1	0	1	2	1	2	4	7	4	7	9	9	5	1	1	0	8	0	1	1	5	0	5	74	Nov	12	Tues day
318	1	3	2	3	1	5	8	8	14	9	4	8	14	6	1	1	2	2	6	3	4	2	4	,	113	Nov	13	Wednesday
319	5	2	4	2	4	4	5	14	20	7	4	31	17	8	7	3	3	0	7	4	1	5	2	2	161	Nov	14	Thursday
320	0	3	4	14	0	4	1	14	14	12	30	14	10	11	1	14	1	4	5	2	4	8	6	4	180	Nov	15	Friday
321	8	10	3	4	2	2	3	10	3	9	12	3	1	3	3	6	4	4	1	5	2	3	8	5	114	Nov	16	Saturday
322	3	5	1	7	3	5	10	3	2	4	3	3	2	3	4	4	3	6	5	1	1	,	6	7	97	Nov	17	Sunday
323	1	5	6	6	3	3	16	13	11	7	13	20	15	9	11	10	5	2	8	6	8	9	10	4	201	Nov	18	Monday
324	12	13	17	16	12	9	13	22	29	23	37	30	22	18	20	6	9	26	21	27	23	7	7	10	429	Nov	19	Tuesday
325	11	5	18	7	14	5	9	11	20	8	34	18	21	3	9	4	3	2	10	5	5	6	1	5	234	Nov	20	Wednesciay
326	7	0	2	7	8	0	10	-	12	7	12	14	11	9	6	5	4	2	1	8	6	3	6	0	148	Nov	21	Thursday
327	0	3	1	6	0	7	6	12	5	15	19	16	15	3	2	13	6	11	4	7	3	1	0	1	156	Nov	22	Friday
328	0	2	12	9	2	6	2	11	13	2	3	6	8	8	1	5	3	6	3	5	3	8	4	6	128	Nov	23	Saturday
329	0	2	3	8	1	1	14	6	1	2	12	5	8	1	4	6	4	8	4	0	0	6	2	5	103	Nov	24	Sunday
330	1	1	9	6	12	5	6	8	5	9	3	7	8	7	8	4	8	8	1	4	2	2	4	8	136	Nov	25	Monday

Table 3.5.5 (Page 1 of 4)

APA .FRX Hourly distribution of detections

D

331	7	7	8	3	8	9	18	8	9	9	23	20	7	4	2	4	0	1	9	6	2	8	7	8	287	Nov 26	Tuesday
332	13	9	16	13	12	12	23	23	24	28	27	29	46	19	13	13	11	10	4	21	29	63	34	26	518	Nov 27	Wednesday
333	17	19	15	25	33	20	33	33	32	25	33	41	19	26	24	21	15	38	26	20	14	21	39	41	630	Nov 28	Thursday
334	27	30	25	9	20	15	21	35	42	17	36		34	1211	1471	181	64	39	103	75	70	661	131	03	1696	Nov 29	Friday
335	81	51	30	21.	10	6	2	19	7	4	14	8	3	5	7	2	0	1	3	2	4	4.	2	0	286	Nov 30	Saturday
336	2	6	1	2	6	1	2	5	2	4	0	3	10	8	3	5	0	2	0	2	2	6	1	12	85	Dec 01	Sunday
337	4	0	3	3	9	1	9	12	11	6	13	13	11	0	1	6	5	1	6	6	2	6	8	3	139	Dec 02	Monday
338	0	2	6	10	7	6	4	22	17	14	30	24	11	5	7	3	1	7	0	2	1	4	0	5	188	Dec 03	Tuesday
339	4	1	9	3	6	3	10	25	44	15	18	15	50	2	4	5	1	3	7	3	6	0	1	3	238	Dec 04	Wednesday
340	3	2	3	6	4	2	7	8	25	3	19	3	8	7	4	7	0	12	3	1	3	2	7	7	146	Dec 05	Thursday
341	8	11	14	3	5	2	7	35	7	12	21	15	55	11	5	5	5	4	3	9	6	2	4	9	258	Dec 06	Eriday
342	5	2	6	8	3	11	7	5	3	6	22	4	13	5	10	2	4	3	3	2	1	2	3	1	131	Dec 07	Saturday
43	3	8	10	6	6	6	3	8	3	3	4	3	6	1	3	10	11	8	14	6	19	6	2	5	154	ec 08	Sunday
344	3	6	6	1	9	4	4	20	14	15	19	24	9	11	7	5	4	9	6	5	6	3	6	7	203	Dec 09	Monday
345	5	0	4	4	7	5	7	12	56	14	73	34	41	7	6	11	15	10	31	75	80	15	9	4	525	c 10	Tuesday
346	4	7	5	6	17	10	10	37	36	20	21	16	17	14	9	12	16	10	10	12	7	2	2	5	305	ec 11	Wednesday
347	8	3	9	2	5	5	5	4	3	3	5	3	8	8	7	6	7	5	10	5	4	10	14	28	167	ec 12	Thursday
348	25	15	19	14	20	25	22	28	18	21	16	23	20	23	10	12	12	10	2	4	6	2	1	0	348	ee 13	Friday
349	9	1	2	4	11	10	4	7	16	6	9	1	2	6	7	14	12	1	7	12	8	7	6	9	171	Dec 14	Saturday
350	2	3	7	3	4	2	9	8	20	10	12	16	11	14	5	5	5	0	2	3	12	3	1	6	163	Dee 15	Sunday
351	0	1	8	1	5	2	4	1	18	10	22	18	14	3	2	9	14	5	1	7	3	2	2	13	166	ec 16	Monday
352	17	6	6	9	3	2	2	5	1	3	10	15	11	11		8	7	2	4	21	10	5	3	2	168	ce 17	Tuesday
353	9	21	7	9	4	4	5	10	13	13	18	10	20	11	8	8	14	6	5	0	4	3	6	5	213	ec 18	Wedresday
354	2	9	3	8	12	26	20	28	32	34	55	37	33	48	27	39	46	37	34	31	46	42	35	28	712	ce 19	Thursday
355	29	29	46	54	57	35	17	27	18	16	17	18	22	2	9	8	2	4	7	7	9	12	7	4	456	Dec 20	Friday
356	2	5	4	1	6	1	2	4	26	12	11	1	4	6	5	5	3	12	12	6	2	0	5	3	138	Dec 21	Saturday
357	3	2	13	2	3	9	2	2	10	3	10	6	10	5	3	19	4	7	4	15	15	10	12	7	176	cc 22	Sunday
358	7	11	5	12	12	9	7	11	10	16	19	13	21	10	10	14	12	9	10	12	18	22	14	11	295	ec 23	Monday
359	14	9	13	18	20	17	22	16	31	14	24	19	31	31	18	24	19	17	19	21	18	21	25	15	476	ec 24	Thesday
360	18	12	23	21	27	22	21	19	24	15	17	7	12	7	3	21	9	15	3	13	4	6	5	2	326	Dec 25	Wednesday
361	5	0	1	5	7	5	7	11	8	10	16	19	23	42	51	41	7	12	2	4	9	8	6	6	305	cec 26	Thursday
362	9	9	10	8	11	7	7	10	8	32	12	11	15	9	16	11	10	14	8	9	10	15	15	10	276	27	Friday
363	5	3	3	5	8	3	6	6	11	28	21	35	27	7	5	7	5	5	5	1	3	3	0	1	203	Dec 28	Saturday
364	4	2	4	3	5	0	5	2	4	2	10	12	20	6	5	7	3	1	3	13	6	2	2	7	128	Dec 29	Sunday
365	5	5	3	10	5	6	5	6	12	7	1	11	8	4	1	31	17	0	5	5	5	7	4	2	165	30	Monday
366	0	0	0	0	0	0	0	0	0	1	6	6	17	10	3	5	11	4	5	16	7	8	13	2	114	ec 31	Tuesday
1	3	2	3	4	4	1	3	1	2	7	4	9	3	1	1	6	0	1	2	3	2	3	4	1	70	an 01	Hednesday
2	3	4	2	2	1	2	3	2	0	9	2	10	3	1	4	6	5	7	7	0	5	2	3	3	86	an 02	Thursday
3	1	68	48	5	23	20	30	31	12	15	10	3	9	12	4	7	5	13	10	6	. 8	8	9	10	367	an 03	Friday
4	12	7	3	1	8	2	4	9	3	4	8	2	0	9	5	10	8	2	1	3	6	4	8	3	122	an 04	Saturday
5	2	4	5	8	7	3	3	7	11	4	6	4	17	11	5	7	8	9	10	1	14	15	9	9	179	Jan 05	Sunday
6	9	11	15	15	13	15	12	14	17	17	10	4	21	7	11	3	6	5	5	4	2	8	7	1	232	an 06	Monday
7	1	3	11	3	6	2	4	6	1	1	3	4	2	8	5	5	4	3	10	3	5	4	9	5	108	an 07	Tuesday
8	8	13	14	7	5	9	13	10	24	19	23	15	14	10	12	15	11	7	5	5	8	10	5	11	273	Jan 08	Wednesday
9	24	4	3	3	4	2	3	3	14	7	4	7	6	14	7	5	2	8	6	9	4	8	4	14	165	an 09	Thursday
10	4	4	23	5	3	15	14	11	20	20	12	3	16	11	9	10	2	1	4	4	8	4	10	4	217	an 10	Friday
11	8	6	12	5	4	8	4	6	3	25	9	24	14	5	12	9	8	8	10	7	12	7	7	6	219	ar 11	Saturday
12	13	11	2	4	7	10	13	13	11	4	13	8	16	7	11	9	7	13	13	8	6	8	4	3	214	an 12	Sunday
13	7	4	4	16	6	10	10	12	17	5	16	9	7	4	2	2	10	3	2	2	9	8	5	2	172	an 13	Monday
14	6	5	1	7	5	9	4	11	9	10	5	20	10	6	15	9	2	2	11	6	5	5	3	5	171	Jan 14	Thesday
15	10	3	7.	31	40	51	18	7	10	8	23	9	20	27	2	2	1	1	7	3	7	16	27	14	344	an 15	Wednesday
16	10	4	8	13	9	8	8	16	8	14	6	11	26	23	6	9	9	20	14	48	46	36	28	17	397	Jan 16	Thursday
17	12	18	5	20	7	8	12	15	16	21	20	15	31	7	5	5	9	4	5	4	5	9	7	10	270	an 17	Friday
18	12	9	14	8	10	7	9	18	12	29	28	13	12	2	7	3	4	11	6	61	25	10	3	4	317	an 18	Saturday
19	8	3	11	10	9	6	7	3	8	7	7	10	7	12	15	-	8	7	9	5	2	10	7	13	192	n 19	Sunday
20				12	6	11	6		10	1	6	6	9	9	6	7	15	5	4								

Table 3.5.5 (Page 2 of 4)

APA. FRX Hourly distribution of detections

Table 3.5.5 (Page 3 of 4)

Table 3.5.5.(Page 4 of 4) Daily and hourly distribution of Apatity array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day

SPI .FKX Hourly distribution of detections

 $\begin{array}{llllllllllllllllllllllllll}285 & 16 & 18 & 20 & 15 & 28 & 19 & 14 & 17 & 12 & 33 & 32 & 22 & 18 & 25 & 33 & 13 & 20 & 32 & 24 & 27 & 25 & 33 & 36 & 45\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllllllllll}287 & 29 & 32 & 29 & 44 & 26 & 32 & 28 & 45 & 35 & 29 & 40 & 35 & 32 & 25 & 29 & 16 & 17 & 24 & 13 & 19 & 16 & 25 & 20 & 17\end{array}$

