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6.3  A probabilistic seismic model for the European Arctic

Sponsored by the National Nuclear Security Administration

Award Nos: DE-AC52-08NA28651(NORSAR,UiO) and LL08-BAA08-38-NDD03 (LLNL)

6.3.1 Introduction

The area of interest for this study is the European Arctic, in particular the Barents Sea and sur-
rounding regions such as the Norwegian-Greenland Sea, the Southern Eurasian Basin, Novaya 
Zemlya, the Kara Sea, the East European Lowlands, the Kola Peninsula and the Arctic plate 
boundary (Figure 6.3.1).When developing a seismic model the focus is often on finding one 
single best fitting model. Existing models for the region are based on approaches that try to 
find the model with the best fit to one or several dataset. The resulting models contain little to 
no information about model uncertainties. Knowledge about the robustness of features in seis-
mic models is however beneficial for the geological interpretation of models and the reliable 
determination of location uncertainties for seismic events. 

Fig. 6.3.1.   Simplified tectonic map of the region after Ritzmann et al. (2007) and Bird (2003). The 
plate boundary is given by the brown line and continent-ocean boundary by the dashed blue 
line. Beige areas represent the major sedimentary basins in the Region. The cross-section 
along which we will examine our probabilistic model in Figure 6.3.3 is outlined in red.

Our probabilistic model differs from traditional seismic models in that it describes the posterior 
distribution, the ensemble of models which fit the data. The posterior distribution is propor-
tional to the product of the prior distribution and the likelihood function. The prior distribution 
represents the ensemble of plausible models and the likelihood function makes models with a 
good fit to the data more likely than models with bad fit to the data. The data we use are thick-
ness constraints, velocity profiles, gravity data, surface wave group velocities and body wave 
travel times. In this work a Markov Chain Monte Carlo (MCMC) technique is used to sample 
the unknown posterior distribution. This process results in 4,000 models that all fit the 
data.Analyzing this ensemble of models that fit the data allows to estimate a mean model and 
the standard deviation for the model parameters, i.e. their uncertainty. Maps of sediment thick-
ness and thickness of the crystalline crust derived from the posterior distribution are in good 
agreement with knowledge of the regional tectonic setting. The predicted uncertainties, which 
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are equally important as the absolute values, correlate well with the variation in data coverage 
and data quality in the region. In addition to this a probabilistic model allows the formulation 
of seismic event location techniques that take into account uncertainties in the velocity model.

6.3.2 Probabilistic model

We determined an average model to compare the results of this study to other studies of the 
same region. The real power of a probabilistic model lies however in the fact that it describes 
the distribution of models that fit the data, as we will see later in the location example.

Fig. 6.3.2.   Depth to Moho: a) Mean model obtained in this study, b) CRUST 2.0 after Bassin et al. 
(2000), c) BARENTS50 after Ritzmann et al. (2007) and d) isostatic Moho of Ebbing et al. 
(2007).

Figure 6.3.2 shows the depth to Moho in this study, CRUST 2.0 (Bassin et al., 2000), 
BARENTS50 (Ritzmann et al.,2007) and for an isostatic Moho computed by Ebbing et al. 
(2007). It is important to keep in mind that the different models have different spatial resolu-
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tions; our model for example has a node spacing of 83 km while CRUST 2.0 uses a 2 by 2 
degree grid. This makes it necessary to resample the models for this comparison. Unlike the 
other models our probabilistic model also provides estimates for the uncertainties, thus we can 
compute a standard deviation in addition to the mean of our samples of the posterior distribu-
tion. We have hatched the areas where the standard deviation on the Moho exceeds 3 km, indi-
cating where this parameter is poorly constrained. The models are generally similar, with some 
notable differences. For example, most models see more complexity within the major tectonic 
provinces than the relative simple CRUST 2.0 model. Also, the Moho recovered by 
BARENTS50 appears more detailed than the Moho recovered in the present study. This comes 
as no surprise when one takes into account that BARENTS50 has a spatial resolution of 50 km. 
The models differ the most from each other around Novaya Zemlya and in the Kara Sea. Inter-
estingly this is also where the uncertainties in the depth to Moho are generally larger than 3 km 
in our study. The isostatic modeling of Ebbing et al. (2007) suggests, as expected, a shallower 
and smoother Moho than the other, seismically-based models.

