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6.5 Classifying Seismic Signals at Small–Aperture Arrays via Stochastic Modeling 
of F-K Image Sequences 

6.5.1 Automatic seismic event classification systems 

For any seismic monitoring task (volcano, geothermal, microseismic, …) it is desirable to detect and 
classify seismic events consistently (objectively and time-invariantly) and with little/no need for 
(costly) expert intervention. The seismic event categorization should be based on wave field 
properties including temporal structure and context. A similar problem in the realm of speech 
recognition applications is termed the word spotting problem. Thus, Ohrnberger (2001) transferred 
successfully hidden Markov model (HMM) techniques from the field of acoustic level speech 
recognition to tackle the seismic event spotting task applied to volcano-seismic signal observations. 
Since then, a number of HMM based classification approaches have been reported in seismology 
(e.g., Beyreuther and Wassermann, 2008; Benitez et al., 2007; Hammer et al., 2012).  

6.5.2 Seismic events casted as doubly stochastic process 

HMMs are doubly stochastic processes that allow modeling of trajectories of observed sequences 
forming a seismic event (signal of interest) in a representative multidimensional space, which is 
referred to as feature space. In Fig. 6.5.1 (top) we show examples of trajectories for two distinct 
events in a two-dimensional feature space (e.g., this may be amplitude and dominant frequency). 
Different signal properties result in clearly distinct paths traversing the feature space in time. 

 

 

Fig. 6.5.1 Modeling trajectories of feature vector sequences as doubly stochastic processes. 

When there are several examples for one event class that share similar behavior in feature space, 
similar trajectories will be observed. The distribution of observed trajectories for one and the same 
event type may then be described by a dynamically evolving probability density function of 
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observations (Fig. 6.5.1, bottom right). One particularly well suited stochastic model for describing 
such dynamically evolving probability density functions are Hidden Markov Models (HMM). Thus, the 
distribution of trajectories for any event class can be modeled as outcome of a HHM. The first 
underlying (hidden) process of a HMM creates a sequence of discrete states obeying Markov 
properties. At each time step, the system emits an observation drawn from a state-dependent 
multivariate Gaussian (see Fig. 6.5.2). For details about the underlying mathematics and the main 
standard computational issues about HMMs (i.e., parameter learning) we refer here to the tutorial 
paper by Rabiner (1989), to fundamental work on the speech processing by Rabiner and Juang (1993) 
or the summary given in Ohrnberger (2001). 

 

Fig. 6.5.2 HMM as a double stochastic process. The underlying state sequence of hidden state 
variables creatse an observation (seismic time series attributes) at each time step. The 
sequences of seismic time series attributes are then interpreted as having been created by 
a HMM. Model parameters are transition probabilities (aij) and output probability density 
functions (PDFs) related to a current state index (bi). 

 

The parameters of HMMs (state transition probabilities and output power-density-functions) are 
usually learned for each class of interest from a large training set (several tens of examples needed 
for each class). Here, we follow an alternative approach recently proposed by Hammer et al. (2012), 
which avoids the costly preparation of training sets. Indeed it is possible to start off with a single 
reference event by exploiting abundant information from unlabeled and therefore cheap training 
data (mostly continuous background/noise wave field information). The main idea for the proposed 
training procedure is to estimate with high confidence parameters of the probability density 
functions describing the general wave field characteristics in feature space (see Fig. 6.5.3). The 
parameters of the event class are then estimated from adjustments to these probability density 
functions based on a single/few reference event(s) for a specific class (see Fig. 6.5.4). 
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Fig. 6.5.3 Learning general background model from continuous data (unsupervised clustering from 
”cheap” training data). 

 

Fig. 6.5.4 Single reference waveform to update an event-specific classifier. The reference pattern is 
modeled as sequence of ”visited” Gaussians. 
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6.5.3 Sliding window multi-broadband f-k array analysis as representative feature 
sequence 

Seismic arrays are superior to single station observations allowing for determination of wave field 
direction and apparent speed along the earth surface. Three-component broadband arrays like SPITS 
(located on the Svalbard Archipelago, Norway) even enable a quite complete decomposition of the 
entire seismic wave field. We apply a sliding window f-k analysis in three overlapping, broad 
frequency bands to the vertical component recordings of SPITS. The example given in Fig. 6.5.5 
shows that blurry f-k images indicate ”noise” or non-plane wave / multiple wave arrivals. Clear 
arrivals are easily detected by eye as the focused f-k image resembles the theoretical broadband 
array response pattern shifted to the wave group arrival's slowness vector position.  

 

 

Fig. 6.5.5 Temporal sequence of f-k images computed in sliding window analysis for multiple broad 
frequency bands (from bottom to top row evaluated frequency bands are 1.5-4.5 Hz, 3-9 
Hz, and 6-18 Hz; horizontal axis indicates time). 