 $\begin{array}{lllllllllllllllllllllllll}299 & 29 & 18 & 32 & 23 & 22 & 36 & 23 & 31 & 13 & 17 & 23 & 21 & 25 & 41 & 30 & 35 & 26 & 31 & 38 & 41 & 47 & 20 & 48 & 31\end{array}$ $\begin{array}{llllllllllllllllllllllllll}300 & 44 & 10 & 18 & 33 & 28 & 36 & 22 & 24 & 31 & 17 & 19 & 18 & 21 & 13 & 9 & 7 & 18 & 2 & 14 & 16 & 15 & 21 & 5 & 7\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllllllllll}304 & 5 & 28 & 28 & 11 & 23 & 21 & 18 & 8 & 9 & 19 & 14 & 10 & 11 & 18 & 16 & 9 & 28 & 13 & 27 & 13 & 22 & 13 & 16 & 28\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllll}305 & 28 & 21 & 22 & 18 & 29 & 19 & 27 & 29 & 16 & 12 & 38 & 19 & 30 & 28 & 29 & 34 & 27 & 26 & 31 & 29 & 28 & 28 & 17 & 36\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}306 & 17 & 47 & 31 & 42 & 37 & 40 & 26 & 29 & 30 & 22 & 32 & 56 & 32 & 54 & 41 & 33 & 28 & 39 & 52 & 24 & 41 & 44 & 49 & 78\end{array}$
 $\begin{array}{llllllllllllllllllllllllllll}308 & 45 & 14 & 39 & 21 & 29 & 34 & 38 & 38 & 29 & 47 & 53 & 16 & 32 & 21 & 23 & 38 & 32 & 41 & 56 & 35 & 33 & 31 & 34 & 20 \\ 309 & 25 & 23 & 44 & 22 & 14 & 41 & 32 & 14 & 21 & 36 & 29 & 29 & 29 & 35 & 27 & 27 & 39 & 38 & 29 & 47 & 26 & 22 & 26 & 25\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}310 & 22 & 32 & 33 & 47 & 33 & 27 & 47 & 33 & 23 & 22 & 57 & 26 & 27 & 59 & 41 & 23 & 53 & 38 & 30 & 22 & 29 & 46 & 47 & 29\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllll}312 & 73 & 20 & 39 & 28 & 23 & 30 & 41 & 21 & 30 & 32 & 39 & 16 & 19 & 38 & 26 & 8 & 25 & 12 & 20 & 29 & 14 & 19 & 41 & 28\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}9 & 28 & 11 & 19 & 19 & 40 & 36 & 16 & 27 & 25 & 12 & 17 & 25 & 20 & 15 & 20 & 26 & 36 & 22 & 23 & 36 & 21 & 26 & 21\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}24 & 24 & 19 & 42 & 34 & 29 & 35 & 34 & 53 & 32 & 23 & 25 & 67 & 49 & 32 & 24 & 53 & 34 & 30 & 33 & 39 & 19 & 18 & 13\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}28 & 22 & 43 & 30 & 38 & 39 & 36 & 15 & 37 & 18 & 19 & 24 & 18 & 28 & 15 & 21 & 10 & 15 & 22 & 18 & 40 & 31 & 25 & 16\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}25 & 47 & 19 & 33 & 37 & 40 & 37 & 40 & 18 & 43 & 25 & 41 & 40 & 34 & 38 & 23 & 46 & 45 & 33 & 44 & 42 & 25 & 44 & 71\end{array}$ $\begin{array}{llllllllllllllllllllllll}29 & 41 & 22 & 52 & 29 & 27 & 33 & 30 & 37 & 39 & 34 & 29 & 18 & 14 & 33 & 29 & 46 & 51 & 37 & 33 & 17 & 31 & 18 & 37\end{array}$ $\begin{array}{llllllllllllllllllllllll}32 & 18 & 31 & 17 & 30 & 23 & 34 & 35 & 36 & 48 & 35 & 28 & 34 & 16 & 29 & 41 & 31 & 15 & 30 & 22 & 25 & 28 & 25 & 24\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}20 & 17 & 33 & 32 & 29 & 33 & 35 & 32 & 36 & 48 & 17 & 24 & 23 & 16 & 37 & 23 & 25 & 23 & 29 & 14 & 20 & 28 & 24 & 16\end{array}$ $\begin{array}{lllllllllllllllllllllll}28 & 29 & 34 & 28 & 28 & 32 & 23 & 21 & 23 & 12 & 21 & 18 & 7 & 7 & 12 & 17 & 16 & 16 & 22 & 12 & 19 & 15 & 9 \\ 21\end{array}$ $\begin{array}{llllllllllllllllllllllll}13 & 15 & 14 & 6 & 28 & 21 & 15 & 11 & 13 & 35 & 19 & 30 & 22 & 8 & 17 & 20 & 20 & 18 & 23 & 31 & 24 & 27 & 21 & 34\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}39 & 35 & 17 & 27 & 23 & 29 & 12 & 8 & 13 & 3 & 11 & 8 & 11 & 17 & 26 & 9 & 11 & 11 & 15 & 19 & 29 & 26 & 20 & 9\end{array}$ $\begin{array}{llllllllllllllllllllllll}19 & 44 & 32 & 18 & 28 & 28 & 10 & 19 & 10 & 24 & 11 & 26 & 39 & 24 & 19 & 25 & 24 & 19 & 21 & 27 & 30 & 18 & 33 & 31\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}37 & 21 & 33 & 42 & 32 & 32 & 23 & 22 & 55 & 34 & 36 & 39 & 41 & 34 & 10 & 22 & 19 & 18 & 15 & 11 & 26 & 26 & 27 & 25\end{array}$ $\begin{array}{rlllllllrllllllllllllllllll}37 & 21 & 33 & 42 & 32 & 32 & 23 & 22 & 55 & 34 & 36 & 39 & 41 & 34 & 10 & 22 & 19 & 18 & 15 & 11 & 26 & 26 & 27 & 25 \\ 15 & 26 & 28 & 44 & 12 & 9 & 22 & 7 & 21 & 16 & 20 & 29 & 33 & 33 & 33 & 22 & 30 & 44 & 39 & 29 & 38 & 48 & 36 & 69\end{array}$

701 Oct 25 Friday 448 Oct 26 Saturday 372 Oct 27 Sunday 866 Oct 28 Monday 663 Oct 29 Tuesday 408 Oct 30 Wednesday 621 Oct 31 Thursday 924 Nov 01 Friday 981 Nov 02 Saturday 799 Nov 03 Sunday 700 Nov 04 Monday
846 Nov 05 Tuesday 758 Nov 06 Wednesday 671 Nov 07 Thursday 550 Nov 08 Friday 786 Nov 09 Saturday 608 Nov 10 Sunday 890 Nov 11 Monday 766 Nov 12 Tuesday 687 Nov 13 Wednesday 634 Nov 14 Thursday 470 Nov 15 Friday 485 Nov 16 Saturday 428 Nov 17 Sunday 579 Nov 18 Monday 680 Nov 19 Tuesday

 $\begin{array}{lllllllllll}15 & 14 & 14 & 33 & 655 & \text { Nov } 23 & \text { Saturday }\end{array}$

Table 3.5.6 (Page 1 of 4)

SPI . FKX Hourly distribution of detections

						14		36		23	28	1536	19								5			
333	14	42	24	33	2738	39	2	15	32	37	42	65	39	27	33	46	36	30	39	26	20	782	28	
334	18	21	16	2431	1527	22	24	23	33	11	21	2417	10	26	23	34	38	22	48	42	29	599	29	Friday
335	25	3	22	1624	33	29	27	59		24	24	$35 \quad 35$	26	13	24	26	27	35	27	36	18	65	30	rar
6	28	21	31	2827	35	30	28	39	33	37	42	3432	36	38	34	34	45	40	35	40	37	820	01	
337	50	30	28	2749	4227	25	2	35	18	18	24	2625	18	33	32	36		25	34	32	26	94	02	
338	40	27	21	4025	3523	26	51	42	37		22	5355	41	37	44	31	24	35	32	20	29	813	3	Tuesday
339	16	41	31	3534	31	36	41	39	28	34	25	3022	30	1.9	22	31	6	21	29	31	35	713	4	
340	32	28	21	35	16	26	19	35	32	20	30	36113	48	40	43	28	29	5	37	35	44	846	05	
341	30	21	40	2534	38	37	28	48	12	27	37	1	26	37		34	22	35	42	26	23	751	6	Friday
342	33	27	33	20	2528	18	13	14	33	16	38	3247	33	31	36	48	19	13	16	33	28	66	7	-
343	37	32	44	2926	2728	28	27	19	41	31	43	3639	29	36		34	28	43	54	37	30	819	8	
344	36	50	2	28	22	30	2	23		33	29	3536	42	39	6	37	45	42	48	24	36	823	ec 09	
345	52	3	33	5237	7552	67	75	66	50	42	34	7159	58	41	63	43	51	48	62	60	44	127	0	uesday
346	54	38	56	4275	5860	44	39	23	47		24	34			40	40	39		64	38	55	1122	ec 11	rednesday
347	39	43	6	3848	5	49	3	40	46		30	2523					8	24		23	7		2	
348	25	22	7	31	28	42	46	30			13	2027		25	3		0	50	38	31	36		13	
49	46	26	22	39	19	41	31	39	36	36	30	44	20	21	17	19	36	47	27	41	47	8	4	
350	34	34	3	2726	3329	32	35	36	26	45	46	33	3	48	24	52	37	44	34	62	42	905	5	
51	49	50	47	3933	3954	55	4	47	44	25	39	5034		39	64	36		32	60	77	55	113	6	
	58			$78 \quad 33$	5556	55		45			56	5966		54	52	61	45	42	51	52	60	1298	7	
353	34	38	30	3038	46	49	46	35	29	38	61	51	47	34	35	49	35	43	43	28	34	97	8	
354	44	35	40	5053	514	5	50	35	54	40	47	3050	49	64	42	66	53	59	43	40	46	11	9	
5	50	55	57	8465	5660	55	56	70	69			4455				5		65	75	51		1414	0	
	87	63	5	79	66	4	76	68	48	71	69	51119	64	74	70	39	52	59	47	40	59	1529	1	drd
357	48	48	36	4048	43	29	20	27	4	35	38	46		38	45	29	41	33	36	24	40	2	c 22	
58	41	31	46	35	4742	47	43	49	52	70	53	44	62	73	49	48	54	74	38	37	51	11	23	ay
5	48	49	45	4144	312	29	28	29			38	3132						16		9	30		4	y
60	33	7	42	2749	2219	26		29	25	41	26	3924	29	35		32		32	36	41	33	739	25	day
361	21	22	11	42	2840	3	34	26	49	59	3	3227	19	23	43	31	29	40	29	37	33	774	6	sday
	43	41	30	46	4447	28	35	32	32	45	44	3737		37	34			5	45	45	51	100	7	y
	53	37	32	20	303		33	4	49	50	37	3659	43	54	26	58		43	41	37	7	1001	28	Saturday
364	38	29	28	2934	26	23	28	40	32	28	40	2625	24	37	38	15	42	17	16	18	37	88	,	¢
365	20	2	25	44	1	24	28	34	26	32	35	2222		18	15	19	17			18			0	
366	7	4	10	16	1	22		29	14	14	28	1519	33	28	21	27	20	5	12	15	18	399	31	uesday
1	28	29	7	2	14	1	26	1	10	4		28				20	39	33	25	42	33	30		day
2	33	33	25	$30 \quad 29$	2	48	42	42	40	26	25	918		26			43	46		21	25			da
3	29	34	44	35	30	20	41	54	43	62	44	2725	37	31	26	35	23	15	33	32	35		03	ay
4	27	1	2	261	24	25	44	30	43	37	27	2626	27	3	12.	29		10	24	30	29		Jan 04	da
5	28	41	37	3358	40	38	39	28	24	22	44	3820	13	30	14	31		30	16	36		2	5	ay
6	19	19	3	212	19	15	27	41	25	60	42	27	22	26				26	34	16	26	46	6	Monday
	60	33	36	48	1530	15	39	21	49	29	37	3928	38	52	45	46	20	21	38	36	36	53	Jan 07	Tuesday
8	30	45	26	5119	262	17	13	14	11	11	19	10	9	36	12	23	15	16	15	24	9	506	Jan 08	day
9	14	20	19	1710	1410	17	19	1	11	9	25	2727	20	20	39	27	25	20	28	22	23	480	Jan 09	ursday
10	18	28	2	2537	29		43	54		56	54	3559	64	58		2		48	58	51	70	1084	10	day
11	33	64	74	5065	7898	88	88	83	93	80			90	93	89	91		01			94			rday
12					81115		128				07			125						13	89	2535	Jan 12	Sunday
13	100	73	57	5325	8460	49	54	7	54	41	53	4652	55	63	54	51	57	32	30	29	29	1208	3	Monday
14	36	27	24	2630	1822	14	31	14	11	18	14	2028	13	21	8	12	1	20	37	13	18	486	14	uesday
15	23	36	28	3726	27	25	19	16	26	5	17	2726	16	24	27	33	19	19	18	8	10	55	5	duesday
16	14	21	38	2452	4947	36	50	93	72	48	46	4237	30	63	51	79	67	50	73	71	60	121	16	rhursda
17	49	54	72	3664	4366	62	46	55	62	84	70	6143	55	72	58	56	34	37	50	54	44	1327	17	ay
18	43	73	78	5237	4627	46	48	33	44	35	46	6426	62	33	36	33	38	26	37	22	22	1007	n 18	aturday
19	33	18	29	4129	2729	19	8	18		22		129				32								

