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6.4  Synthetic travel times for regional crustal transects across the Barents 
Sea and the adjacent western continental margin

Introduction

The CTBT monitoring tasks have created a renewed interest for more precise estimation of 
local and regional travel times through a laterally varying lithosphere.

The crustal and seismic velocity structure of the Barents Sea varies significantly (Faleide, 
2000):

• The thickness of the sedimentary cover varies from 0 to 20 km
• The depth to Moho varies from 20 to 45 km
• The thickness of crystalline crust varies from 10 to 45 km

If we include the western Barents Sea-Svalbard continental margin and the adjacent Norwe-
gian-Greenland Sea, Moho rises to depths of 8 - 10 km and the thickness of the oceanic crystal-
line crust is typically 5 - 7 km.

The crustal heterogeneity of the Barents Sea region affects the accuracy of any seismic event 
location. Locating seismic events in this area with the 1D Barents Sea crustal model 
(Kremenetskaya and Asming, 1999) will give a location which will vary significantly in qual-
ity, depending on azimuth and distance between the seismic array (e.g. SPITS) and the earth-
quake (Schweitzer, 2000). The 1D Barents Sea crustal model is already known as an 
improvement with respect to the standard Earth model IASP91 (Kennett and Engdahl, 1991), 
as used at the IDC. It has a thicker crust (40 instead of 35 km), 6.9 (and 3.1)% higher P veloci-
ties in the two layered crust, and slightly higher velocities below the Moho.

In this report, we have calculated synthetic travel times for the first arrivals along four regional 
crustal transects across the Barents Sea and the adjacent western continental margin (Faleide, 
2000) (Fig. 6.4.1) and compared these with the corresponding travel times predicted by the 
Barents Sea regional velocity model of Kremenetskaya and Asming (1999) which today is used 
to localize earthquakes in this area. Comparing these travel time curves can give some indica-
tion of how large the uncertainties tied to the localization of earthquakes with the Barents Sea 
model are.

Along one of the transects, between the spreading axis in the Greenland Sea and SPITS on 
Svalbard (Fig. 6.4.1), we have also carried out a sensitivity study where we tested the travel 
time effects caused by variations in the Moho topography.

Western Svalbard margin

Transect 4, across the western Svalbard margin, is the most extreme with respect to a laterally 
varying crustal configuration (Fig. 6.4.2). The transect is 300 km long beginning east of SPITS 
and heading almost directly westwards to the Knipovich Ridge (Eiken et al., 1994) (Fig. 6.4.1), 
which is a part of the Mid-Atlantic spreading ridge system. The model consists of the main sed-
imentary sequences and the oceanic and continental crystalline crust separated from the mantle 
by the Moho discontinuity. Each unit has been assigned a velocity within the velocity ranges 
given by Faleide (2000) (Fig. 6.4.2).
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The Moho depth is varying from 10 km under the oceanic crust to 32 - 37 km under Spitsber-
gen (Fig. 6.4.2). The Moho configuration is thought to be well constrained by deep seismic 
reflection and refraction data along the transect, however, several sensitivity tests have been 
performed to reveal the importance of this structure. The sediment basins are up to 10 - 12 km 
deep but have minor influence on the travel times for events located around the spreading ridge. 
On the other hand there is a high-velocity layer consisting of carbonates (V ~ 6.2 km/s) located 
from distance 175 km to the eastern end of the transect. This layer is always carrying the first 
arrivals from offsets less than ~ 70 km.

A finite difference (FD) method (Podvin & Lecomte, 1991) as implemented in the NORSAR-
2D software package was used to calculate the first arrivals including head waves which are 
usually not included in ray tracing techniques. This method gives the theoretical first arrivals 
but no information about later phases, amplitudes, or other ray attributes. It should therefore be 
kept in mind that for larger distances the first arrivals might not always carry enough energy to 
be detected at a seismological station. The ray paths for the first arrivals (both from the mantle 
and from the crust) are shown in Fig. 6.4.3.

Because the Moho topography is the most important feature affecting the travel times and ray 
paths at greater distances, this has been varied in a sensitivity test with five different models 
(Fig. 6.4.4). The different travel time curves constructed from each model are plotted in Fig. 
6.4.5. For comparison the travel time curve from the regional Barents Sea model (Kremenet-
skaya and Asming, 1999) is also shown. The five different tests include:

1. The Moho depth was gradually decreased from 10 km to about 7.5 km towards the Knipov-
ich Ridge.

2. The Moho depth was gradually decreased from about 17 to 13 km between distance 50 and 
110 km.

3. The Moho depth was gradually increased from about 16 to 20 km between distance 75 and 
150 km.

4. The depression in the Moho topography at distance 160 km was removed, resulting in a flat 
and shallower Moho below the continental crust.

5. The depression in the Moho was extended to the end of the profile resulting in a flat and 
deeper Moho below the continental crust.