Fig. 6.3.3.   West-east cross-section along the great circle path shown in Figure 6.3.1; the top panel 
shows Vp and the bottom panel shows the uncertainty in Vp. In the bottom panel interfaces 
are colored according to the uncertainty in depth.

Figure 6.3.3 shows a west to east cross-section through our probabilistic model. Unlike cross-
sections further north across the western continental margin, we find a relatively rapid transi-
tion in crustal thickness and see an increase in crustal thickness associated with Novaya Zem-
lya. The highest uncertainty in depth to Moho lies below the Kara Sea. This is related to the 
weak constraints on the Moho here: gravity data and a velocity profile with a relatively high 
uncertainty, with no body waves sampling the Moho. We clearly recover the East Barents Sea 
and Kara Sea basin. The sedimentary basins in the southwestern Barents Sea, on the other 
hand, are only tens of kilometers wide. The node spacing of 83 km used in this study means 
that we cannot recover these basins. What we are able to recover is the fact that the sedimen-
tary layer is on average thicker if there are several sedimentary basins a few tens of kilometers 
wide.



52

NORSAR Sci. Rep. 2-2010 August 2010

The sediments on the epicontinental Barents Shelf have significantly higher velocities than 
sediments covering the oceanic crust. This feature of our model can be linked to the uplift of 
the region in the Neogene and the repeated phases of glaciation in the Barents Sea during the 
late Pliocene and Pleistocene (Smelror et al., 2009). Uplift and glaciation cause erosion of the 
sediments covering the Barents Shelf and the deposition of large amounts of young sediments 
into major submarine fans along the western and northern margin. These young sediments are 
less consolidated and have as a consequence lower seismic velocities when compared to the 
older sediments covering the Barents Shelf. The uppermost sediments in the Kara Sea Basin 
show slightly lower velocities than the uppermost sediments in the East Barents Sea Basin. 
This correlates with the interpretation that only during the maximum extent of glaciation in the 
late Pleistocene did the ice sheet reach into the Kara Sea (Smelror et al., 2009). Sediments in 
the Kara Sea have therefore experienced less erosion, leaving less compacted sediments 
exposed at the seafloor, possibly together with deposits from other periods of glaciation

6.3.3 Probabilistic earthquake location

The non-linear problem of seismic event location using body wave travel times is often solved 
using non-linear iterative approaches. A poor station distribution and a complex 3D velocity 
structure however contribute to the non-linearity of the location problem and create potential 
instabilities. The potential failure of linearization together with the need for more comprehen-
sive location uncertainty information in the form of a probability density function has led to the 
formulation of numerous probabilistic approaches (e.g. Kennett and Sambridge, 1992; Billings, 
1994; Lomax et al., 2000). Location uncertainty is caused by pick uncertainties (i.e., the inabil-
ity to accurately estimate onset time for a phase) and uncertainties in the velocity models. Most 
estimates for location uncertainty do not however take into account the uncertainties in the 
model used to predict the travel times. They are solely based on pick uncertainties. A probabi-
listic model, on the other hand, allows a prediction of observables and their uncertainties.

The distribution of an observable (i.e., its value and uncertainty) given a probabilistic model 
can be recovered by calculating its values for every model belonging to the set of samples that 
defines the probabilistic model. Similarly it is possible to obtain an estimate for the location 
uncertainty of a seismic event due to model uncertainty by locating the event for all the models 
that comprise the posterior set. Here we use an MCMC approach to approximate the posterior 
distribution for the origin time and location of an earthquake. The maximum of the posterior 
distribution then defines the hypocenter location and origin time.

We use an earthquake in the western Barents Sea to investigate the influence of model uncer-
tainties on location uncertainties. Figure 6.3.4.a shows the station distribution, and Figure 
6.3.4.b the distribution of the mean path velocities, between the event and two selected sta-
tions. For longer paths which reside primarily in the mantle, the mean velocity is less influ-
enced than for shorter paths that reside in the crust. We have located the earthquake for each of 
the models in the posterior distribution. Figure 6.3.4.c shows the 4,000 locations obtained and 
thereby provides an estimate for the location uncertainty from model errors alone together with 
an event location obtained using a regional 1D velocity model. All stations available for the 
location of this event lie to the west of the earthquake. This results in both the error ellipse for 
the 1D velocity model solution and the cloud of locations being elongated in the west-east 
direction. We observe a linear trend between late deep event locations to the southwest and 
early shallow locations to the northeast. Bondár et al. (2004) showed that for an excellent sta-
tion coverage, depth and origin time are more sensitive to the velocity model than the epicenter 
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location. We find that for an uneven station distribution as shown here the epicenter location 
seems to be equally sensitive to the velocity model as to the origin time and depth.