Table 3.5.6 (Page 2 of 4)
. FKX Hourly distribution of detections

	10	20	12	14	18	13	12	10	30	30	23	18	19	24	26	7	13	33	26	34	20	50				Jan 21	
	19	18	29	25	19	17	31	27	43	26	20	35	24	23	13	13	12	8	49	30	24	41	31	32	609	22	Wednesday
23	29	20	50	52	56	48	36	49	31	25	44	30	40	48	40	60	36	29	22	22	26	31	57	25	906	23	y
24	40	36	39	35	39	46	43	25	22	22	18	26	25	33	30	25	15	39	18	27	30		9		51	, 24	Friday
25	0	0	0	0	0	0	0		0	19	18	23	17	13	27	5	1	2	0	0	0				132	25	Saturday
26	0		0					0	0	9	11	2	1	3	7	7	3		4		17	11	12	8	102	6	
27	11	4	13	9	6	9	6	20	13	7	11	20	29	5	14	24	22	10	19	8	14	27	21	27	49	7	y
28	38	14	16	18	10	21	24	8	22	19	17	19	32	14	18	24	17	32	30	15	24	29	22	26	509	28	Tuesday
29	25	11	26	16	25	15	15		19	25	15	18	24	14	16	2	27	16	22	22	19	33	22	24	479	29	-sday
30	36	1	19	28	5	25	22	1	24	2	43	15	20	14	28	12	37	16	43	17	9	16	15	11	515	0	
31	11	16	14	6	12	2	34	12	29	24	29	11	17	47	30	30	26	28	11	25	39	37	16	16	570	31	+
32	3	21	18	22	25	17	23	21	18	14	45	31	12	36	21	12	22	14	13	19	32	38	27	18	522	01	
33	30	14	11	15	19	15	21	18	15	12	17	26	14	23	29	23	14	13	17	21	25	13	10		424	2	
	49	1	17	20	2		1	19	22	16	8	15	32	26	19	21	20		15		13	23	14	14	457	3	
35	2	1	18	15	2	33	21	15	23	12	39	26	32	53	44	37	15	42	30	21	34	34	35	47	92	4	da
36	42	36	63	43	34	37	32	23	34	19	39	49	21	40	37	36	36	39	28	29	16	22	33	24	812	05	Wednesday
37	13	24	45	17	39	32	27	31	40	43	42	41	33	44	42	43	42	62	46	53	59	60	13	51	942	06	day
38	56	50	62	64	67	48			66		62	56	47	58	48	85	81	78	80	89	71	0	83	87	163	Feb 07	
3	70	96	80	55	66	59	84	69	73	78	83	68	73	62	61	76	55	64	67	72	63	70	66	7	1667	08	Saturday
40	59	45	56	43	50	48	52	35	74	86	74	61	6	61	61	64	59	60	54	52	65	52	60	48	1380	09	
41	34	52	53	38	37	47	42	44	27	47	46	36	25	42		25	26	4	28	30	29	30	19	5	879	10	
	30	11	26	23	24	32	41	46	24	49	25	33	32	28	24	13	18	33	31	21	42	20	32	38	696	1	-
43	27	4	27	16	27	34	34	33	31	46	31	19	40	33	55	2	40	30	28	27	30	16	34	22	707	b 12	sday
44	22	10	18	16	0	0	0	0	34	36	41	36	4	25	26	25	28		29	29	22	24	40	33	560	13	day
	39	30	2	16	17	14	29	29	6	17	17	27	30	18	24	1	17		15	22	7	20	19	24	520	4	
46	22	14	14	39	22	36	43	35	20	17	19	26	32	51	18	19	23	11	24	46	31	36	36	27	661	5	析
47	15	20	24	21	2	30	38	43	33	33	12	36	19	14	16	27	45	25	3	61	53	49	49	12	72	16	
48	16	10	18	27	29	2	16		18	1	2	47	30	2		27	29	4	21	7	16	8	24			17	Monday
49	16	14	24	12	3		14	14	10	20	10	20	14	1	12	1	10	8	3	23	14					18	Y
	18	15	10	6	19	19	13		12	34	2	33	24	27	21	30	21	22	15	19	22	45	37	23	522	19	day
	36	34	31	25	40	48	10	15	21	13	10	16	33	27		21	20		14	20	12	16	11	17	523	20	sday
	3	19	8	20	19	15	37	30	26	44	20	24	2	30	16	20	8	32	24	25	10	18	15	13	525	1	
53	11	18	9	11		18	11	13	21	30	19	34	16	23	20	17	2	16	26	16	14	24	0	35	45	Feb 22	-
54	34	26	20	9	9	15	22	18	8	19	13	27	29		17	18		8	25	14	39	9	26	13	485	3	Sunday
55	6	26	19	10	16	13	19	11	17	18	6	20	17	11	8	4	20	23	12	30	23	36	6		41	24	
5	14	22	12	12	20	1	22	13	2	29	12	16	10	11	22	25	11	15	12	13	46	20	11	15	423	5	Y
5	20	23	13	33	17	24	16		13	34	25	5	8	12		19	3	15	25	24	31	0	20	26	486	26	esday
	32	13	19	12	1	24	25	20	12	17	23	29	12	14	29	30	14	12	21	8		34	14	18	472	Feb 27	艮ursay
59	26	32	8	13	1	38	15	18	21		18	31	39	40	33	32	25	8	30	0	3	24	28	10		Feb 28	day
60	18	22	32	16	19	29	22	15	18	7	15	14	1	1		15	4	41	2	16	16	9	14	5	388	Mar 01	-
61	12	15	12		10		2		14	12	8	11	23	17	19		17	6	13	6	37	24	25	16	335	Mar 02	Sunday
62	24	15	19	9	9		18		36	29	15	57	33		22	28	12		23	18	19	35	36	21	560	3	Monday
63	24	14	18	26	11	8	19	19		10	10	3	16	26	30	11	20	15	7	3	9	481		88		Mar 04	ay
64	36	13	10	20	10	27	20	1	9	14	20	33	32	22		10		5	14	20	28	18	12	12	43	5	sday
65	25	18	17	11	11	6	19	19	14	8	21			16		12	6	14	12	6	9	6	18	9	294	06	hursday
66		25		29	6	10	20	15	17	15	11			10		12	16	15	25	18		9		11	306	07	,
67		15	8	10	11	18	11		3	3	8	7	3	7	1	9		5	4	3	1	8	4	10	16	0	aturday
68	5	4	5	10			12	3	8	14	6	14	26	4	14	13		34	33	21	21	15	16	25	326	Mar 09	y
69	26	22	10	12	13	18	22	19	19	28	7	26	17	11	14	3	5	2	4	17	34	16	24	17	386	10	Monday
70	13	14	5	12	15	23	21	46	27	18	16	17	8	18	35	13	27	19	17	36	33	15	19	16	483	11	day
71	28	32	15	26	28	25	34	14	18	16	18	14	25	12	14	9	12	18	23	13	19		29	19		12	rednesclay
72	25	35	27	29	17	27	23	22	23	24	23	25	19	40	43	16	21	38	44	28	30	28	22	25	654	13	rhursday
73	13	15	36	12	27	37	20	30	40	9	7	22	14	18	14	30	20	56	15	10	35	13	22	8	523	14	ciday
74	25	10	24	31	14	28	20	12	20	30	17	19	24	22	10	6	27	32	10	11	15	22	12	14	455	15	Saturday
5	15	24	25	18	33	19	38	17	15	30	16	9	15	7	16	13	18	35	16	28	16	20	21	29	493	16	Sunday
76	12	21	11	21	1	27	22	38	36	20	34	22	11	16	45	34	39	14	15	42	52	26	7	19	606	Mar 17	Monday

Table 3.5.6 (Page 3 of 4)

Table 3.5.6. (Page 4 of 4) Daily and hourly distribution of Spitsbergen array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day.

HFS . FKX Hourly distribution of detections

275	7	8	5	3	0	4	4	3	6	6	10	20	9	6	13	12	19	6	3	5		4	4	0	164	Oct		Tuesday
276	3	4	1	1	5	7	6	4	8	19	1.6	18	17	11	16	2	15	10	8	2	1	0	14	1	189	Oct	02	Wednesday
277	8	5	6	5	4	5	5	8	3	2	9	10	11	19	16	4	7	5	8	5	1	4	2	5	157	Oct	03	Thursday
278	7	8	5	8	2	4	7	5	7	2	4	7	11	7	6	9	4	11	0	1	1	3	5	2	126	Oct	04	Friday
279	2	6	6	3	1	-	6	12	12	4	7		2	14	1	3	7	7	1	7	7	3	1	2	129	Oct	05	Saturday
280	3	1	3	6	3	9	7	7	7	4	3	17	6	4	8	12	6	1	4	2	9	7	1	7	137	ct	06	Sunday
281	5	8	4	6	5	3	4	9	1	6	10	12	9	10	21	7	9	2	5	2	4	0	1	2	145	Oct	07	Monday
282	0	2	4	6	2	3	8	22	21	4	13	11	11	13	6	1	7	3	2	3	7	2	6	1	158	Oct	08	Tuesday
283	3	2	7	7	5	4	16	6	7	17	12	8	19	16	23	19	19	4	2	17	17	3	4	3	240	Oct	09	Wednesday
284	12	19	0	4	1	5	4	2	8	9	6	12	23	12	16	14	9	11	8	4	5	3	9	2	198	Oct	10	Thursday
285	10	12	5	0	7	0	0	8	21	8	4	11	15	18	7	2	2	4	4	2	6	0	7	2	155	ct	11	Friday
286	12	0	5	2	1	5	3	9	6	9	6	11	5	2	2	0	0	0	0	4	11	2	1	2	98	Oct	12	Saturday
287	3	6	0	5	1	1	14	4	3	3	7	13	2	9	9	6	7	5	2	3	4	13	7	1	128	c	13	Sunday
288	7	0	0	1	5	9	4	4	3	9	25	19	6	10	3	10	2	3	1	6	4	14	5	13	163	ct	14	Monday
289	4	2	3	4	3	7	3	7	15	20	4	40	12	8	38	25	2	3	3	1	16	2	3	10	225	ct	15	Tuesday
290	1	3	6	4	8	4	1	24	40	11	48	9	10	11	14	4	6	8	2	0	4	2	1	1	222	Oct	16	Wednesday
291	1	1	1	12	13	2	2	2	17	4	19	18	16	8	5	10	11	7	1	7	2	7	4	0	170	ct	17	Thursday
292	5	2	9	7	8	1	5	2	3	18	6	20	8	2	6	4	7	4	0	12	10	2	1	1	143	ct	18	Friday
293	1	7	3	5	7	20	1	5	12	11	11	7	10	12	21	18	6	3	4	5	5	7	1	2	184	Oct	19	Saturday
294	3	0	2	2	5	21	8	6	10	7	6	9	16	10	8	13	9	13	6	12	10	3	0	1	180	ct	20	Sunday
295	3	1	3	5	6	4	15	7	11	28	18	29	29	16	26	9	8	1	10	9	7	0	5	4	254	ct	21	Monday
296	2	9	3	5	6	4	15	7	7	11	17	20	10	24	21	5	9	2	2	4	1	5	11	5	205	at	22	Tuesday
297	1	0	2	4	7	4	2	1	21	7	19	31	28	25	13	16	7	2	7	2	4	4	3	3	213	ct	23	Wednesday
298	1	6	2	16	8	8	9	2	12	8	10	17	6	14	21	10	7	9	2	9	1	3	12	1	194	ct	24	Thursday
299	16	6	2	6	1	6	8	6	3	16	15	18	12	6	2	2	6	5	4	2	4	1	6	0	153	ct	25	Friday
300	3	3	2	3	10	7	4	7	7	4	12	6	10	7	12	4	9	6	3	1	5	2	0	4	131	Oct	26	Saturday
301	0	7	7	0	3	3	4	5	8	9	2	5	11	5	14	5	4	9	0	2	4	8	6	5	126	ct	27	Sunday
302	4	1	1	3	6	4	4	2	4	14	1	4	10	12	12	13	6	2	3	2	5	2	13	6	134	ct	28	Monday
303	4	2	4	1	5	4	6	7	2	11	17	8	20	12	9	10	7	2	3	0	0	3	2	2	141	ct	29	Tuesday
304	1	2	7	9	10	2	2	6	0	16	12	4	10	11	2	15	6	1	3	3	0	2	0	6	130	ct	30	Wednesday
305	1	0	2	1	5	1	5	11	7	8	6	6	37	11	17	10	6	8	17	11	1	5	5	22	203	ct	31	Thursday
306	2	2	5	1	1	0	4	7	4	1	4	3	7	7	8	3	7	6	2	5	16	2	10	3	110	ov	01	Friday
307	7	1	3	1	10	5	5	1	2	3	8	1	15	3	8	0	6	0	3	5	3	3	1	4	98	ov	02	Saturday
308	9	2	2	7	5	9	10	7	8	13	6	6	2	8	4	4	10	8	3	2	1	1	6	8	141	ov	03	Sunday
309	0	4	3	0	2	12	11	4	6	7	3	6	23	18	14	17	7	21	3	5	11	0	18	7	202	Nov	04	Monday
310	3	2	7	3	2	1	2	2	3	10	15	21	19	23	5	7	9	2	0	8	8	2	5	2	161	ov	05	Tuesday
311	7	1	3	6	7	5	10	10	8	10	5	17	7	8	19	17	5	6	8	1	21	1	7	3	192	Nov	06	Wednesday
312	3	2	4	3	4	3	14	17	8	14	17	5	13	23	11	15	7	4	0	5	0	5	5	9	191	Nov	07	Thursday
313	1	8	10	1	5	9	1	12	3	10	7	7	11	6	8	9	8	8	1	3	1	2	3	4	138	Nov	08	Friday
314	3	10	4	5	6	1	4	3	7	8	8	9	9	8	13	3	4	10	3	4	2	6	0	0	130	Nov	09	Saturday
315	1	1	4	2	1	3	12	2	3	11	2	14	4	6	5	2	7	5	8	5	6		3	6	113	Nov	10	Sunday
316	5	12	1	1	4	0	6	9	2	10	9	6	8	12	18	3	18	4	6	2	1	4	5	3	149	Nov	11	Monday
317	3	5	5	1	2	1	3	11	3	8	17	10	12	22	13	11	4	7	1	2	1	1	6	3	152	Nov	12	Tuesday
318	2	4	2	3	5	3	1	2	3	30	7	6	10	14	9	11	3	2	2	5	2	2	1	3	132	Nov	13	Wedinesday
319	4	7	3	8	4	1	9	3	3	12		14	4	12	24	5	1	5	3	0	1	3	0	0	132	Nov	14	Thursday
320	0	4	1	0	2	1	1	5	8	2	15	5	6	10	5	11	5	1	1	4	4	0	2	6	98	Nov	15	Friday
321	2	2	0	2	6	4	2	9	3	6	3	6	11	6	4	6	3	2	1	3	3	0	3	1	88	Nov	16	Saturday
322	6	5	0	2	0	1	0	2	2	8		4	1	3	7	3	0	3	2	7	0	10	5	6	80	Nov	17	Sunday
323	5	0	4	4	5	2	4	11	4	2	14	14	3	16	16	4	7	1	6	0	2	10	1	2	137	Nov	18	Monday
324	8	7	3	1	2	1	1	3	7	11	21	8	9	12	24	12	16	1	5	5	13	2	2	2	176	Nov	19	Tuesday
325	9	5	7	7	1	6	9	2	3	20	7	5	18	21	13	3	0	5	-	8	5	8	3	4	178	Nov	20	Wednesday
326	2	5	9	3	2	3	8	5	8	2	2	13	13	20	8			5	1		1	2	2	4	135	Nov		Thursday
327	1	6	3	12	4	9	8	1	3	7	4	13	7	20	17	6	7	3	3	0	0	2	3	2	141	Nov	22	Friday
328	2	9	12	3	1	13	5	5	3	9	8	9	6	6	8	6	3	4	2	2	2	1.	7	2	128	Nov	23	Saturday
329	6	4	4	2	1	1	3	6	1	3	3	6	13	17	3	3	1	2	4	1	5	2	3	2	96	Nov	24	sunday
330	6	5	2	3	8	3	2	1	0	8	3	5	17	20	13	2	5	0	3	1	2	3	0	3	215	Nov		Monday

Table 3.5.7 (Page 1 of 4)

HFS . FRX Hourly distribution of detections

Table 3.5.7 (Page 2 of 4)

HFS . FKX Hourly distribution of detections

Table 3.5.7 (Page 3 of 4)

Table 3.5.7. (Page 4 of 4) Daily and hourly distribution of Hagfors array detections. For each day is shown number of detections within each hour of the day, and number of detections for that day. The end statistics give total number of detections distributed for each hour and the total sum of detections during the period. The averages show number of processed days, hourly distribution and average per processed day

3.6 Regional Monitoring System operation

The Regional Monitoring System (RMS) was installed at NORSAR in December 1989 and was operated at NORSAR from 1 January 1990 for automatic processing of data from ARCESS and NORESS. A second version of RMS that accepts data from an arbitrary number of arrays and single 3 -component stations was installed at NORSAR in October 1991, and regular operation of the system comprising analysis of data from the 4 arrays ARCESS, NORESS, FINESS and GERESS started on 15 October 1991. As opposed to the first version of RMS, the one in current operation also has the capability of locating events at teleseismic distance.