It turned out that all the different modifications of the Moho geometry only had minor influence 
on the travel times (Fig. 6.4.5). On the other hand, the synthetic travel time curves are quite dif-
ferent from that based on the Barents Sea regional velocity model of Kremenetskaya and 
Asming (1999). Compared to the model based on Transect 4, the Barents Sea regional model 
are too fast up to about 200 km but slower at offsets larger than 200 km, an effect already 
observed by Schweitzer (2000).

Barents Sea

Three regional profiles across the Barents Sea (Fig. 6.4.1) (Faleide, 2000), each 1100 km long, 
have also been modelled. In Transect 1 the source was placed at ARCES (∆ = 100 km) result-
ing in wave propagation from ARCES to Novaya Zemlya. In Transect 2 the source was placed 
at SPITS (∆ = 50 km) resulting in wave propagation from SPITS to Novaya Zemlya. Two dif-
ferent tests were performed on Transect 3 between northern Norway and SPITS because there 
is a seismic station which need to be calibrated at both ends. By reversing the survey configura-
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tion (source at SPITS instead of northern Norway) the crust will be sampled in a different way, 
creating a different travel time curve. However, the travel times at the end of the profiles will be 
the same because of the principle of reciprocity.

All the layers in Transects 1 - 3 (Fig. 6.4.6 - Fig. 6.4.9) including the crystalline crust and the 
mantle have been assigned a gradient based on the velocity ranges given by Faleide (2000). The 
velocities in the sediment basins vary from 4.0 or 4.5 km/s at top to 5.0 or 5.5 km/s at the bot-
tom (depending on which transect, usually around 15 - 20 km depth). The crystalline basement 
has been assigned a gradient which gives a velocity of 6.0 or 6.2 km/s at zero depth and 6.8 or 
6.9 km/s at about 30 - 40 km depth. The mantle has been assigned a velocity of 8.05 km/s at 25 
- 30 km depth and 8.15 km/s at 70 km depth.

Fig. 6.4.6 and Fig. 6.4.7 show the different ray paths for the theoretical first arrivals for 
Transects 1 and 2, and Fig. 6.4.8 and Fig. 6.4.9 show the same for the two reversed models 
based on Transect 3. The different travel time curves based on these ray paths are shown in Fig. 
6.4.10 together with that of Transect 4 and the regional Barents Sea crustal model.

Comparing the travel time curves at various offsets (Fig. 6), three different domains can be 
established:

• ∆ = 0 - 180 km: The Barents sea crustal model is faster compared to all the other models. 
The difference is greatest for Transect 3 (3.5 s at offset 100 km) and smallest for Transect 1, 
which is almost identical with the Barents Sea crustal model up to 200 km.

• ∆ = 180 - 450 km: At about 200 km the first arrivals from the Barents Sea crustal model are 
coming from the third layer (Vp = 8.10 km/s), as can be seen from the slope of the curve. 
Transect 1 and Transect 3 are slower (~ 0.8 s) and Transect 2 and 3 (reversed) are faster (~ 
0.3 - 0.5 s).

• ∆ = 450 - 1100 km: The crossover distance between the Barents Sea crustal model and 
Transect 2, 3, and 3 reversed can be seen at an offset of 550 - 600 km. Up to this point the 
Barents Sea crustal model seems to represent a good average velocity compared to the dif-
ferent transects, but beyond 450 km where the first arrivals are coming from the fourth layer 
in the Barents Sea crustal model (Vp = 8.23 km/s) this velocity is relatively high with 
respect to the other models, as it can be seen from the slope of the curve. The average slope 
of the three different travel time curves above an offset of 700 km is almost identical with 
the slope for the Barents Sea crustal model, which indicate almost the same velocity at 50 - 
70 km depth. However, the differences in the total travel times are up to two seconds.

Discussion

Depending on the offset, travel time differences of up to 2 - 3 seconds are found when compar-
ing travel time curves from the four transects to the standard 1D model (Barents Sea crustal 
model). This reveals that the Barents Sea crustal model needs to be refined in order to fit the 
velocity structure established along the regional transects. Because most of the observed events 
in this region are only observable at regional distances, it will be particularly important within 
this context to address upper mantle velocities, as a basis for Pn travel times. 

The discrepancies between the different models in the first P-onset times of up to several sec-
onds can easily lead to systematic epicenter differences of several tens of kilometers whenever 
the azimuthal coverage with observing stations is low. If the azimuthal coverage is good, the 
actual location may be calculated quite well but we will get larger observed travel time 
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residuals, especially for more nearby stations. The residuals again are the base for all estima-
tions of epicentral error ellipses. That means, unusual high residuals will generally result in 
lower quality locations.

This modelling is based on deep seismic reflection and refraction data observed during the last 
decades and is providing no explicit information about the corresponding S-velocities in this 
region. As long as the Vp-to-Vs ratio is constant, single array locations are mostly influenced 
by this ratio because they use the S-P travel-time differences as a means for estimating epicen-
tral distance. If the Vp-to-Vs ratio is not constant, the systematic errors due to the usage of 
incorrect models are even more difficult to evaluate. However, especially for smaller events the 
usage of S onsets is essential to get a hypocentral solution. A better knowledge of S velocities 
is therefore needed for a successful calibration of the European Arctic.