Fig. 6.3.4.   Probabilistic location of an earthquake, taking model uncertainties into account: a) sta-
tion distribution, b) distribution of average path velocities for regional phases for two sta-
tions used in the location example and c) hypocenter and origin time of the earthquake 
computed for each of the models forming our probabilistic model. The mean location is 
given by the black diamond. The points are colored according to the deviation from the mean 
origin time of our set of locations. The black circle marks the location of the event computed 
using a 1D velocity model and a fixed depth of 0 km and the error ellipse is given by the gray 
shaded area.

6.3.4 Concluding remarks

We have successfully employed a probabilistic approach for the development of a data-driven 
regional seismic model for the European Arctic. We have compared the mean model of our 
posterior distribution with other models that cover the region and find that it captures the fea-
tures that can be resolved with a node spacing of 83 km. Our probabilistic model not only pro-
vides images of the subsurface together with estimates of uncertainties, it also allows for the 
prediction of observables and uncertainties. This can be used to derive seismic event location 
uncertainties from model uncertainties and can in the future be used for location algorithms 
that take model uncertainties in addition to uncertainties in onset time into account.

Acknowledgements

We thank NOTUR (The Norwegian Metacenter for Computational Science) and the University 
of Oslo for providing the computational resource on the Titan III high performance computing 
facilities. We thank Stephen Myers (LLNL) for contributing the ground Truth data and NGU 
(The Geological Survey of Norway) for providing the depth to Moho data shown in Figure 
6.3.2.d.

−20

0

20

−20 0 20

0

20

0

20

−20 0 20

−20

0

20

0 20

0 20

−2
0
2

s

difference
from mean
origin time

West East

North

South

(km)

(km)

depth (km)

de
pt

h 
(k

m
)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

fr
eq

ue
nc

y

345678

velocity (km/s)

Pn (ARCES)

Sn (ARCES)

Pg (BJO)

Sg (BJO)

20˚ 30˚ 40˚ 50˚ 60˚

64˚
64˚

68˚
68˚

72˚
72˚

76˚

76˚

BJO

ARCES

c)

b)

a)



54

NORSAR Sci. Rep. 2-2010 August 2010

Juerg Hauser, NORSAR
Kathleen M. Dyer, LLNL
Michael E. Pasyanos, LLNL
Hilmar Bungum, NORSAR
Jan Inge Faleide, UiO
Stephen A. Clark, UiO
Johannes Schweitzer, NORSAR

References

Bassin, C., G. Laske, and G. Masters (2000). The current limits of resolution for surface 
wave tomography in North America, EOS Trans. AGU, 81, F897.

Billings, S. (1994). Simulated annealing for earthquake location, Geophys. J. Int., 118 (3), 
680-692.

Bird, P. (2003). An updated digital model of plate boundaries, Geochem. Geophys. Geo-
syst., 4 (3), 1027.

Bondár, I., S. Myers, E. Engdahl, and E. Bergman (2004). Epicentre accuracy based on seis-
mic network criteria, Geophys. J. Int., 156 (3),483-496.

Ebbing, J., C. Braitenberg and S. Wienecke (2007). Insights into the lithospheric structure 
and the tectonic setting of the Barents Sea region by isostatic considerations, Geo-
phys. J. Int., 171, 1390-1403.

Kennett, B. L. N. and M. Sambridge (1992). Earthquake location - genetic algorithms for 
teleseismic location, Phys.Earth Planet. Inter., 75 (1-3), 103-110.

Lomax, A., J. Virieux, P. Volant, and C. Berge (2000). Probabilistic earthquake location in 
3D and layered models: Advances in Seismic Event Location, pp. 101-134.

Ritzmann, O., N. Maercklin, J. I. Faleide, H. Bungum, W. D. Mooney and S. T. Detweiler 
(2007). A 3D geophysical model for the crust in the greater Barents Sea region: Model 
construction and basement characterization. Geophys. J. Int., 170, 417-435.

Smelror, M. O., O. Petrov, G. B. Larsen and S.Werner (2009). Geological History of the Bar-
ents Sea, Geological Survey of Norway.