Data from the Apatity array were included on 14 December 1992, and from the Spitsbergen array on 12 January 1994. Detections from the Hagfors array were available to the analysts and could be added manually during analysis from 6 December 1994. After 2 February 1995, Hagfors detections were also used in the automatic phase association.

The operational stability of RMS has been very good during the reporting period. In fact the RMS event processor (pipeline) has had no downtime of its own; i.e., all data available to RMS have been processed by RMS.

Phase and event statistics

Table 3.6.1 gives a summary of phase detections and events declared by RMS. From top to bottom the table gives the total number of detections by the RMS, the number of detections that are associated with events automatically declared by the RMS, the number of detections that are not associated with any events, the number of events automatically declared by the RMS, the total number of events defined by the analyst, and finally the number of events accepted by the analyst without any changes (i.e., from the set of events automatically declared by the RMS).

Due to reductions in the FY94 funding for RMS activities (relative to previous years), new criteria for event analysis were introduced from 1 January 1994. Since that date, only regional events in areas of special interest (e.g, Spitsbergen, since it is necessary to acquire new knowledge in this region) or other significant events (e.g, felt earthquakes and large industrial explosions) were thoroughly analyzed. Teleseismic events were analyzed as before.

To further reduce the workload on the analysts and to focus on regional events in preparation for Gamma-data submission during GSETT-3, a new processing scheme was introduced on 2 February 1995. The GBF (Generalized Beamforming) program is used as a pre-processor to RMS, and only phases associated to selected events in northern Europe are considered in the automatic RMS phase association. All detections, however, are still available to the analysts and can be added manually during analysis.

There is one exception to the new rule for automatic phase association: all detections from the Spitsbergen array are passed directly on to the RMS. This allows for thorough analysis of all events in the Spitsbergen region.

	Oct 96	Nov 96	Dec 96	Jan 97	Feb 97	Mar 97	Total
Phase detections	74481	73191	97551	99357	72071	76231	492883
- Associated phases	6859	5836	5811	6533	5523	5162	35724
- Unassociated phases	67622	67355	91740	92824	66548	71070	457159
Events automatically declared by RMS	1840	1530	1574	1808	1540	1258	9550
No. of events defined by the analyst	463	217	196	220	202	228	1526
No. of events accepted without modifications	0	0	0	0	6	0	0

Table 3.6.1. RMS phase detections and event summary 1 October 1996-31 March 1997.

U. Baadshaug
B.Kr. Hokland
B. Paulsen

4 Improvements and Modifications

4.1 NORSAR

NORSAR instrumentation

Within each of the NORSAR subarrays, the remote sensors are all connected to a central hub through buried cables. This system of cables acts like an antenna for lightning, and the first summer of operation showed that the high sensitivity of the new components gave increased problems with lightning.

However, the installed protection system has successfully protected the digitizer, so that only 8 AIM24 digitizers have been damaged, but all were repaired by NMC personnel. On the other hand, about 30 Brick amplifiers have been destroyed due to lightning.

Another result of the lightning has been spikes across the array. This was reported in NORSAR Sci. rep. 2-95/96 as an unidentified artificial signal. It is now clear that the signals are caused by lightning.

During this reporting period, 8 AIM24 digitizers, 30 Brick amplifiers and 1 KS54000P have been repaired and reinstalled. A lot of experimentation and design has been carried out to isolate the lightning problem. A galvanic shield has been designed and will be installed this summer that will both give more protection and reduce the problem with spikes.

A block diagram of the remote sensor site components is found in NORSAR Sci. Rep. No. 195/96.

NORSAR data acquisition

The Science Horizons XAVE data acquisition system has been operating satisfactorily during the reporting period. A block diagram of the digitizer and communication controller components is found in NORSAR Sci. Rep No 2-94/95.

NORSAR detection processing and feature extraction

The NORSAR detection processor has been running satisfactorily. To maintain consistent detection capability, the NORSAR beam tables have remained unchanged.

Detection statistics for the NORSAR array are given in section 2.
The NORSAR detecting beams include slowness vector and time delay corrections using precalculated, calibrated time delays.

See NORSAR Sci. Rep. 2-95/96 for a description of NORSAR beamforming techniques.

NORSAR event processing

The automatic routine processing of NORSAR events as described in NORSAR Sci. Rep. No. 2-93/94, has been running satisfactorily. The analyst tools for reviewing and updating the solutions have been continuously modified to simplify operations and improve results.
J. Fyen

5 Maintenance Activities

Activities in the field and at the Maintenance Center

This section summarizes the activities at the Maintenance Center (NMC) Hamar, and includes activities related to monitoring and control of the NORSAR teleseismic array, as well as the NORESS, ARCESS, FINESS, GERESS, Apatity, Spitsbergen and Hagfors small-aperture arrays.

Activities also involve preventive and corrective maintenance, planning and activities related to the refurbishment of the NORSAR teleseismic array.

NORSAR

Visits to subarrays in connection with:

- Cable splicing
- Replacement of AlM-24 digitizers and preamplifiers
- Replacement of modems at remote sites
- Removal of broadband seismometers damaged by lightning

NORESS

- Repair of fiber optical cards
- Replacement of battery bank in the UPS unit in the hub

Spitsbergen

- Inspection visit to the array

NMC

- Repair of defective electronic equipment

Additional details for the reporting period are provided in Table 5.1.

P.W. Larsen

K.A. Løken

Subarray/ area	Task	Date
	October IM9\%	
NORSAR	Cable splicing at SP02 and SP04. Replaced AIM-24 digitizer and preamplifier at SP02. Installed AIM-24 digitizer, preamplifier, battery box, GPS clock and SP seismometer at SP04.	October
01B		1-2/10
01A	Cable splicing at SP03.	3/10
02B	Replaced AIM-24 digitizer and preamplifier at SP04 and SP00.	4/10
02C	Replaced preamplifier at SP04.	7/10
03C	Replaced AIM-24 digitizer and preamplifier at SP05. Cable splicing at SP03.	7/10
01A		8,9,10/10
01A	Cable splicing at SP04.	11/10
02B	Replaced modem in CTV for remote site SP03.	11/10
03C	Replaced protection card in CTV for remote site SP05.	11/10
01A	Cable splicing at SP03 and SP04.	14/10
02B	Cable splicing at SP05.	15/10
01A	Cable splicing at SP04.	16/10
01B	Replaced modem in CTV for remote site SP04.	17/10
01A	Cable splicing at SP04.	22-25/10
03C	Replaced modem in CTV for remote site SP02.Cable splicing at SP05.	29/10
02B		30-31/10
NMC	Repair of defective electronic equipment.	October
	Nowember 1990	
NORSAR		November
01A	Installed junction box at SP04.	1/11
06C	Replaced AIM-24 digitizer, preamplifier and the +9 V protection diode at SP01.	4/11
06C	Replaced the AIM-24 digitizer and preamplifier at SP03.	5/11

Subarray/ area	Task	Date
02B	Removed the broadband seismometer from the borehole. The seismometer had been damaged by lightning and had to be taken to the NMC for repair.	8/11
04C	Repaired broken protection card in CTV for remote site SP03.	8/11
01A	Installed AIM-24 digitizer, preamplifier, GPS clock and modem/control box at SP03 and SP04.	11/11
01A	Cable work at SP02. The cable was found to be damaged by a local farmer. The repair of the cable will have to wait until the spring due to frozen ground.	12/11
01A	Changed address for the AIM-24 digitizer at SP04.	13/11
01A	Replaced modem in CTV for remote site SP01.	14/11
03C	Cable to SP04 had to be pointed out for a landowner.	15/11
01B	Replaced AIM-24 digitizer and preamplifier at SP00.	21/11
01B	Replaced preamlifier at SP00.	27/11
Spitsbergen	Carried out an inspection visit to the array site.	18-19/11
NMC	Repair of defective electronic equipment.	November
	December 1996	
NORSAR		December
04C	Removed the broadband seismometer from the borehole. The seismometer had been damaged by lightning and had to be taken to the NMC for repair.	4/12
03C	Moved 25 m of the cable to SP04 due to road construction work.	11/12
01B	Removed AIM-24 digitizer at SP04; took to NMC for testing.	16/12
02B	Replaced modem for data transmission between site and NDPC.	17/12
02C	Removed AIM-24 digitizer, preamplifier and cable between the units at SP00 and took to NMC for testing.	18/12
NMC	Repair of defective electronic equipment.	December

Subarray/ area	Task	Date
NORSAR		
01B	Disconnected communication line in CTV for remote site SP02.	10/1
02C	Replaced AIM-24 digitizer, preamplifier and seismometer cable at SP00.	15/1
03C	Replaced broadband digitizer in LPV due to spikes in data for the vertical channel.	28/1
02B	Reinstalled the broadband seismometer in borehole. The seismometer was repaired at the maintenance center.	31/1
NORESS	Repaired fiber optical card and power supply at remote site A0.	2/1
	Repaired defective power connector and fiber optical card at remote site B 2 .	3/1
	Replaced the battery bank in the UPS unit at the hub.	6/1
	Repaired the fiber optical link for remote site C4.	7/1
	Repaired the fiber optical card, processor card and power supply at remote site D5.	8/1
	Repaired fiber optical card and id card at remote site D6.	9/1
NMC	Repair of defective electronic equipment.	January
Februar 1997		
NORSAR NMC	No visits to the field installations in February. Repair of defective electronic equipment.	February
Marchirg\%		
NORSAR	No visits to the field installations in March.	
NORESS	Replaced broken power supply and repaired defective preamplifier card at site C7.	6/3

Subarray/ area	Task	Date
NMC	Repair of defective electronic equipment	March

Table 5.1. Activities in the field and the NORSAR Maintenance Center during 1 October 1996 - 31 March 1997.

6 Documentation Developed

Baadshaug, U. \& S. Mykkeltveit (1997): Status Report: Norway's participation in GSETT3, Semiannual Tech. Summ., 1 October 1996-31 March 1997, NORSAR Sci. Rep. 296/97, Kjeller, Norway.

Fyen, J. (1997): NORSAR Large Array Processing at the IDC Testbed, Semiannual Tech. Summ., 1 October 1996-31 March 1997, NORSAR Sci. Rep. 2-96/97, Kjeller, Norway.

Kværna, T. (1997): Threshold Magnitudes, Semiannual Tech. Summ., 1 October 1996-31 March 1997, NORSAR Sci. Rep. 2-96/97, Kjeller, Norway.

Mykkeltveit, S. \& J. Fyen (1997) Initial plans for implementing IMS stations in Norway, Semiannual Tech. Summ., 1 October 1996-31 March 1997, NORSAR Sci. Rep. 296/97, Kjeller, Norway.

Ringdal, F. (1997): Study of low-magnitude seismic events near the Novaya Zemlya nuclear test site, submitted to Bull. Seism. Soc. Am.

Ringdal, F., E.O. Kremenetskaya, V. Asming \& Y. Filatov (1997): Study of seismic traveltime models for the Barents region, Semiannual Tech. Summ., 1 October 1996-31 March 1997, NORSAR Sci. Rep. 2-96/97, Kjeller, Norway.

Schweitzer, J. \& T. Kværna (1997): The effect of source radiation pattern on short-period magnitude estimates (m_{b}), submitted to Bull. Seism. Soc. Am.

Semiannual Technical Summary, 1 April - 30 September 1996, NORSAR Sci. Rep. 1-96/97, Kjeller, Norway.

7 Summary of Technical Reports / Papers Published

7.1 Status Report: Norway's participation in GSETT-3

Introduction

This contribution is essentially an update of the two status reports Mykkeltveit \& Baadshaug (1996a) and Mykkeltveit \& Baadshaug (1996b) which cover the periods January 1995 - June 1996 and April 1996 - September 1996, respectively.

Norwegian GSETT-3 stations and communications arrangements

From the second half of 1993 until 1 October 1996, Norway provided continuous data from three GSETT-3 primary array stations: ARCESS, NORESS and Spitsbergen. The location and configurations of these three stations are shown in Fig. 7.1.1. ARCESS and NORESS are 25element arrays with identical geometries and an aperture of 3 km , whereas the Spitsbergen array has 9 elements within a $1-\mathrm{km}$ aperture. All three stations have a broadband three-component seismometer at the array center.

Data from these three stations were transmitted continuously and in real time to NOR_NDC. The NORESS data transmission uses a dedicated $64 \mathrm{Kbits} / \mathrm{s}$ land line, whereas data from the other two arrays are transmitted via satellite links of capacity $64 \mathrm{Kbits} / \mathrm{s}$ and $19.2 \mathrm{Kbits} / \mathrm{s}$ for the ARCESS and Spitsbergen arrays, respectively.

The NORESS array has been used in GSETT-3 as a temporary substitute for the NORSAR teleseismic array (also shown in Fig. 7.1.1; station code NOA), awaiting a complete technical refurbishment of the latter. This effort has now been completed, and starting 30 August 1996, data from the NORSAR array have been transmitted continuously to the IDC. The NORESS array will, however, be retained as a GSETT-3 primary station at least until such time that the NORSAR array data are fully used in the IDC operational processing cycle. We are cooperating with the IDC on the task of preparing for the processing of NORSAR data at the IDC (see section 7.3 of this report). Some Testbed processing of NORSAR data has been performed. The purpose of the IDC Testbed is to facilitate integration testing and therefore minimize disruption to the operational system. The Testbed is basically a scaled down version of the operational system.