These results show that 2D and 3D modelling of travel times for the European Arctic are both 
feasible and desirable, aiming at producing source-site specific corrections as used and needed 
by IDC/CTBTO.

As further work we plan to continue the search for ground-truth events in the European Arctic 
in order to obtain more and better P-phase travel time observations for the whole region. The S-
phase travel times should be addressed later, building in part on the improved P-phase based 
locations. Tomographic studies for the whole region based on surface waves and body wave 
data supplemented by receiver-function studies will also be potentially useful in a further delin-
eation of lithospheric structure for the European Arctic.

J. I. Faleide 
J. Schweitzer 
H. Bungum 
E. Møllegaard
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Figure 6.4.1. Regional setting - main geological provinces and structural elements in the Barents Sea 
and surrounding areas. Location of crustal transects and the seismic arrays SPITS and ARCES. 
BB = Bj¢rn¢ya Basin, BP = Bjarmeland Platform, FP = Finnmark Platform, RB = Hammeifest 
Basin, HFZ = Hornsund Fault Zone, LR= Loppa High, NB = Nordkapp Basin, SFZ = Senja 
Fracture Zone, SB = S¢rvestnaget Basin, SH= Stappen High, TB = Tromst; Basin, WP = Vest­
bakken Volcanic province (Faleide, 2000). 
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Figure 6.4.2. The crustal transect (Transect 4, Fig. 6.4.1) plotted together with the P-velocity range. A 
gradient has been assigned to all the layers based on the velocities in the brackets, and the gradi­
ent is varying with layer thickness. Vertical exaggeration (VE) = 3. 

10.0 

15.0 

30.0 

! ...... ........... + ............... .. 35.0 

! 
! .--..-.-.---..--..;---..---+- ..--...---..-....... -.-..;---..-._.,........_..--_..__.._._~-~-+-~....;. 40.0 

Figure 6.4.3. Ray paths from Transect4 (Fig. 6.4.2) showing.first arrivals (FD method). Wavefronts and 
ray paths are plotted together. VE = 3. 
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Figure 6.4.4. The different modifications of the Moho topography during the five sensitivity tests. The 
star indicates the location of the source. · 

E Synthetic traveltime curves for six different Moho configurations 
o.o 25.0 50.0 75.0 100.D 125.0 150.0 175.0 200.0 

w 
flJ~31 (~f (.m 

r1--_.._-+-__._-t--__._-t--_._ __ 1--_.._---l-=-_,__--+-~-+-=:t---+--..___--t--~7.m11 

o.o 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 

7.0 

6.0 

- 0.0 
225.o 241,m 

Figure 6.4.5. Synthetic travel time curves for the original Moho topography (0) and the.five modifica­
tions (I - 5), the numbers corresponds with Fig. 6.4.4. Transect 4 (Fig. 6.4.1) is shown from west 
to east, but the travel time curves are shown from east to west. The curves are deviating at most 
about 0.6 s, which indicate that the modelled details will hardly be resolvable with observed 
data. The travel time curve from the Barents Sea crustal model is shown for comparison. 
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Figure 6.4.6. Ray paths for first arrivals (FD method) from ARCES to Novaya Zemlya (based on 
Transect 1 in Fig. 6.4.1 ). Source at the approximate location of ARCES. The model has been 
scaled down by the factor 0.01 

DJ.stance (km> 
1.0 2.0 3.0 4.0 5 . 0 6.0 7.0 a. o 9. 0 10.0 11. 0 

Figure 6.4. 7. Ray paths for first arrivals (FD method) from SPITS to Novaya Zemlya (based on 
Transect 2 in Fig. 6.4.1 ). Source at the approximate location of SPITS. The model has been 
scaled down by the factor 0.01. 
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Figure 6.4.8. Ray paths for first arrivals (FD method) from northern Norway to SPITS (based on 
Transect 3 in Fig. 6.4.1). Source in northern Norway. The model has been scaled down by the 
factor 0.01. 
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Figure 6.4.9. Ray paths for first arrivals (FD method) from SPITS to northern Norway (Transect 3, 
reversed survey, based on Transect 3 in Fig. 6.4.1 ). Source at the approximate location of SPITS. 
The model has been scaled down by the factor 0.01. 
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Figure 6.4. JO. travel time curves from the five transects (six tests) including the Barents Sea crustal 
model and the Isjjord transect (Transect 4, Fig. 6.4.1 ). Barents Sea crustal model = thick/solid, 
Transect 1 = dashed/dotted, Transect 2 = dotted/thin, Transect 3 = dotted/thick, Transect 3 
(reversed)= dashed/thin and Transect 4 (lsjjord) =solid/thin. Reduction velocity= 8 km/s. Note 
that these travel time curves are not scaled like the ray paths figures. 
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