 

In order to encode the visual impression of an f-k image, we compute additionally the residual f-k 
image by subtracting the theoretical array response centered on the maximal coherent plane wave 
(see Fig. 6.5.6).  Then we derive robust statistical parameters from broadband f-k and residual f-k 
images computed for bands 1.5 − 4.5 Hz, 3 − 9 Hz, and 6 − 18 Hz (101 × 101 grid in [-1, 1] s/km in 1.5 s 
windows and 0.1 s steps). In total we obtain a set of 51 parameters, including: μ, σ, rms, med, L1-
scale, sx, sy, max/min-coherence, max-power. Certainly this selection is just one possible encoding of 
the f-k image information that would span a 6 x 101 x 101 = 61206 dimensional feature space in its 
raw representation. 
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Fig. 6.5.6  
Top left: Residual image resulting from subtracting 
the theoretical response from the observed f-k 
image. Bottom right: example of observed f-k 
image for a broad frequency band. Bottom left: 
Theoretical array response function computed for 
the same frequency band and centered on the 
most coherent plane wave arrival (maximum of 
the f-k image on the bottom right). 
 
 
 
 
 
 
 
 

 

The 51-dimensional feature space (f ∈ R51) has been examined visually. The discriminative power of 
features was judged when reviewing the temporal structure of feature series for selected events 
(Figs. 6.5.7 and 6.5.8).  
 

 

Fig. 6.5.7  
The reference event observed 
at SPITS. 
 
 
 
 
 
 
 
 



NORSAR Scientific Report 2-2012  June 2013  
 

 
72 

 

 

Fig. 6.5.8 Time series of 51 feature components for the reference event shown in Fig. 6.5.7. 
 

Simple crossplots - omitting the temporal context - were used for finding correlated feature 
components (Fig. 6.5.9) for a large number of observations (6 hours of background data). Finally, we 
selected feature subsets with dimensions of 18, 21, 27, 33, and 39, based on the findings of the visual 
control and by seismological expertise. Those feature sets were then tested for the classifier design 
and the classification of continuous data. 
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Fig. 6.5.9 Density crossplot of all pairs of feature components (see Fig. 6.5.8) for 6 hours of 
background data. 

 

A large set of (cheap) unlabeled feature vectors are the ingredients for learning the background wave 
field properties as multivariate Gaussian mixture (Gaussian Mixture Model - GMM) in unsupervised 
fashion (k-means algorithm). Event HMM classifiers are then constructed on the base of the GMM 
using a single reference feature vector sequence for updating the HMM parameters (compare also 
Fig. 6.5.3 and 6.5.4). Both background and event models are finally integrated as a parallel grammar 
network (see Fig. 6.5.10). At each time step, a partial sequence of feature vectors is presented to the 
classifier network and the most likely hidden state path is decoded using the Viterbi-algorithm 
(Viterbi, 1967; Forney, 1973). Whenever the Viterbi-path is passing states related to the event HMM, 
a detection of this event-class is declared. Note that also multi-class systems can be constructed 
easily by adding more classifiers in parallel to the grammar network. 
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Fig. 6.5.10 Parallel grammar network in which each Gaussian mixture is part of the background 
model description and the event model HMM is connected in parallel. 

 

An alternative approach for applying the HMM based detector to continuously recorded data is the 
use of running classifier and in parallel keeping track at each time step of the likelihood scores (Fig. 
6.5.11). We may choose to use a noise only, or noise-event-noise grammar types and compare the 
average log likelihoods for the models in short time windows. This approach enables a judgment of 
the quality of detection by the log-likelihood difference as a confidence measure, but usually shows 
less accuracy in the segmentation of the event start and end times. 

 

 

Fig. 6.5.11 Likelihood scoring of alternative HMM models (background and event models). 
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6.5.4 Test data at SPITS array and preliminary results  

We use data from the SPITS array as a test environment to adapt the recently proposed classification 
technique by Hammer et al. (2012) for array settings. Our main goal is to:  

• screen out events not interesting to analysts in NDC/CTBT context 
• count glacier related events as a link to climatic change in arctic regions 

We used 6 hours of continuous recordings for learning the background model (typical example of 
background activity shown in Fig. 6.5.12) and used a single record of an event which is assumed to be 
related to glacier activity (see Fig. 6.5.7). We expect glacier related events to show quite some 
variation in wave field appearance due to the variability of source location and complexity of source 
processes. We consider the HMM-based approach to be particularly suited for this task. One (rather 
typical) restriction for evaluating the quality of the classifier approach in a quantitative way is the 
lack of real ground truth for the observed seismicity.  
There are only two tunable parameters for the classifier: 

i) the number of Gaussians;  
ii) feature vectors pre-whitened or not. 

In combination with the distinct feature subsets there are then numerous settings to be considered. 
In Fig. 6.5.13 we show brief examples of classifier outcomes for the same waveform portion (only the 
vertical seismogram at the array site SPA0 is shown). Note the distinct scoring techniques (parallel 
classifiers vs. network). 

6.5.5 Concluding remarks 

• Preliminary classification results obtained for selected time windows allow the detection of a 
predefined event class (glacier related short and high frequency events).  

• However, the comparison of results for distinct feature sets and parameters indicates sub-
optimal performance. Spurious detections occur frequently. 

• We conclude that there is a need for retraining and testing other selections of background 
training data. 

• The final aim is to run the classifier for a longer time span of data with confidence. This 
ultimate goal requires ground truth data, which is at the moment lacking. 
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Fig. 6.5.12 A typical daily helicorder plot simulation for station SPA0 provides insight of the normal 
seismic activity levels at this arctic island region. 
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Fig. 6.5.13 Results of continuous classification (just a short example window for visualization) using 
either the grammar network or the relative likelihood scoring approach. Spurious 
detections are visible in both approaches and indicate not yet optimal classification 
performance. 
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