On 1 October 1996 numerous changes were made worldwide to the GSETT-3 network. The purpose of these coordinated changes was to bring the GSETT-3 network in line with the seismic component of the International Monitoring System (IMS) to the extent possible. As the Spitsbergen array is an auxiliary station in IMS, this station changed its status from primary to auxiliary in GSETT-3 on that date. This involved terminating the continuous forwarding of SPITS data to the IDC and making data from this station available to the IDC on a request basis via the AutoDRM protocol (Kradolfer, 1993; Kradolfer, 1996).

Uptimes and data availability

Figs. 7.1.2-7.1.4 show the monthly uptimes for the two Norwegian GSETT-3 primary stations ARCESS, NORESS and for the testbed primary station NOA, respectively, for the period October 1996 -March 1997, given as the hatched (taller) bars in these figures. These barplots reflect the percentage of the waveform data that are available in the NOR_NDC tape archives for each of these three stations. The downtimes inferred from these figures thus represent the cumulative effect of field equipment outages, station site to NOR_NDC communication outages and NOR_NDC data acquisition outages.

Figs. 7.1.2-7.1.4 also give the data availability for these three stations as reported by the IDC in the IDC Station Status reports. The main reason for the discrepancies between the NOR_NDC and IDC data availabilities as observed from these figures is the difference in the ways the two data centers report data availability for arrays: Whereas NOR_NDC reports an array station to be up and available if at least one channel produces useful data, the IDC uses weights where the reported availability (capability) is based on the number of actually operating channels. As can be seen from these figures, these differences in the reporting practice in particular affect the results for the NORESS and NOA arrays.

Experience with the AutoDRM protocol

NOR_NDC's AutoDRM has been operational since November 1995 (Mykkeltveit \& Baadshaug, 1996).

Between November 1995 and the network changes on 1 October 1996, only 207 requests from external users were processed.

After SPITS changed station status from primary to auxiliary, the request load increased sharply, and for the month of October 1996, the NOR_NDC AutoDRM responded to 12338 requests for SPITS waveforms from two different accounts at the IDC: 9555 response messages were sent to the "pipeline" account and 2783 to "testbed".

The monthly number of requests for SPITS data is shown in Fig. 7.1.5.

NDC automatic processing and data analysis

These tasks have proceeded in accordance with the descriptions given in Mykkeltveit and Baadshaug (1996a). For the period October 1996 - March 1997, NOR_NDC derived information on 1209 supplementary events in northern Europe and submitted this information to the Finnish NDC as the NOR_NDC contribution to the joint Nordic Supplementary (Gamma) Bulletin, which in turn is forwarded to the IDC. These events are plotted in Fig. 7.1.6.

Data forwarding for GSETT-3 stations in other countries

NOR_NDC continues to forward data to the IDC from GSETT-3 primary stations in several countries. These currently include FINESS (Finland), GERESS (Germany) and Sonseca (Spain). In addition, communications for the GSETT-3 auxiliary station at Nilore, Pakistan, are provided through a VSAT satellite link between NOR_NDC and Pakistan's NDC in Nilore. Data from the Hagfors array (HFS) in Sweden were provided continuously through

NOR_NDC until 1 October 1996, on which date this station changed its status in GSETT-3 from primary to auxiliary, in accordance with the status of HFS in IMS. From 1 October 1996, the IDC obtains HFS data through requests to the AutoDRM server at NOR_NDC (in the same way requests for Spitsbergen array data are now handled, see above). Fig. 7.1.7 shows the monthly number of requests for HFS data from the two IDC accounts "pipeline" and "testbed".

Future plans

NOR_NDC will continue the efforts towards improvements and hardening of all critical data acquisition and data forwarding hardware and software components, so as to meet requirements related to operation of IMS stations to the maximum extent possible. For example, the PrepCom (Preparatory Commission for the Comprehensive Nuclear Test-Ban Organization) has now adopted a data availability of 98% or more as a requirement for primary and auxiliary IMS seismic stations. Figs. 7.1.2-4 show that this requirement is met for the three primary stations ARCES, NORES and NOA, as far as availability at NOR_NDC is concerned.

The PrepCom has now tasked its Working Group B with overseeing the GSETT-3 experiment until the end of 1997, and to submit proposals to the PrepCom on the basis for the continuation of GSETT-3 in 1998. Whatever this basis will be, we envisage continuing the provision of data from Norwegian IMS stations without interruption to the prottype IDC in Arlington, Virginia, USA and later on to the IDC in Vienna, following the installation of the new global communications infrastructure now envisaged by the PrepCom.

U. Baadshaug
 S. Mykkeltveit

References

Kradolfer, U. (1993): Automating the exchange of earthquake information. EOS, Trans., $A G U, 74,442$.

Kradolfer, U. (1996): AutoDRM - The first five years, Seism. Res. Lett., 67, 4, 30-33.
Mykkeltveit, S. \& U. Baadshaug (1996a): Norway's NDC: Experience from the first eighteen months of the full-scale phase of GSETT-3. Semiann. Tech. Summ., 1 October 1995-31 March 1996, NORSAR Sci. Rep. No. 2-95/96, Kjeller, Norway.

Mykkeltveit, S. \& U. Baadshaug (1996b): Status Report: Norway's participation in GSETT3. Semiann. Tech. Summ., 1 April 1996 - 30 September 1996, NORSAR Sci. Rep. No. 1-96/97, Kjeller, Norway.

Fig. 7.1.1. The figure shows the locations and configurations of the two Norwegian GSETT-3 primary array stations with station codes NORES and ARCES. The data from these stations are transmitted continuously and in real time to the Norwegian $N D C\left(N O R _N D C\right)$ and then on to the GSETT-3 IDC. The figure also shows the location of the testbed primary station NOA, which is soon to be fully used in GSETT-3 as a primary station. The auxiliary station SPITS is also shown in the figure.

ARCES data availability at NDC and IDC

Fig. 7.1.2. The figure shows the monthly availability of ARCESS array data for the period October 1996 - March 1997 at NOR_NDC and the IDC. See the text for explanation of differences in definition of the term "data availability" between the two centers. The higher values (hatched bars) represent the $N O R_{_}$NDC data availability.

NORES data availability at NDC and IDC

Fig. 7.1.3. The figure shows the monthly availability of NORESS array data for the period October 1996 - March 1997 at NOR_NDC and the IDC. See the text for explanation of differences in the definition of the term "data availability" between the two centers. The higher values (hatched bars) represent the NOR_NDC data availability.

Fig. 7.1.4. The figure shows the monthly availability of NORSAR array data for the period October 1996 - March 1997 at NOR_NDC and the IDC. See the text for explanation of differences in definition of the term "data availability" between the two centers. The higher values (hatched bars) represent the NOR_NDC data availability.

AutoDRM SPITS requests received by NOR_NDC from pipeline and testbec

Fig. 7.1.5. The figure shows the monthly number of requests received by NOR_NDC from the IDC for SPITS waveform segments.

Reviewed Gamma events

Fig. 7.1.6. The map shows the 1209 events in and around Norway contributed by NOR_NDC during October 1996 - March 1997 as Supplementary (Gamma) data to the IDC, as part of the Nordic Supplementary data compiled by the Finnish NDC. The map also shows the seismic stations used in the data analysis to define these events.

AutoDRM HFS requests received by NOR_NDC from pipeline and testbed

Fig. 7.1.7. The figure shows the monthly number of requests received by $N O R_{-} N D C$ from the IDC for HFS waveform segments.

7.2 Initial plans for implementing IMS stations in Norway

Introduction

Annex 1 to the protocol to the Comprehensive Nuclear Test-Ban Treaty contains tables listing altogether 321 stations in the International Monitoring System (IMS) that will be installed to verify compliance with the treaty. Six of these stations are located on Norwegian territory. These stations are listed in Table 7.2.1 and shown in Fig. 7.2.1.

Work is now underway under the direction of PrepCom (Preparatory Commission for the Comprehensive Nuclear Test-Ban Treaty Organization) and its Provisional Technical Secretariat (PTS) in Vienna to establish the IMS. For example, technical specifications for the various sensor types of the IMS have been approved by PrepCom, and a budget for 1997 for site surveying and station upgrading/installation has been adopted. Discussions on the continuation of this installation program in 1998 have already started in PrepCom.

In our capacity of National Data Center for Norway, NORSAR will be technically responsible for the operation and maintenance of IMS stations on Norwegian territory. NORSAR is therefore prepared to cooperate with the PTS in the conduct of site surveys and IMS stations upgrading/installation, and this short paper presents our current thinking in terms of initial plans for implementation of the six IMS stations in Norway.

Initial plans for each of the six IMS stations in Norway

The NORSAR large-aperture seismic array

This IMS primary seismic station has recently undergone a comprehensive refurbishment program and basically meets the requirements for technical station specifications (with the exception that data are currently not authenticated) now adopted by the PrepCom (see PrepCom document CTBT/PC/II/1/Add.2). There is, however, still need for some future work, as detailed in the following:

- There is a need to further harden the field installations to secure long-term maintainability. This can partly be achieved through measures to make certain hardware components less vulnerable to external loading, like electrical interferences. The NORSAR array is located in an area that is exposed to frequent lightning strikes during the summer season (May-September).
- As mentioned above, the NORSAR array was recently refurbished. The version of AIM digitizers installed are, however, no longer produced by the manufacturer (Science Horizons). The implications of this in terms of long-term maintainability must be investigated.
- The NORSAR array has currently no on-site data buffering capability (with the exception of a buffer of a few hours' length between the digitizers and communication interface modules). Such a capability is essential in ensuring data continuity in cases of communications line dropouts as well as problems at the data receive end (national or international data center). It is therefore planned that such a capability will be installed.
- We intend to furnish the NORSAR array with a regional processing capability through the integration of the co-located NORESS regional array. The NORESS electronics equipment will need to be replaced before a full integration can take place.

The ARCESS seismic array

This array has been selected as an IMS primary seismic station. It was installed in 1987 and uses technology designed and developed by the Sandia National Laboratory in Albuquerque, New Mexico, USA, in the early 1980s.

Strictly speaking, the ARCESS array nominally satisfies the minimum IMS station requirements, again with the exception that there are currently no data authentication arrangements. With the exception of the seismometers, however, the array electronic components are the only ones of their kind in the world, and it will thus not be possible to maintain this array when the present supply of spares is exhausted. So there is a definite need to replace the array data acquisition system (mainly digitizers, clocks and "array controller") with standardized equipment that will be maintainable in the forseeable future. The current ARCESS system has no on-site data buffering, and for the same reasons as given above for the NORSAR array, we plan to install such a capability.

The Spitsbergen seismic array

The existing seismic array at Spitsbergen was selected as one of the 120 IMS auxiliary seismic stations. This array was built in 1992 and is located in a very challenging Arctic environment. For example, the supply of power to the field installation is through the use of windmills that charge a battery bank. After some considerable efforts in identifying the best windmill technology and optimum batteries for this environment, the power supply for the Spitsbergen field system has lately been very stable. There is, however, a need to strengthen this system by installing another windmill so that the station will operate even in case of failure of one of the windmills.

The data from the various sensor sites of the Spitsbergen array are transmitted in analog form via buried cables (of lengths up to 1 km) to digitizers located at the array center. This limits the dynamic range of the data, and there is a need to install digitizers as well as GPS clocks at each sensor location. There is also a need to provide more state-of-health information than is done today from this station.

The data from the Spitsbergen array digitizers are transmitted via one-way radio links to the array controller, which is located in Longyearbyen at a distance of approximately 18 km from the array site. There is a need for a two-way radio link to support the sending of commands (e.g., calibration commands) to the field equipment.

After completion of the modifications to the Spitsbergen array indicated above, we are confident that this array will fully satisfy the requirements adopted by PrepCom.

The Jan Mayen seismic station

Since 1962 the University of Bergen, Norway, has operated seismic stations on the small Norwegian island of Jan Mayen situated on the mid-Atlantic ridge. There is currently a broad-band

3-component station at Jan Mayen, and this station was selected as one of the IMS auxiliary stations. We have been in contact with the University of Bergen regarding the technical status of the existing station at Jan Mayen. The seismometer used today is of type Streckeisen STS-2, which is fully adequate for the IMS. It is our assessment, however, that the digitizer and on-site data-buffering equipment need to be replaced.

We are also discussing with the University of Bergen how to arrange communications for this station. The Jan Mayen island has a satellite system today that handles communications to and from mainland Norway. It is considered to be cost-effective and also optimal with respect to future maintenance to integrate the Jan Mayen seismic station communications with the existing communications infrastructure.

The infrasound station at Karasjok

This IMS station does not exist today and will be built at the location of the ARCESS primary seismic station. This co-location with the ARCESS array will be cost-efficient, as the communications infrastructure for the ARCESS seismic array can then also be used for the infrasound data.

The PrepCom has allocated funds for a site survey in 1997 for this infrasound station. It is our intention to closely cooperate with the PTS in the conduct of this site survey and possibly also involve Norwegian expertise outside NORSAR. The standard IMS infrasound stations are planned to be four-element arrays (triangle with a fourth element in the center) of aperture 1-3 km . The site survey will need to determine suitable locations of each of the sensors (microbarographs) with its noise-reducing pipes or hoses, taking into account the effects of terrain, wind and local vegetation.

The radionuclide station at Spitsbergen

The geographical coordinates proposed for this yet-to-be-built IMS station are the same as those of the Spitsbergen auxiliary seismic station. In practice, we consider that an optimum location for this new station will be in Longyearbyen (a small settlement with about 1000 inhabitants), at a distance of 15 km from the seismic station. The radionuclide station could possibly be located in the vicinity of the location of the Spitsbergen array controller in Longyearbyen, and thus make use of the communications infrastructure already established for transmission of the seismic data.

Work is now underway in PrepCom to try to reach agreement on which 40 out of the 80 IMS radionuclide stations that will be capable of noble gas monitoring (in addition to the particulate monitoring) upon entry into force of the treaty. We thus anticipate a decision by PrepCom, hopefully in September this year, whether the Spitsbergen radionuclide station should be planned to have a noble gas detection capability in its initial configuration or not.

As we have no expertise of our own at NORSAR within the field of radionuclide monitoring, we are consulting with experts of the Norwegian Radiation Protection Authority (in Norwegian: Statens Strålevern) on matters related to this new station. Nevertheless, NORSAR will function as a coordinating agency in this regard, and will be the point of contact for the PTS in the future establishment and operation of this station.

Communications

PrepCom's Working Group B is currently working on a design of the future global communications infrastructure that will be established to support a) the transmission of data from the 321 IMS stations to the IDC, and b) the forwarding of data and products from the IDC to the State Signatories. This work will need to be concluded before it will be clear in detail how communications will be arranged for the Norwegian IMS stations. But irrespective of how this will be handled, NORSAR will need to receive data directly from these stations, in order to adequately carry out our tasks in operating and maintaining the six Norwegian IMS stations.

The NORSAR array requires one communication line from each of the 7 concentrated regions of instrumentation of the array (the so-called subarrays). Maintaining the current communications infrastructure with 7 domestic links to the Norwegian NDC and one international link to the IDC would be expected to reduce the overall cost for communications in the future IMS. In addition, the buffering at the NDC ensures high data availability and eases the system monitoring and maintenance functions performed by the NDC. The use of ten domestic VSAT links (7 for the NORSAR array, one for Karasjok, one for Jan Mayen and one for Spitsbergen) and one well-monitored high-speed international link may well prove to be the most reliable and costeffective arrangement in the future for Norway's six IMS stations.

S. Mykkeltveit

J. Fyen

Table 7.2.1. IMS stations located on Norwegian territory, and listed in the protocol to the Comprehensive Nuclear Test-Ban Treaty.

IMS Network	Station	Lattude	Longitude
Seismic primary	NORSAR array, NAO Hamar	60.8 N	10.8 E
Seismic primary	ARCESS array, ARAO Karasjok	69.5 N	25.5 E
Seismic auxiliary	Spitsbergen array, SPITS Spitsbergen	78.2 N	16.4 E
Seismic auxiliary	3-C station, JMI Jan Mayen	70.9 N	8.7W
Infrasound	Karasjok	69.5 N	25.5 E
Radionuclide	Spitsbergen	78.2 N	16.4 E

Fig. 7.2.1. The figure shows the six IMS stations located on Norwegian territory.

7.3 NORSAR Large Array Processing at the IDC Testbed

Introduction

Beginning 1 September 1996, the large array NORSAR (NOA) data have been continuously transmitted to the IDC. Already in April 1996, a new function, "compute-beamform-fk" (Fyen 1996), to be used for large array slowness vector estimation, was implemented into the DFX in cooperation with SAIC staff.

IDC testbed operation of this version for NOA data was initiated on 9 October 1996.

DFX processing at the testbed

During the period 11 January 1997 through 19 February 1997, we analyzed carefully the results from IDC REB, the NOA detection processing done at NDPC, and the NOA testbed DFX processing done at the IDC.

Using an automated process, we calculated for each REB event the predicted arrival time and back-azimuth for NORES and NOA. If a detection was found with onset time within the expected IASPEI arrival time $+/-5.0$ seconds, then the detection was declared as belonging to the event. If the detection in addition had an azimuth within $+/-15.0$ degrees, then the detection was associated to the event. For simplicity, only P, PKiKP, PKPdf and PKPbc (depending on distance) were used to predict arrival time. Only events in the teleseismic range, i.e., more than 20.0 degrees from NOA were analyzed.

Table 7.3.1 summarizes our findings.
In the table, the term "detection" is used to describe the number of REB events for which at least one detection had an onset time within the predicted arrival time $+/-5.0$ seconds. The term "association" is used to describe the number of REB events for which at least one detection had both onset time within the predicted arrival time window and azimuth within the predicted back-azimuth $+/-15.0$ degrees.

The term "NORSAR" is used to define the number of events for which either NDPC processing or DFX testbed processing detected with NOA array data. "DFX testbed NOA" means detections obtained by DFX processing. "NDPC" means detections obtained with the old detection processing (DP/EP) done at NDPC. NORES detection or association is based on REB origin, assoc and arrival tables from the IDC operations database.

The interpretation of the results is that DFX has fewer detections that can be associated with events as compared to the original NDPC processing. We have from earlier studies found that the individual processing of 10 -minute segments may cause some boundary problems, and this could explain some of the difference. Moreover, the time delays across the NORSAR array are up to 9 seconds, and reduction from triggers to detections is more complicated than for smaller arrays. Several case studies have been performed to select parameters for this process, but more work needs to be done.

Table 7.3.1. Detection statistics 11 January - 19 February 1997. See text for explanation.

	Number of events
Number of teleseismic events in REB	1911
No NORES or NORSAR detection	1296
Either NORES or NORSAR detection	615
Either NORES association or NORSAR association	453
NORES association, but no NORSAR association	117
NORSAR association, but no NORES association	129
NORSAR and NORES association	207
NORES detection	476
NORES associated	324
DFX testbed NOA detection	288
DFX testbed NOA associated	227
NDPC detection	409
NDPC associated	302
NDPC reviewed and associated	259

For the associated detections, we have looked at azimuth residuals. The results in Fig. 7.3.1 demonstrate the improvement of the beamform F / K process using new time delay corrections (upper right figure) as compared to the old beampacking technique (lower left). The automatic DFX process has azimuth residuals comparable to those of the analyst review detections at NDPC. It should be noted that further improvements may be achieved when the analyst at IDC can revise slowness estimates for any array. The NORES residuals are obtained from the REB NORES azimuths.

During the period analyzed, the NDPC analyst reported 9 additional events that were not in the REB. Four of these events were defined as origins on the testbed with NOA association.

It seems to be fair to draw the conclusion that DFX processing of NOA data is close to satisfactory. The most important improvement to concentrate on is to reduce the number of missed detections. The time delay corrections used seem to satisfy the expectation of smaller azimuth residuals for a larger array.

Before making any definite statement about missed detections, it is necessary to gain further experience with analyst review. This would involve looking at optimum beams for NOA and verifying whether or not a detection should have been triggered.

For any event defined at the IDC, an array beam will be presented for the analyst. The process used to create this beam - Beamer - has not yet been modified to adopt time delay corrections. It is necessary for the analyst review to have this ability to make NOA beams. In the near future, the IDC plans to replace Beamer with DFX, and NORSAR staff will assist in this process. When this has been completed, NORSAR processing can be implemented as part of regular IDC operation.
J. Fyen

Reference

Fyen, J. (1996): Improvements and Modifications, Semiannual Technical Summary 1 October 1995-31 March 1996, NORSAR Sci.Rep. No. 2-95/96, Kjeller, Norway.

Fig. 7.3.1. Distribution of azimuth residual for associated detections. The residual is the absolute value of the difference between predicted and observed backazimuth for events where the detection was associated according to the criteria in the text. The upper left shows distribution for the NORES associated detections. The upper right shows azimuth residuals for DFX NOA detections. The lower left shows residuals for automatic NORSAR prcoessing using old beampacking and old time delay corrections. The lower right figure shows residuals for NORSAR detections refined by analyst review at NDPC. (Old time delay corrections).

7.4 Threshold Magnitudes

Introduction

This note is intended to explain some of the basic principles and assumptions behind the calculation of threshold magnitudes, such that the reader can get an understanding of how this method can be used as part of a CTBT verification system. In addition, we will outline the current status on the development of the threshold monitoring system, as well as the plans for further improvements and extensions.

Definition of station and network magnitude thresholds

Several studies have confirmed that global observations of body-wave magnitude m_{b} are normally distributed with a standard deviation of about $0.4 \mathrm{~m}_{\mathrm{b}}$ units (a.o., Veith and Clawson, 1972; Ringdal, 1976). This is one of the basic assumptions behind the calculation of m_{b} magnitude thresholds.

If we look for a hypothetical event at a given location and origin time, and consider a "noise situation" at a given station i, i.e., that there are no phase detections at the predicted phase arrival time of the hypothetical event, we can calculate a so-called "noise magnitude" a_{i}.

If a hypothetical event of magnitude m really was present, it would have phase magnitudes m_{i} normally distributed around m , and for station i we would know that $m_{i} \leq a_{i}$. This is used in the statistical derivation of the single station and network magnitude thresholds, and for details we refer to Ringdal and Kværna (1989, 1992).

Using the formulas developed for calculation of network magnitude thresholds we find that if we e.g., have one single station observation with a "noise magnitude" of $m_{b} 4.0$ for a hypothetical event at a given location and origin time, we can say (with 90 per cent confidence) that a hypothetical event would need to have an m_{b} less than 4.52 . If we, on the other hand, had two station observations each with a "noise magnitude" of $m_{b} 4.0$, we can say (with 90 per cent confidence) that a hypothetical event would need to have an $m_{\mathfrak{b}}$ less than 4.20 . In a similar way, all network station observations of "noise magnitude" can be combined to place an upper m_{b} limit on a hypothetical event occurring at a given location and origin time.

By repeating the calculation of network magnitude thresholds in origin time steps, we obtain a so-called threshold trace for a given geographical location. It has been shown in several NORSAR reports and papers that such a threshold trace can be effectively used to conduct a sitespecific threshold monitoring of interesting areas like the Novaya Zemlya and Lop Nor nuclear test sites.

By gridding the Earth into discrete target areas, we can compute threshold traces for each separate target area, and then interpolate to create global or regional maps of magnitude thresholds. From inspecting these maps we can get an instant picture of the monitoring capability of the network, as well as being able to identify regions and time intervals with particularly high magnitude thresholds. The primary causes of such increases would be signals and coda from large events and/or station outages.

What happens to the magnitude thresholds when an event occurs?

In cases when signals are observed from an event occurring in the target area, we would for the detecting stations have $m_{i}=a_{i}$ and not $m_{i} \leq a_{i}$, which was one of the basic assumptions behind the statistics of the network threshold calculations. In such a case our magnitude threshold will be biased low, and the bias will generally increase with the magnitude of the event. In such a situation, the correct approach would be to use the maximum-likelihood formalism of Ringdal (1976), taking into account both the detecting and non-detecting stations of the network. But this will require that we have available both the event locations from the standard network processing, as well as knowledge of which stations had detections on the beams used for threshold calculations.

As a preliminary solution to this problem, we have chosen to provide information on the detected events (from the AELs or the REBs) together with the threshold maps and threshold traces, such that the user can be aware that the actual threshold magnitudes are biased low around the origin time and location of the events.

Strictly speaking, the magnitude threshold calculations should also handle situations when an event occurred in the target area, without being detected by the processing algorithms. The reason for this could be SNRs below the detection thresholds or too few stations detecting the event. In this case the bias in threshold magnitudes will be negligible, and the conservativeness used in our parametrization should be able to accommodate such situations.

As an example, a 3 station event in Finland with a maximum-likelihood m_{b} of 2.71 resulted in a 90% magnitude threshold of 2.66 using data from the full Alpha network. This event was, however, detected by the processing algorithms, so the difference between the estimated m_{b} and the 90% magnitude threshold is probably higher that what can be expected for nondetected events. In any case, the bias effect resulting from ignoring the detection information is very small for such low-magnitude events.

Tuning of the Alpha network

In order to obtain useful and reliable results from the Threshold Monitoring (TM) system, we have during the last months spent most of our resources on the tuning of the stations in the Alpha network. From analysis of a fairly extensive event database of 20-60 events per station, we have for each of the stations derived the following parameters:

- The frequency bands for filtering of the beams used to monitor targets in the different distance regimes (local, regional or teleseismic).
- The relations between the manual A / T measurements in the $0.8-4.5 \mathrm{~Hz}$ band and the STA values of the filtered beams. This has been done to ensure compatibility between the PIDC magnitude measurements and the magnitude thresholds provided by the TM system.
- For the arrays, we have derived beam sets that ensure complete coverage of the entire Earth, using the constraint that the maximum allowable beamloss caused by mis-steering of the beams was 3 dB . In addition, we have derived expected values for the signal loss by beamforming.

The derivation of frequency bands for filtering of the beams was a quite difficult task, as it often involved balancing of two conflicting demands. The first was to ensure that for the events analyzed there was generally a good correspondence between the STA values of the filtered beams and the manual A / T measurements in the $0.8-4.5 \mathrm{~Hz}$ band. On the other hand, we also wanted to obtain low magnitude thresholds during regular noise conditions.

In order to verify the quality of our tuning, we have for about 15 events compared the PIDC station magnitudes with the station magnitudes derived from the STA traces of the TM system. The agreement seems to be remarkably good, but because of the small data set available at NORSAR, we have not yet been able to compile any comprehensive statistics.

An example is given in Table 1, for an event located southwest of Africa. For all Alpha stations outside the distance interval 97-125 degrees, we have computed station magnitudes from the STA traces of the TM system. Except for the station LPAZ, we find a very close agreement between the PIDC station magnitudes and the STA magnitudes. We suspect that the PIDC station magnitude at LPAZ actually is a measurement of the strong noise field leaking into the 0.8 4.5 Hz filter band. The dominant period of 1.6 seconds indicates this. For LPAZ, we have in the teleseismic regime decided to use a bandpass filter between 1.0 and 4.5 Hz for calculation of STA station magnitudes. In this particular case, this filter ensured that we actually measured the signal. At the bottom of Table 1 we show a comparison between the PIDC network magnitude, the PIDC network magnitude of the Alpha stations within 97 degrees, the STA based network magnitude of the Alpha stations within 97 degrees, and the STA based network magnitude of all Alpha stations outside the distance interval 97-125 degrees. A significant feature is the lower standard deviation of the STA based station magnitudes.

The reason for not having analyzed a larger data set is that we need to transfer all raw data of the Alpha network to NORSAR prior to the analysis. But as soon as the new DFX beam recipes are operating on the Testbed, we would be able to compile such a statistics on a much larger data set. Our goal would then be to investigate whether the PIDC and the TM system provide on the average the same station and network magnitudes, and determine to which extent TM magnitudes are useful to supplement PIDC magnitudes.

Network capability and magnitude thresholds

As another indirect test of the quality of the tuned TM parameters we have computed a simplified three-station detection capability map of the Alpha network using data from a time interval without any reported events. Our TM capability map has been computed by choosing the third lowest of the station "noise magnitudes", and then adding $0.7 \mathrm{~m}_{\mathrm{b}}$ units to accommodate an SNR of 5.0 required for phase detection. The TM capability for 1997-058:20.08 is shown in Fig. 7.4.1, where the black circles symbolize operating Alpha stations and the red circles symbolize Alpha stations without available data. This capability map show striking similarities with the simulated 90% detection threshold for the GSETT-3 network presented in Fig. 5.2.a of CD report no. 1423 (4 September 1996), although there are a few minor differences between the configurations of the GSETT-3 network and the operating Alpha network of February 27, 1997. Thus, the very simple "third lowest TM magnitude" approach provides an excellent approximation to the standard 3 -station 90% capability maps.

It should also be emphasized that the capability map of the GSETT-3 network is derived from statistical models of signal and noise characteristics, whereas the TM capability is derived from actually observed noise data. In this way, the TM approach is able to immediately accommodate variations in detection capability caused by "unusual" conditions like station outages, large earthquakes or aftershock sequences, which may cause the network capability to deteriorate for hours.

In contrast to the "capability maps" discussed above, the standard TM maps include no assumptions on the SNR threshold required for detection or the minimum number of stations required to generate an event hypothesis. Instead, the observed "seismic field" is used to place an upper limit to the magnitude of possibly hidden events. Fig. 7.4 .2 shows the 90% magnitude threshold for the same origin time instant as used in the capability map of Fig. 7.4.1. While the capability map of Fig. 7.4.1 tells us that for most of the region north of $30^{\circ} \mathrm{N}$ our processing algorithms will be unable to detect events below $\mathrm{m}_{\mathrm{b}} 3.5$, the threshold map of Fig. 7.4.2 tells us that if there was an event in this region it would need to have a magnitude below 3.0. For the areas close to some of the stations, the magnitude thresholds are even below 2.5 .

In somewhat simplified terms, we could say that the TM approach is able to "monitor" an area at an m_{b} level 0.5 units lower than the conventional "detection based" approach.

In order to illustrate the effect of the occurrence of a large earthquake, we have estimated the three-station detection capability and the magnitude thresholds for a time instant 9 minutes after the origin time of a $\mathrm{M}_{\mathrm{S}} 7.2$ earthquake located in Pakistan. The capability map of Fig. 7.4.3 tells us that except for parts of Australia and parts of north and south America, the detection threshold is above 4.5 for the entire Earth. For parts of Asia and Africa, the threshold even exceeds 5.0.

When turning to the magnitude thresholds of Fig. 7.4.4, we find significantly smaller numbers. The usefulness of the threshold map is illustrated by the fact that while we could not be certain to detect a magnitude 5 event in parts of Asia and Africa, the threshold map tells us that a hypothetical event in these regions could not have had a magnitude significantly above 4. For most parts of the world, we find the upper magnitude limits to be about $1 m_{b}$ unit lower than the three-station detection capability in this case. So the "gain" by applying the TM technique is even greater than during noise conditions.

Usage of magnitude thresholds and capability maps in CTBT monitoring

It should be evident from the discussions above that both the magnitude threshold maps and the detection capability maps could be useful supplements in the monitoring of a CTBT. While the capability maps provide the lowest event magnitude the processing system is likely to detect, the magnitude threshold maps put an upper limit to the size of a possibly hidden event.

An application of the capability maps and the threshold maps would be to provide continuous confirmation and quantification of the monitoring capability of regions of interest to the international community. In addition, these maps would also provide an instantaneous warning and quantification of a reduced monitoring capability during station outages or high-noise intervals.

Another scenarios for the use of the results from the TM system would be investigation of time intervals for which questions have been raised regarding possible non-compliance with the treaty. By going back to the magnitude threshold maps for a given region and time interval, we could by selecting the pointwise maxima of the magnitude threshold maps for the given time period, get a useful overview of the maximum size of a hypothetical event in the region during this time period. This could be helpful to decide if further investigation would be needed. Along the same lines we could display the threshold trace for given target areas. If this trace shows an increase that is not caused by any known event, and at the same time exceed a magnitude threshold of interest, it might be meaningful to continue the investigation. E.g., our onemonth monitoring experiment of the Novaya Zemlya test site (Kværna, 1992) showed that from inspection of the threshold traces, we were able to exclude 99.7% of the total time from search for signals from possible events at the test site. The remaining 0.3% of the time contained threshold increases that could be explained by signals from detected interfering events.

If the magnitude thresholds for a given region show increased values during a particular time interval, we would like to know the reason why so happened. Signals from events located outside the region, station outages or increased noise levels at some stations are usually the main causes. By looking into the event bulletins and the station performance reports it should be possible to explain the majority of the threshold increases. But if threshold peaks remain unexplained, we should start to look more closely for events in the target region. This could be done by optimized manual data analysis of the stations known to have the best capability for the given target region, and/or by requesting and analyzing additional data.

Status and plans for TM development for the PIDC

Our most immediate task for the TM development for the PIDC is to install the tuned processing recipes for the Alpha network on the Testbed. Following this installation it will be necessary to monitor the performance of the processing system both with regard to operational reliability, processing load and quality of the results. After this test is completed, hopefully within 3-4 weeks after the installation on the Testbed, we would be ready to consider the transfer of the TM processing system to the operational pipeline.

During the last months we have also been working with the development of TM products to be distributed from the PIDC. So far we have developed a program for creation of maps with pointwise maxima of the magnitude thresholds for each half-hour time interval. We will continue the discussions with the PIDC staff on which and how the TM products can be presented within the framework of PIDC services.

Another remaining task is the development of procedures for archiving of TM results. We have not yet decided how to do this, but it seems reasonable to store both the basic STA traces for each of the Alpha stations, as well as the maps provided through the PIDC services. But before deciding on the archiving procedures, we have to define the contexts in which the archived data are to be used. By contexts we mean situations like focused investigation of particular areas for previous time intervals, or re-assessment of the monitoring capability using additional data from the Beta stations or non-IMS networks.

We would also like to emphasize that we still consider the TM system to be experimental and under development, and that we have concentrated on producing high quality results from the basic processing algorithms. As soon as we have confirmed the quality of these computations, we will be ready to go ahead with the development of functions and products that can be useful for monitoring compliance with the CTBT. Our main focus will be on the usage of threshold and capability maps, as well as the threshold traces for each of the target areas.

Future applications

For the future, we have in mind several interesting applications of data from the TM system that could be useful in the CTBT context.
E.g., we showed in the previous chapters that there seems to be a very good agreement between the PIDC magnitudes and the STA based magnitudes from the TM system. It would therefore be interesting to investigate if the usage of STA based magnitudes will provide any improvement to the network m_{b} estimates. By combining the STA traces with a detector, it will also be quite straightforward to implement procedures for automatic maximum likelihood m_{b} estimation, which again will help to reduce the m_{b} bias problem for smaller events.

Another interesting application is threshold monitoring of surface waves. In principle, such processing should be feasible using the already existing processing modules, but some studies on filter settings, STA lengths and the usage of surface magnitude correction tables would be needed. The upper limit M_{s} calculation could be applied to extend the functionality of discriminants like $\mathrm{M}_{\mathrm{s}} / \mathrm{m}_{\mathrm{b}}$. For small explosions, surface waves frequently are too weak to be observed at any station of the recording network. Obtaining reliable upper bound on M_{s} in such cases would expand the range of usefulness of this discriminant. In practice, an "upper bound" for single station measurements has often been given as the "noise magnitude" at that station, i.e., the M_{s} value that corresponds to the actually observed noise level at the expected time of the Rayleigh arrival. The threshold monitoring procedure will include this as a special case of a more general network formulation.

Once we have at hand reliable automatic procedures for both magnitude estimation and upper limit calculation of m_{b} and M_{s}, it might provide useful to investigate the usage of these data for automatic event screening via $\mathrm{M}_{\mathrm{s}} / \mathrm{m}_{\mathrm{b}}$.

As a final comment, we still believe that the best monitoring performance is achieved through an optimized site-specific monitoring, incorporating region-specific calibration information like travel time, slowness and magnitude anomalies, and optimal bandpass filters for assessment of magnitude thresholds. Such high-quality monitoring has already been demonstrated for the Novaya Zemlya and the Lop Nor test sites, using data from the Scandinavian arrays. By integrating the output from the optimized site-specific threshold monitoring with the results from "traditiona" data analysis of detected signals we would utilize the resources of the monitoring network in a new tool that might enable a very high continuous automatic monitoring capability.

T. Kværna

References

CD/1423 (1996): Report of the Ad Hoc Group of Scientific Experts to the Conference of Disarmament on the GSETT-3 experiment and its relevance to the seismic component of the Comprehensive Nuclear Test-Ban Treaty International Monitoring System

Kværna, T. (1992): Continuous seismic threshold of the northern Novaya Zemlya test site; long-term operational characteristics, PL-TR-92-2118, Phillips Laboratory, Hanscom Air Force Base, Mass., USA.

Ringdal, F. (1976): Maximum- likelihood estimation of seismic magnitude, Bull. Seism. Soc. Am., 66, 789-802.

Ringdal, F. and T. Kværna (1989): A multi-channel approach to real time network detection, location, threshold monitoring. Bull. Seism. Soc. Am., 79, 1927-1940.

Ringdal, F. and T. Kværna (1992): Continuous seismic threshold monitoring, Geophys. J. Int., 111, 505-514.

Veith, K. F. and G. E. Clawson (1972). Magnitude from short-period P-wave data, Bull. Seism. Soc. Am., 62,435-452.

EVENT 963562										
Date ${ }_{\text {rms }}$		Time	Latitude Longitude		Depth		Ndef Nsta Gap		Mag1 N	
		OT_Error	Smajor Sminor Az		Err		mdist	Mdist	Err	
1997/02/27		:22:54.6	-52.	0016.7500		0.0 f	22	19114	mb	4.612
	1.03	+- 0.65		25.444			20.21	165.00		0.4
SOUTHWEST OF AFRICA										
Sta	Dist	EvAz	Phase	Time	Def	SNR	Amp	Per	Mag1	MagTM
SUR	20.21	10.0	P	20:27:31.4	T	6.4	51.3	1.08 mb	4.8	
TSUM	33.12	1.4	P	20:29:32.6	T	5.4	7.3	1.08 mb	4.5	
VNDA	48.56	170.4	P	20:31:39.3	T	4.2	11.8	1.00 mb	4.7	4.57
BGCA	57.36	2.0	P	20:32:44.5	T	11.9	3.4	0.97 mb	4.3	4.16
PICA	57.62	244.0	P	20:32:47.1	T	3.1	2.3	0.90 mb	4.1	4.29
PLCA	57.62	244.0	PcP	20:33:40.7	T	3.2	2.2	0.83		
CPUP	60.03	265.0	P	20:33:04.0	T	4.6	2.2	0.40 mb	4.5	4.56
DBIC	61.65	335.4	P	20:33:14.2	T	4.3	5.0	0.83 mb	4.5	4.41
BDFB	62.39	280.4	P	20:33:20.0	T	13.0	14.2	0.98 mb	4.9	4.86
LPAZ	74.17	263.8	P	20:34:34.5	T	13.1	50.8	1.60 mb	5.3	4.47
LPAZ	74.17	263.8	PCP	20:34:47.0	T	5.9	5.4	1.10		
STKA	83.26	135.3	P	20:35:23.5	T	10.0	8.1	0.95 mb	4.8	4.49
ASAR	86.62	125.2	P	20:35:40.3	T	34.5	12.3	1.10 mb	5.0	4.85
WRA	89.95	123.5	P	20:35:55.7	T	8.4	1.1	0.80 mb	4.2	3.95
SCHQ	127.22	313.8	PKP	20:42:00.7	T	7.2	4.0	0.73		4.77
TXAR	131.00	266.2	PKP	20:42:08.4	T	10.9	2.1	1.00		4.39
PDAR	143.30	276.7	PKP	20:42:27.4	T	22.6	2.3	0.65		4.55
MNV	145.99	264.0	PKPbc	20:42:35.0	T	23.1	21.9	1.00		4.84
MBC	150.80	340.1	PKPbc	20:42:46.7	T	15.2	7.4	0.98		
YKA	152.60	310.8	PKP	20:42:43.8		9.5	0.9	1.04		
YKA	152.60	310.8	PKPbe	20:42:52.0	T	4.7	2.1	0.57		4.12
YKA	152.60	310.8	PKPab	20:43:01.2	T	4.9	0.7	0.72		
ILAR	165.00	332.2	PKPab	20:43:58.0	T	10.1	1.5	1.05		4.41

Average PIDC magnitude	:	4.63,	St.dev. 0.35
Average PIDC magnitude	(Alpha network < 97 deg):	4.63,	St. dev. 0.38
Average TM magnitude	(Alpha network < 97 deg) :	4.46,	St.dev. 0.28
Average $T M$ magnitude	(Alpha network)	4.49,	St. dev. 0.27

Table 7.4.1. REB bulletin information for an event southwest of Africa. The PIDC magnitudes are given in the Mag1 column, whereas the STA-based TM magnitudes are given in the MagTM column. The average network m_{b} values and the corresponding standard deviations are given at the bottom of the table.

Fig. 7.4.1. Three-station detection capability map during noise conditions for the Alpha network for the time instant 1997-058:20.08. The capability map has been computed by choosing the third lowest of the station "noise magnitudes", and then adding $0.7 m_{b}$ units to accommodate an SNR of 5.0 required for phase detection. The black circles symbolize operating Alpha stations and the red circles symbolize Alpha stations without available data.

Fig. 7.4.2. 90\% magnitude threshold for the same origin time instant as used in the capability map of Fig. 7.4.1.

TM Capability 1997-058:21.17 (3 stations, snr 5)

Fig. 7.4.3. Three-station detection capability 9 minutes into the coda of a $M_{s} 7.2$ earthquake located in Pakistan (white symbol). Again, the black circles symbolize operating Alpha stations and the red circles symbolize Alpha stations without available data

Fig. 7.4.4. 90% magnitude threshold for the same origin time instant as used in the capability map of Fig. 7.4.3.

7.5 Study of seismic travel-time models for the Barents region

Introduction

As part of a project aimed at improving seismic monitoring capabilities under a CTBT, NORSAR and Kola Regional Seismological Centre (KRSC) have begun a comprehensive study of seismicity, seismic wave propagation and seismic event location in the Barents region. This paper gives initial results from this research program.

As is well known, accurate location of seismic events with a regional network requires detailed knowledge of the propagation characteristics of seismic waves in the region. For Fennoscandia, an excellent velocity model (the NORSAR model) has previously been developed, and is being used at both KRSC and NORSAR.

An example of the importance of choosing the correct regional velocity model was given by Ringdal (1997) for the 13 January 1996 event near Novaya Zemlya. In the present study, we have applied the NORSAR model to the general Barents region, including Western Russia, and compared it with the IASPEI 91 model which is currently used by the GSETT-3 IDC. The purpose has been to investigate to which extent the NORSAR model is adequate for this entire region.

The station network

The regional seismic network in the Kola Peninsula currently comprises 7 seismic stations, as described by Kremenetskaya et. al. (1995). For the present study, only those stations with digitally recording equipment have been used. In addition, several stations in Fennoscandia, some IRIS stations, as well as stations contributing to the GSETT-3 IDC have been used. We have only used data from stations within an epicentral distance of approximately 30 degrees for each event, and concentrated on station-epicenter combinations that cross parts of the Barents Region. The stations are listed in Table 7.5.1, and shown on Figure 7.5.1.

Data base

We have selected six well-recorded events in the region, including the calibration explosion in Khibiny on 29 September 1996. For this one event the exact location and origin time is known, whereas for the other events we have recomputed the location using available stations in the GSETT-3 network, the Kola network and the IRIS network.

In order to minimize the effect of unknown velocity structure, we have used only P-readings in the relocation procedure. This method is less sensitive to regional variations than using a combination of P and S , because a shift in P -velocities will cause a shift in origin time, without influencing significantly the epicentral estimate. In fact, the IASPEI-91 model and the NORSAR model gives almost identical location estimates when using P-waves only. All the events are either near-surface (explosions) or shallow earthquakes, and the depths have been constrained to 0 in the location procedure.

The estimated locations, using the NORSAR P-wave travel time model, are given in Table 7.5.2. The paths from each recording station to the epicenter of each of the six events are shown
in Figure 7.5.2. It can be seen that the Barents sea is well covered, and some of the paths cover parts of Fennoscandia/NW Russia as well.

Travel time analysis

After locating the events, we have compared predicted and actual P and S-wave travel times, using both models. Our approach has been, for each model, to use the estimated epicenter and origin time based on the P-data for that model, and then compare the predicted and observed Sarrivals.

Figure 7.5 .3 shows the results for the IASPEI model. The P-wave fit is naturally good, because the P-waves have been used to determine the origin time and epicenter of each event. However, the observed S -wave velocities are consistently higher than those predicted by this model.

Figure 7.5 .4 shows corresponding results for the NORSAR model. The P-wave fit is again good for the same reason as outlined above. In addition, the S-wave data now shows excellent fit between the predicted and observed arrivals.

We conclude that the NORSAR model is appropriate not only for Fennoscandia, but for the entire Barents region from Spitsbergen to Novaya Zemlya, and also for northwestern Russia. Use of this model would be expected to improve location accuracy considerably compared to the use of IASPEI-91, especially when both P and S phases are used in the location procedure.

As an illustration of the difference between the two models, we will present an example, namely, the 13 June 1995 event near Novaya Zemlya. This is Event 5 in our data base, and has been discussed in detail by Ringdal (1996). Waveform plots and predicted phase arrivals for this event are shown in Figure 7.5 .5 (for the IASPEI model) and 7.5.6 (for the NORSAR model). For each figure, the predicted P -arrivals are consistent with the P -onsets. This is a consequence of using the P-arrivals for the respective models to estimate the location and origin time. We note, however, that while the theoretical S-wave arrivals are very accurate for the NORSAR model, they are far too late for the IASPEI model.

Discussion

The first event was the calibration explosion on September 29, 1996, which has an accurately known location and origin time (Ringdal et al, 1996). We were therefore able to estimate accurate travel times and velocities for P and S . (see Table 7.5.3).

There are some interesting observations to be made from this table that will be subjected to further study. For example, the local velocity structure near Khibiny is highly azimuth-dependent, with low velocities to the north (Lovozero) and high velocities to the south (PLQ). This is also evident from the figures previously shown, which do not provide good fits to any of the two models at small distances.

Also, from Figure 7.5.3, the velocities across the western part of the Barents shelf appear to be even higher than those predicted by the NORSAR model. Admittedly, the difference is small compared to the difference between NORSAR and IASPEI, but it might still be a subject for further investigations.

Of special interest is to determine whether the NORSAR velocity model can be applied to improve the event locations made by the GSETT-3 IDC for the Barents Region. We have carried out a preliminary study, using a set of 52 Khibiny explosions detected and located by at least 4 stations (with P detections) in the GSETT-3 network. For each event, we compared the IDC locations (using the IASPEI model) with locations based on the same observations, but with the NORSAR model.

To obtain a simple measure of the results, we calculated the percentage of these 52 events that were located within 18 km of the true epicenter. It should be noted that a circular area of 18 km represents an area of approximately 1000 square km , which is a generally accepted target for location precision in the GSETT-3 network.

As it turned out, 21% of the IDC locations had errors of less than 18 km , whereas the number of such events was increased to 37% when using the NORSAR model for the same data. However, we observed that the S-residuals were rather large with the NORSAR model, and therefore attempted to locate the events using the P-phase data only (with the NORSAR model). This resulted in 62% of the events being located with an error of less than 18 km , which is a significant improvement over both of the other approaches (see Fig. 7.5.7).

It appears from this result that the S-phase readings used in the GSETT-3 bulletins might be less accurate than desirable. The reasons for this is unknown, but will be further investigated.

In the absence of a well-calibrated velocity model, it might seem preferable to make epicenter estimates based on P-phases only, since these location estimates are less sensitive to model errors than locations based on a combination of P and S phases. However, it must be noted that the S-phases, even in the absence of a good velocity model, do place important constraints on the distance to the epicenters. The use of S therefore in many cases reduces the likelihood of gross error, which might occur if there are only few P-readings with poor azimuthal distribution. We plan to conduct more detailed studies of this problem in the future.

F. Ringdal, NORSAR

E. Kremenetskaya, KRSC, Apatity
V. Asming, KRSC, Apatity
Y. Filatov, KRSC, Apatity

References

Kremenetskaya, E.O., V.E. Asming and F. Ringdal (1995): Study of underground mining explosions in the Khibiny Massif. In: NORSAR Semiannual Tech. Summ. 1 Oct 9430 Mar 95, NORSAR Sci. Rep. No. 2-94/95, Kjeller, Norway.

Kremenetskaya, E.O., F. Ringdal, I.A. Kuzmin and V.E. Asming (1995): Seismological aspects of mining activity in Khibiny, Kola Science Centre, Apatity

Kremenetskaya, E.O. \& V. M. Trjapitsin (1995): Induced seismicity in the Khibiny Massif (Kola Peninsula), PAGEOPH Vol 145, No 1, pp 29-37.

Panasenko, G.D. and Yakovlev, V.M. (1983). About the nature of anomalous deformation of a transport tunnel in the mountain Yukspor. In: Geophysical Investigations in the European North of the USSR, KB AS USSR, Apatity, pp. 38-44 (in Russian).

Ringdal, F. and T. Kvaerna (1989), A multi-channel processing approach to real time network detection, phase association and threshold monitoring, Bull. Seism. Soc. Am. 79, 19271940.

Ringdal, F., E. Kremenetskaya, V. Asming, I. Kuzmin, S. Evtuhin \& V. Kovalenko (1996): Study of the calibration explosion on 29 September 1996 in the Khibiny Massif, Kola Peninsula, Semiannual Technical Summary 1.April-30 September 1996, NORSAR Sci. Rep. 1-96/97, Kjeller, Norway.

Ringdal, F. (1996): The seismic event on Novaya Zemlya 13 June 1995, Semiannual Technical Summary 1 October 1995-31 March 1996, NORSAR Sci. Rep. 2-95/96, Kjeller, Norway.

Ringdal, F. (1997): Study of low-magnitude seismic events near the Novaya Zemlya nuclear test site, submitted to Bull. Seism. Soc. America.

Table 7.5.1. List of seismic stations used in this study

Name	Latitude	Longitude
APA (Broadband)	67.568 N	33.388 E
PLQ	66.410 N	32.750 E
ARCESS (Array)	69.534 N	25.511 E
Amderma (Array)	69.742 N	61.655 E
NORESS (Array)	60.735 N	11.541 E
ARU	56.430 N	58.560 E
KBS	78.926 N	11.942 E
ALE	82.503 N	62.350W
LVZ	67.898 N	34.651 E
KEV	69.755 N	27.007 E
SPITS (Array)	78.180 N	16.350 E
FINESS (Array)	61.440 N	26.080 E
AP0 (Array)	67.603 N	32.994 E

Table 7.5.2. List of seismic events used in this study. The locations are estimated from Pphases using the NORSAR velocity model. For Event 1, the true location is given in the comment field.

No	Date	Origin time	Latitude	Longi- tude	Comment
1	29.09 .1996	$06.05: 46.19$	67.677 N	33.733 E	Explosion in Khibiny (at 67.675N 33.728E)
2	05.01 .1995	$12.46: 01.65$	59.561 N	56.566 E	Solikamsk
3	26.04 .1995	$08.55: 59.33$	85.088 N	8.332 E	NW from Spitsbergen
4	11.06 .1995	$19.27: 13.34$	75.74 N	34.79 E	Barents sea
5	13.06 .1995	$19.22: 38.36$	75.177 N	56.528 E	Near Novaya Zemlya
6	07.06 .1995	$11.09: 41.57$	69.485 N	30.992 E	Explosion in Zapolyarny

Table 7.5.3. Distances, travel times and velocities estimated for Event 1

Station Code	$\left.\begin{array}{l} \mathrm{R} \\ \mathrm{R} \\ \mathrm{~km} \end{array}\right)$	$\begin{gathered} 1 \\ (\mathrm{deg}) \end{gathered}$	$\begin{aligned} & \text { VI } \\ & (\mathrm{km} / \mathrm{sec}) \end{aligned}$	$\begin{gathered} 11 \\ (\mathrm{sec}) \end{gathered}$	$\begin{aligned} & \mathrm{vS} \\ & (\mathrm{~km} \mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { TT } \\ & \text { (sec) } \end{aligned}$
APA	18.081	0.1631	5.752	3.1433	3.322	5.4433
AP0	32.3	0.2901	6.102	5.2933	3.476	9.2933
LVZ	45.757	0.4116	5.987	7.6433	3.468	13.193
PLQ	147.186	1.3237	6.929	21.243	3.879	37.943
ARC	391.954	3.5255	7.044	55.643	4.043	96.943
FIN	781.881	7.036	7.490	104.39	4.250	183.99
SPI	1283.514	11.562	7.803	164.49	-	-
NRS	1308.326	11.787	7.896	165.69	4.472	292.54

Fig. 7.5.1: Map showing the locations of seismic stations (triangles) and arrays (squares) used for this study. Station coordinates are listed in Table 7.5.1. The station ALE is not shown on the map.

Figure 75.2: Station-event paths for the six seismic events used in this study. Only paths for which data has been available are shown.

Fig. 7.5.3: Theoretical and observed P-velocities (top) and S-velocities (bottom) using the IASPEI travel-time model. The event locations used for this figure have been made on basis of the P wave data using the IASPEI model, and consequently the P-wave data fits the model well. However, the predicted S-wave velocities are consistently lower than the observed data, indicating that the IASPEI model is not suitable for the region studied.

Fig. 7.5.4: Theoretical and observed P-velocities (top) and S-velocities (bottom) using the NORSAR travel-time model. The event locations used for this figure have been made on basis of the P wave data using the NORSAR model, and consequently the P-wave data fits the model well. In addition, as opposed to Fig. 7.5.3, the predicted S-wave velocities are in quite good correspondence with the observed data, indicating that the NORSAR model is well suited for the region studied.

Fig. 7.5.5 Illustration of the predicted P and S phases for the IASPEI model for event 5 in the data base. The predicted time difference between P and S (vertical bars) clearly do not match the observed onsets.

Fig. 7.5.6 Illustration of the predicted P and S phases for the NORSAR model for event 5 in the data base. In contrast to Fig. 7.5.5, the predicted time of arrival of P and S (vertical bars) match the observed onsets quite well.

Location error - Khibiny

Fig. 7.5.7 Histograms showing the distribution of location errors for 52 Khibiny mining explosions: a) IDC locations (using P and S data with IASPEI model), b) Locations using IDC data (P and S) but with NORSAR model and c) Locations using P data only. Note that case c) shows less error for the majority of events, although there are some outliers.

[^0]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

[^1]: X : Normal operations
 A : All channels masked for more than 12 hours that day
 B : All SP channels masked for more than 12 hours that day
 C : All LP channels masked for more than 12 hours that day
 I : Communication outage for more than 12 hours

